Download citation
Download citation
link to html
In the polymeric title compound, {[Co(CHO2)2(C12H8N2)(H2O)]·H2O}n, the cobalt ion is coordinated by two N atoms from one chelating 1,10-phenanthroline ligand, three formate O atoms and one water O atom, giving a cis-CoN2O4 octa­hedral geometry. Pairs of formate anions bridge the metal atoms into a chain. A network of O—H...O hydrogen bonds helps to establish the packing.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807047162/hb2527sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807047162/hb2527Isup2.hkl
Contains datablock I

CCDC reference: 667097

Key indicators

  • Single-crystal X-ray study
  • T = 113 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.043
  • wR factor = 0.100
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT341_ALERT_3_C Low Bond Precision on C-C Bonds (x 1000) Ang ... 7 PLAT850_ALERT_2_C Check Flack Parameter Exact Value 0.00 and su .. 0.03
Alert level G REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 25.02 From the CIF: _reflns_number_total 2562 Count of symmetry unique reflns 1410 Completeness (_total/calc) 181.70% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 1152 Fraction of Friedel pairs measured 0.817 Are heavy atom types Z>Si present yes PLAT794_ALERT_5_G Check Predicted Bond Valency for Co1 (9) 1.67 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 7
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 2 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Recently, formate complexes have received attention in terms of their structure, magnetism and biological activity (Peng et al., 2006; Cui et al., 2007).

We report here the structure (Fig. 1) of the polymeric title compound, (I), in which two formate anions are bridging between Co centres. The cobalt coordinaion is completed by a monodentate-O terminal formate ion, an N,N-bidentate 1,10-phenanthroline molecule and a water molecule. This results in a distorted cis-CoN2O4 octahedral coordination gemoetry (Table 1).

The bridging formate anions lead to a one-dimensional polymeric chain. The packing for (I) is consolidated by a network of O—H···O hydrogen bonds (Table 2).

Related literature top

For background, see: Peng et al. (2006); Cui et al. (2007).

Experimental top

The title compound was prepared by adding 5 ml of aqueous solution of cobalt nitrate (0.146 g, 0.5 mmol), to 10 ml of ethanol solution of 1,10-phenanthroline (0.099 g, 0.5 mmol), after which sodium formate (0.232 g, 4 mmol) was added and was refluexed for 2 h. The resulting solution was filtrated and the filtrate was kept at room temperature and orange blocks of (I) appeared after a week.

Refinement top

The H atoms were positioned geometrically (C—H = 0.96–0.97 Å, O—H = 0.85 Å) and refined as riding with Uiso(H) = 1.2Ueq(carrier).

Structure description top

Recently, formate complexes have received attention in terms of their structure, magnetism and biological activity (Peng et al., 2006; Cui et al., 2007).

We report here the structure (Fig. 1) of the polymeric title compound, (I), in which two formate anions are bridging between Co centres. The cobalt coordinaion is completed by a monodentate-O terminal formate ion, an N,N-bidentate 1,10-phenanthroline molecule and a water molecule. This results in a distorted cis-CoN2O4 octahedral coordination gemoetry (Table 1).

The bridging formate anions lead to a one-dimensional polymeric chain. The packing for (I) is consolidated by a network of O—H···O hydrogen bonds (Table 2).

For background, see: Peng et al. (2006); Cui et al. (2007).

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear (Rigaku/MSC, 2005); data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL (Bruker, 1997).

