Download citation
Download citation
link to html
In the polymeric title compound, {[Ag(C12H10N4)](CH3SO3)}n, the Ag atom exists in an almost linear NAgN geometry and the topology of the supra­molecular chain is a zigzag. Adjacent chains are linked via weak argentophilic Ag...Ag inter­actions [3.1402 (8) Å] to form double chains and the anions are associated with this via Ag...O contacts [2.508 (3) Å]. Layers are formed through C—H...O inter­actions and the layers stack via π–π inter­actions [centroid–centroid separation = 3.751 (3) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807042419/hb2526sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807042419/hb2526Isup2.hkl
Contains datablock I

CCDC reference: 663556

Key indicators

  • Single-crystal X-ray study
  • T = 98 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.044
  • wR factor = 0.115
  • Data-to-parameter ratio = 14.0

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.641 1.000 Tmin(prime) and Tmax expected: 0.780 0.952 RR(prime) = 0.782 Please check that your absorption correction is appropriate. PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.78 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.95 PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 1000 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.29 PLAT413_ALERT_2_C Short Inter XH3 .. XHn H9 .. H13A .. 2.11 Ang.
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.952 Tmax scaled 0.952 Tmin scaled 0.610 PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag (9) 0.36
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

The title compound, [Ag(C12H10N4)]n.n(CH3SO3}, (I), was investigated in connection with on-going studies of Ag salts of isomeric n-pyridinealdazine, n = 2, 3 or 4, molecules (Broker & Tiekink, 2007a, b). In (I), (Fig. 1 & Table 1), the Ag atom exists in a linear N2 geometry and the topology of the chain is zigzag owing to the relative disposition of the N-donor atoms. Similar polymeric chains are found for the perchlorate and tetrafluoroborate salts, each as acetonitrile solvates (Kennedy et al., 2005).

In (I), the chains are connected into double chains via weak argentophilic interactions [Ag···Ag = 3.1402 (8) Å] and the methanesulfonate anions are linked to this via Ag···O interactions [2.508 (3) Å]. The presence of C—H···O interactions consolidate the double-chains into layers and additional stabilization is afforded by C—H···N contacts between a methyl-H and an azo-N atom (Fig. 2 & Table 2). Successive layers are connected primarily by π···π contacts so that the distance between the centroids of the N1/C1—C5 and (N4/C8—C12)i rings is 3.751 (3) Å (i = 1 - x, 1 - y, -z).

Related literature top

For related polymeric silver salts containing the 3-pyridinealdazine ligand, see: Kennedy et al. (2005). For related literature, see: Broker & Tiekink (2007a, 2007b).

Experimental top

Ag(CF3SO3) (Aldrich, 0.05 g, 0.25 mmol) was dissolved in CH3CN (20 ml) and layered on top of a CH2Cl2 solution (20 ml) containing 0.05 g (0.25 mmol) of 3-pyridinealdazine (Aldrich). After three days, yellow rods and blocks of (I) were observed at the interface between the two layers; m.p. 555–557 K.

Refinement top

All the H atoms were included in the riding-model approximation, with C—H = 0.95–0.98Å and Uiso(H) = 1.2 or 1.5Ueq(C). The maximum and minimum difference peaks are located 0.87 and 0.88 Å, respectively, from Ag.

Structure description top

The title compound, [Ag(C12H10N4)]n.n(CH3SO3}, (I), was investigated in connection with on-going studies of Ag salts of isomeric n-pyridinealdazine, n = 2, 3 or 4, molecules (Broker & Tiekink, 2007a, b). In (I), (Fig. 1 & Table 1), the Ag atom exists in a linear N2 geometry and the topology of the chain is zigzag owing to the relative disposition of the N-donor atoms. Similar polymeric chains are found for the perchlorate and tetrafluoroborate salts, each as acetonitrile solvates (Kennedy et al., 2005).

In (I), the chains are connected into double chains via weak argentophilic interactions [Ag···Ag = 3.1402 (8) Å] and the methanesulfonate anions are linked to this via Ag···O interactions [2.508 (3) Å]. The presence of C—H···O interactions consolidate the double-chains into layers and additional stabilization is afforded by C—H···N contacts between a methyl-H and an azo-N atom (Fig. 2 & Table 2). Successive layers are connected primarily by π···π contacts so that the distance between the centroids of the N1/C1—C5 and (N4/C8—C12)i rings is 3.751 (3) Å (i = 1 - x, 1 - y, -z).

For related polymeric silver salts containing the 3-pyridinealdazine ligand, see: Kennedy et al. (2005). For related literature, see: Broker & Tiekink (2007a, 2007b).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) showing displacement ellipsoids at the 70% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. View of the supramolecular double chains in (I) highlighting the Ag···Ag and Ag···O interactions (black dashed lines). Colour code: orange (silver), yellow (sulfur), red (oxygen), blue (nitrogen), grey (carbon) and green (hydrogen).
catena-Poly[[silver(I)-µ-1,4-di-3-pyridyl-2,3-diazabuta-1,3-diene] methanesulfonate] top
Crystal data top
[Ag(C12H10N4)](CH3SO3)Z = 2
Mr = 413.21F(000) = 412
Triclinic, P1Dx = 1.994 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71070 Å
a = 7.7818 (13) ÅCell parameters from 6258 reflections
b = 9.6799 (16) Åθ = 2.8–29.7°
c = 9.9742 (15) ŵ = 1.64 mm1
α = 106.50 (1)°T = 98 K
β = 91.12 (1)°Rod, yellow
γ = 106.50 (1)°0.15 × 0.05 × 0.03 mm
V = 686.63 (19) Å3
Data collection top
Rigaku AFC12κ Saturn724
diffractometer
2793 independent reflections
Radiation source: fine-focus sealed tube2686 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ω scansθmax = 26.5°, θmin = 2.6°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 98
Tmin = 0.641, Tmax = 1.000k = 1012
4287 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.115H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0581P)2 + 3.8177P]
where P = (Fo2 + 2Fc2)/3
2793 reflections(Δ/σ)max < 0.001
199 parametersΔρmax = 1.33 e Å3
0 restraintsΔρmin = 1.74 e Å3
Crystal data top
[Ag(C12H10N4)](CH3SO3)γ = 106.50 (1)°
Mr = 413.21V = 686.63 (19) Å3
Triclinic, P1Z = 2
a = 7.7818 (13) ÅMo Kα radiation
b = 9.6799 (16) ŵ = 1.64 mm1
c = 9.9742 (15) ÅT = 98 K
α = 106.50 (1)°0.15 × 0.05 × 0.03 mm
β = 91.12 (1)°
Data collection top