Figures top
[Figure 1] Fig. 1. A view of a fragemnt of the polymeric structure of (I). Displacement ellopsoids are drawn at the 30% probability level and H atoms are shown as spheres of arbitrary radius. Atoms with a suffix A are at the symmetry position (1 - x, 1 - y, z - 1/2).
catena-Poly[[[aquaformato(1,10-phenanthroline)cobalt(II)]-µ-formato] monohydrate] top
Crystal data top
[Co(CHO2)2(C12H8N2)(H2O)]·H2ODx = 1.677 Mg m3
Mr = 365.20Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pna21Cell parameters from 3127 reflections
a = 18.908 (4) Åθ = 2.0–27.9°
b = 12.014 (2) ŵ = 1.22 mm1
c = 6.3685 (13) ÅT = 113 K
V = 1446.7 (5) Å3Block, orange
Z = 40.20 × 0.18 × 0.08 mm
F(000) = 748
Data collection top
Rigaku Saturn
diffractometer
2562 independent reflections
Radiation source: rotating anode2153 reflections with I > 2σ(I)
Confocal monochromatorRint = 0.085
ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
h = 2222
Tmin = 0.792, Tmax = 0.909k = 1114
8676 measured reflectionsl = 77
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100 w = 1/[σ2(Fo2) + (0.0651P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.86(Δ/σ)max = 0.001
2562 reflectionsΔρmax = 0.33 e Å3
209 parametersΔρmin = 0.42 e Å3
7 restraintsAbsolute structure: Flack (1983), 1152 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (3)
Crystal data top
[Co(CHO2)2(C12H8N2)(H2O)]·H2OV = 1446.7 (5) Å3
Mr = 365.20Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 18.908 (4) ŵ = 1.22 mm1
b = 12.014 (2) ÅT = 113 K
c = 6.3685 (13) Å0.20 × 0.18 × 0.08 mm
Data collection top
Rigaku Saturn
diffractometer
2562 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC, 2005)
2153 reflections with I > 2σ(I)
Tmin = 0.792, Tmax = 0.909Rint = 0.085
8676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.100Δρmax = 0.33 e Å3
S = 0.86Δρmin = 0.42 e Å3
2562 reflectionsAbsolute structure: Flack (1983), 1152 Friedel pairs
209 parametersAbsolute structure parameter: 0.00 (3)
7 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.58489 (2)0.37977 (4)0.81148 (10)0.01363 (16)
O10.57437 (16)0.2373 (2)0.6343 (5)0.0212 (8)
O20.56006 (18)0.0562 (2)0.5806 (6)0.0273 (8)
O30.59367 (14)0.5412 (2)0.9471 (5)0.0177 (7)
O40.49223 (15)0.5437 (2)1.1272 (5)0.0186 (7)
O50.50825 (16)0.3308 (2)1.0273 (5)0.0209 (8)
H5A0.50860.27841.11630.025*
H5B0.49830.39561.07330.025*
N10.66885 (18)0.4293 (3)0.6150 (6)0.0136 (8)
N20.67416 (19)0.3116 (3)0.9751 (6)0.0173 (8)
C10.6659 (3)0.4838 (4)0.4355 (7)0.0208 (10)
H10.62180.50670.38800.025*
C20.7245 (2)0.5094 (3)0.3127 (10)0.0240 (9)
H20.71930.54810.18710.029*
C30.7901 (2)0.4762 (4)0.3807 (8)0.0253 (12)
H30.83010.49130.30070.030*
C40.7962 (2)0.4191 (4)0.5731 (8)0.0214 (11)
C50.8627 (3)0.3794 (4)0.6570 (9)0.0323 (13)
H50.90450.39510.58620.039*
C60.8646 (2)0.3205 (4)0.8352 (10)0.0319 (13)