Rigaku AFC12κ Saturn724
diffractometer
2793 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2686 reflections with I > 2σ(I)
Tmin = 0.641, Tmax = 1.000Rint = 0.030
4287 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.115H-atom parameters constrained
S = 1.09Δρmax = 1.33 e Å3
2793 reflectionsΔρmin = 1.74 e Å3
199 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag0.17114 (4)0.45886 (4)0.42132 (3)0.01878 (14)
S10.24710 (15)0.79114 (12)0.26031 (11)0.0167 (2)
O10.1198 (5)0.6446 (4)0.2912 (4)0.0296 (8)
O20.1607 (5)0.9035 (4)0.2162 (4)0.0279 (8)
O30.3649 (5)0.8196 (5)0.3689 (4)0.0334 (9)
N10.1379 (5)0.2995 (4)0.3042 (4)0.0153 (7)
N20.2373 (5)0.4241 (4)0.0284 (4)0.0167 (7)
N30.3507 (5)0.4542 (4)0.1490 (4)0.0159 (7)
N40.7448 (5)0.6106 (4)0.4777 (4)0.0153 (7)
C10.2417 (6)0.1603 (5)0.3322 (4)0.0148 (8)
H10.32840.12210.41250.018*
C20.2351 (6)0.0603 (5)0.2512 (5)0.0182 (9)
H20.31700.03910.27920.022*
C30.1162 (6)0.1037 (5)0.1371 (5)0.0169 (8)
H30.10940.03980.08170.020*
C40.0069 (6)0.2470 (5)0.1082 (4)0.0141 (8)
C50.0209 (6)0.3421 (5)0.1940 (4)0.0138 (8)
H50.06030.44180.16850.017*
C60.1217 (6)0.2981 (5)0.0121 (5)0.0181 (9)
H60.12040.24110.07560.022*
C70.4537 (6)0.5846 (5)0.1682 (4)0.0161 (8)
H70.44450.64070.10560.019*
C80.5824 (6)0.6447 (5)0.2847 (4)0.0139 (8)
C90.6240 (6)0.5568 (5)0.3700 (4)0.0145 (8)
H90.55790.45250.34490.017*
C100.8239 (6)0.7563 (5)0.5078 (5)0.0184 (9)
H100.91000.80320.58860.022*
C110.7911 (6)0.8506 (5)0.4285 (5)0.0190 (9)
H110.85630.95520.45750.023*
C120.6709 (6)0.7940 (5)0.3151 (5)0.0167 (8)
H120.64890.85370.25970.020*
C130.3873 (7)0.7910 (5)0.1196 (5)0.0212 (9)
H13A0.44570.71190.15240.032*
H13B0.31470.77130.04410.032*
H13C0.47950.88960.08410.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag0.0180 (2)0.0230 (2)0.0156 (2)0.00637 (14)0.00283 (13)0.00638 (14)
S10.0159 (5)0.0166 (5)0.0142 (5)0.0019 (4)0.0044 (4)0.0028 (4)
O10.0236 (18)0.0202 (17)0.037 (2)0.0029 (14)0.0091 (15)0.0003 (15)
O20.032 (2)0.0171 (16)0.0312 (19)0.0081 (14)0.0112 (15)0.0028 (14)
O30.0238 (19)0.051 (2)0.0164 (17)0.0002 (17)0.0040 (14)0.0090 (16)
N10.0149 (17)0.0212 (18)0.0095 (16)0.0083 (14)0.0035 (13)0.0015 (14)
N20.0123 (17)0.0208 (18)0.0114 (17)0.0025 (14)0.0059 (13)0.0007 (14)
N30.0126 (17)0.0221 (19)0.0083 (16)0.0043 (15)0.0057 (13)0.0013 (14)
N40.0144 (17)0.0176 (17)0.0132 (17)0.0060 (14)0.0035 (13)0.0029 (14)
C10.0118 (19)0.0142 (19)0.0130 (19)0.0001 (15)0.0016 (15)0.0002 (15)