H60.90800.29570.88520.038*
C70.8015 (2)0.2944 (4)0.9519 (8)0.0235 (11)
C80.8010 (3)0.2328 (4)1.1383 (8)0.0268 (12)
H80.84320.20661.19420.032*
C90.7387 (3)0.2112 (4)1.2382 (8)0.0292 (13)
H90.73820.16961.36140.035*
C100.6751 (2)0.2524 (3)1.1525 (8)0.0226 (11)
H100.63270.23801.22140.027*
C110.7362 (2)0.3326 (4)0.8765 (7)0.0181 (10)
C120.7338 (2)0.3958 (4)0.6843 (8)0.0183 (11)
C130.5675 (2)0.1395 (4)0.6949 (8)0.0225 (11)
H130.56790.12750.83910.027*
C140.5454 (2)0.5899 (4)1.0437 (7)0.0169 (10)
H140.54880.66691.05540.020*
O60.49393 (19)0.1397 (2)0.2288 (6)0.0332 (9)
H6A0.47520.09020.15000.040*
H6B0.51490.11570.33840.040*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0135 (3)0.0126 (3)0.0147 (3)0.0009 (2)0.0011 (3)0.0004 (3)
O10.0298 (19)0.0150 (18)0.0187 (19)0.0002 (13)0.0043 (14)0.0023 (15)
O20.044 (2)0.0148 (17)0.0235 (18)0.0011 (15)0.0075 (16)0.0029 (16)
O30.0163 (16)0.0160 (17)0.0207 (18)0.0009 (12)0.0034 (13)0.0012 (15)
O40.0172 (16)0.0181 (16)0.0203 (18)0.0024 (13)0.0056 (14)0.0011 (14)
O50.0251 (17)0.0109 (16)0.027 (2)0.0023 (12)0.0103 (15)0.0023 (14)
N10.016 (2)0.0094 (18)0.016 (2)0.0001 (14)0.0008 (16)0.0020 (17)
N20.018 (2)0.0143 (19)0.020 (2)0.0029 (15)0.0013 (16)0.0040 (18)
C10.029 (3)0.018 (2)0.016 (2)0.0018 (19)0.002 (2)0.002 (2)
C20.035 (2)0.017 (2)0.020 (2)0.0100 (17)0.005 (3)0.003 (3)
C30.029 (3)0.017 (3)0.030 (3)0.008 (2)0.014 (2)0.011 (2)
C40.019 (3)0.018 (2)0.027 (3)0.0049 (18)0.006 (2)0.008 (2)
C50.011 (3)0.046 (3)0.041 (3)0.002 (2)0.005 (2)0.020 (3)
C60.018 (2)0.038 (3)0.039 (4)0.0110 (19)0.012 (3)0.021 (3)
C70.022 (3)0.023 (3)0.026 (3)0.005 (2)0.007 (2)0.009 (2)
C80.032 (3)0.019 (3)0.030 (3)0.009 (2)0.014 (2)0.011 (2)
C90.039 (3)0.030 (3)0.019 (2)0.005 (2)0.014 (2)0.006 (2)
C100.032 (3)0.012 (2)0.024 (3)0.0009 (19)0.006 (2)0.000 (2)
C110.021 (2)0.014 (2)0.019 (3)0.0056 (18)0.0033 (18)0.0070 (19)
C120.016 (2)0.016 (2)0.023 (3)0.0020 (18)0.000 (2)0.009 (2)
C130.022 (3)0.025 (3)0.020 (3)0.005 (2)0.002 (2)0.000 (2)
C140.015 (2)0.015 (2)0.021 (3)0.0028 (18)0.0028 (19)0.001 (2)
O60.052 (2)0.0204 (18)0.027 (2)0.0118 (15)0.0135 (17)0.0055 (16)
Geometric parameters (Å, º) top
Co1—O12.060 (3)C3—C41.409 (7)
Co1—O52.082 (3)C3—H30.9300
Co1—O4i2.086 (3)C4—C121.404 (6)
Co1—N12.107 (4)C4—C51.446 (7)
Co1—O32.129 (3)C5—C61.338 (8)
Co1—N22.146 (4)C5—H50.9300
O1—C131.244 (5)C6—C71.440 (7)
O2—C131.245 (5)C6—H60.9300
O3—C141.246 (5)C7—C81.398 (7)
O4—C141.266 (5)C7—C111.402 (6)
O4—Co1ii2.086 (3)C8—C91.363 (7)
O5—H5A0.8473C8—H80.9300
O5—H5B0.8533C9—C101.411 (6)
N1—C11.319 (6)C9—H90.9300
N1—C121.366 (6)C10—H100.9300
N2—C101.335 (6)C11—C121.441 (7)
N2—C111.355 (6)C13—H130.9300
C1—C21.389 (6)C14—H140.9300
C1—H10.9300O6—H6A0.8544
C2—C31.375 (6)O6—H6B0.8532
C2—H20.9300
O1—Co1—O593.42 (12)C4—C3—H3120.4
O1—Co1—O4i89.45 (11)C12—C4—C3117.9 (4)