C20.018 (2)0.0135 (19)0.016 (2)0.0016 (16)0.0020 (16)0.0033 (16)
C30.018 (2)0.015 (2)0.014 (2)0.0010 (16)0.0016 (16)0.0027 (16)
C40.0111 (19)0.017 (2)0.0113 (18)0.0037 (16)0.0026 (15)0.0005 (15)
C50.0115 (19)0.0123 (18)0.0127 (19)0.0036 (15)0.0013 (15)0.0039 (15)
C60.019 (2)0.022 (2)0.0111 (19)0.0080 (18)0.0049 (16)0.0005 (16)
C70.013 (2)0.020 (2)0.0126 (19)0.0042 (17)0.0022 (16)0.0028 (16)
C80.016 (2)0.0132 (19)0.0104 (18)0.0056 (16)0.0000 (15)0.0000 (15)
C90.0125 (19)0.018 (2)0.0112 (18)0.0057 (16)0.0047 (15)0.0003 (15)
C100.015 (2)0.021 (2)0.015 (2)0.0039 (17)0.0036 (16)0.0008 (16)
C110.016 (2)0.018 (2)0.017 (2)0.0035 (17)0.0036 (17)0.0013 (17)
C120.015 (2)0.016 (2)0.016 (2)0.0050 (16)0.0023 (16)0.0009 (16)
C130.025 (2)0.026 (2)0.012 (2)0.0108 (19)0.0032 (17)0.0025 (17)
Geometric parameters (Å, º) top
Ag—N12.247 (4)C3—C41.350 (6)
Ag—O12.508 (4)C3—H30.9500
Ag—N4i2.227 (4)C4—C61.421 (6)
Ag—Agii3.1402 (8)C4—C51.447 (6)
S1—O21.409 (4)C5—H50.9500
S1—O11.425 (4)C6—H60.9500
S1—O31.468 (4)C7—C81.391 (6)
S1—C131.761 (4)C7—H70.9500
N1—C51.303 (5)C8—C121.353 (6)
N1—C11.306 (6)C8—C91.452 (6)
N2—C61.258 (6)C9—H90.9500
N2—N31.388 (5)C10—C111.435 (6)
N3—C71.247 (6)C10—H100.9500
N4—C91.294 (6)C11—C121.331 (6)
N4—C101.310 (6)C11—H110.9500
N4—Agiii2.227 (4)C12—H120.9500
C1—C21.437 (6)C13—H13A0.9800
C1—H10.9500C13—H13B0.9800
C2—C31.339 (6)C13—H13C0.9800
C2—H20.9500
N4i—Ag—N1169.11 (14)C6—C4—C5122.4 (4)
N4i—Ag—O197.46 (13)N1—C5—C4124.0 (4)
N1—Ag—O188.96 (13)N1—C5—H5118.0
N4i—Ag—Agii82.12 (10)C4—C5—H5118.0
N1—Ag—Agii108.76 (10)N2—C6—C4115.2 (4)
O1—Ag—Agii58.95 (10)N2—C6—H6122.4
O2—S1—O1110.4 (2)C4—C6—H6122.4
O2—S1—O3111.1 (3)N3—C7—C8117.4 (4)
O1—S1—O3116.9 (2)N3—C7—H7121.3
O2—S1—C13110.8 (2)C8—C7—H7121.3
O1—S1—C13100.8 (2)C12—C8—C7115.5 (4)
O3—S1—C13106.1 (2)C12—C8—C9120.8 (4)
S1—O1—Ag148.7 (2)C7—C8—C9123.8 (4)
C5—N1—C1113.6 (4)N4—C9—C8124.5 (4)
C5—N1—Ag122.4 (3)N4—C9—H9117.7
C1—N1—Ag123.8 (3)C8—C9—H9117.7
C6—N2—N3107.0 (4)N4—C10—C11125.3 (4)
C7—N3—N2105.2 (4)N4—C10—H10117.4
C9—N4—C10113.5 (4)C11—C10—H10117.4
C9—N4—Agiii121.2 (3)C12—C11—C10121.1 (4)
C10—N4—Agiii124.8 (3)C12—C11—H11119.4
N1—C1—C2125.2 (4)C10—C11—H11119.4
N1—C1—H1117.4C11—C12—C8114.8 (4)
C2—C1—H1117.4C11—C12—H12122.6
C3—C2—C1121.6 (4)C8—C12—H12122.6
C3—C2—H2119.2S1—C13—H13A109.5
C1—C2—H2119.2S1—C13—H13B109.5
C2—C3—C4113.7 (4)H13A—C13—H13B109.5
C2—C3—H3123.2S1—C13—H13C109.5
C4—C3—H3123.2H13A—C13—H13C109.5
C3—C4—C6115.7 (4)H13B—C13—H13C109.5
C3—C4—C