O5—Co1—O4i90.54 (12)C12—C4—C5118.5 (5)
O1—Co1—N188.97 (13)C3—C4—C5123.5 (4)
O5—Co1—N1174.97 (14)C6—C5—C4120.7 (5)
O4i—Co1—N193.91 (13)C6—C5—H5119.6
O1—Co1—O3170.57 (13)C4—C5—H5119.6
O5—Co1—O392.52 (12)C5—C6—C7122.1 (4)
O4i—Co1—O383.18 (11)C5—C6—H6119.0
N1—Co1—O385.70 (12)C7—C6—H6119.0
O1—Co1—N291.42 (13)C8—C7—C11117.2 (4)
O5—Co1—N296.83 (14)C8—C7—C6124.0 (4)
O4i—Co1—N2172.51 (14)C11—C7—C6118.7 (5)
N1—Co1—N278.67 (13)C9—C8—C7120.2 (4)
O3—Co1—N295.14 (13)C9—C8—H8119.9
C13—O1—Co1128.7 (3)C7—C8—H8119.9
C14—O3—Co1124.8 (3)C8—C9—C10119.3 (5)
C14—O4—Co1ii126.8 (3)C8—C9—H9120.4
Co1—O5—H5A130.2C10—C9—H9120.4
Co1—O5—H5B97.0N2—C10—C9121.7 (5)
H5A—O5—H5B116.8N2—C10—H10119.1
C1—N1—C12117.6 (4)C9—C10—H10119.1
C1—N1—Co1128.6 (3)N2—C11—C7122.9 (4)
C12—N1—Co1113.7 (3)N2—C11—C12117.7 (4)
C10—N2—C11118.7 (4)C7—C11—C12119.4 (4)
C10—N2—Co1128.7 (3)N1—C12—C4122.3 (5)
C11—N2—Co1112.7 (3)N1—C12—C11117.2 (4)
N1—C1—C2124.4 (5)C4—C12—C11120.5 (4)
N1—C1—H1117.8O1—C13—O2126.1 (5)
C2—C1—H1117.8O1—C13—H13116.9
C3—C2—C1118.5 (5)O2—C13—H13116.9
C3—C2—H2120.7O3—C14—O4125.7 (4)
C1—C2—H2120.7O3—C14—H14117.2
C2—C3—C4119.3 (5)O4—C14—H14117.2
C2—C3—H3120.4H6A—O6—H6B116.0
O5—Co1—O1—C1341.7 (4)C4—C5—C6—C70.3 (7)
O4i—Co1—O1—C13132.2 (4)C5—C6—C7—C8179.8 (5)
N1—Co1—O1—C13133.9 (4)C5—C6—C7—C110.4 (7)
N2—Co1—O1—C1355.3 (4)C11—C7—C8—C90.6 (7)
O5—Co1—O3—C1427.5 (3)C6—C7—C8—C9179.6 (4)
O4i—Co1—O3—C1462.8 (3)C7—C8—C9—C100.6 (7)
N1—Co1—O3—C14157.2 (4)C11—N2—C10—C90.3 (6)
N2—Co1—O3—C14124.6 (3)Co1—N2—C10—C9178.6 (3)
O1—Co1—N1—C186.0 (4)C8—C9—C10—N20.5 (7)
O4i—Co1—N1—C13.4 (4)C10—N2—C11—C70.4 (6)
O3—Co1—N1—C186.2 (4)Co1—N2—C11—C7178.7 (3)
N2—Co1—N1—C1177.6 (4)C10—N2—C11—C12179.5 (4)
O1—Co1—N1—C1291.7 (3)Co1—N2—C11—C120.4 (5)
O4i—Co1—N1—C12179.0 (3)C8—C7—C11—N20.5 (7)
O3—Co1—N1—C1296.1 (3)C6—C7—C11—N2179.7 (4)
N2—Co1—N1—C120.0 (3)C8—C7—C11—C12179.6 (4)
O1—Co1—N2—C1090.5 (4)C6—C7—C11—C120.6 (6)
O5—Co1—N2—C103.1 (4)C1—N1—C12—C41.0 (6)
N1—Co1—N2—C10179.2 (4)Co1—N1—C12—C4178.9 (3)
O3—Co1—N2—C1096.2 (4)C1—N1—C12—C11177.7 (4)
O1—Co1—N2—C1188.4 (3)Co1—N1—C12—C110.2 (5)
O5—Co1—N2—C11178.0 (3)C3—C4—C12—N11.9 (6)
N1—Co1—N2—C110.2 (3)C5—C4—C12—N1179.4 (4)
O3—Co1—N2—C1184.8 (3)C3—C4—C12—C11176.8 (4)
C12—N1—C1—C20.0 (6)C5—C4—C12—C110.7 (6)
Co1—N1—C1—C2177.6 (3)N2—C11—C12—N10.4 (6)
N1—C1—C2—C30.0 (7)C7—C11—C12—N1178.7 (4)
C1—C2—C3—C40.9 (7)N2—C11—C12—C4179.2 (4)
C2—C3—C4—C121.8 (6)C7—C11—C12—C40.0 (7)
C2—C3—C4—C5179.2 (4)Co1—O1—C13—O2178.7 (3)
C12—C4—C5—C60.9 (7)Co1—O3—C14—O420.8 (6)
C3—C4—C5—C6176.4 (5)Co1ii—O4—C14—O3174.4 (3)
Symmetry codes: (i) x+1, y+1, z1/2; (ii) x+1, y+1, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6iii0.851.832.644 (4)159
O6—H6A···O2iv0.851.932.734 (4)156
O5—H5B···O40.851.822.653 (4)167
O6—H6B···O20.851.902.755 (5)178
Symmetry codes: (iii) x, y, z+1; (iv) x+1, y, z1/2.

Experimental details

Crystal data
Chemical formula[Co(CHO2)2(C12H8N2)(H2O)]·H2O
Mr365.20
Crystal system, space groupOrthorhombic, Pna21
Temperature (K)113
a, b, c (Å)18.908 (4), 12.014 (2), 6.3685 (13)
V3)1446.7 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.22
Crystal size (mm)0.20 × 0.18 × 0.08
Data collection
DiffractometerRigaku Saturn
Absorption correctionMulti-scan
(CrystalClear; Rigaku/MSC, 2005)
Tmin, Tmax0.792, 0.909
No. of measured, independent and
observed [I > 2σ(I)] reflections
8676, 2562, 2153
Rint0.085
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.100, 0.86
No. of reflections2562
No. of parameters209
No. of restraints7
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.33, 0.42
Absolute structureFlack (1983), 1152 Friedel pairs
Absolute structure parameter0.00 (3)

Computer programs: CrystalClear (Rigaku/MSC, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997).

Selected bond lengths (Å) top
Co1—O12.060 (3)Co1—N12.107 (4)
Co1—O52.082 (3)Co1—O32.129 (3)
Co1—O4i2.086 (3)Co1—N22.146 (4)
Symmetry code: (i) x+1, y+1, z1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H5A···O6ii0.851.832.644 (4)159
O6—H6A···O2iii0.851.932.734 (4)156
O5—H5B···O40.851.822.653 (4)167
O6—H6B···O20.851.902.755 (5)178
Symmetry codes: (ii) x, y, z+1; (iii) x+1, y, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds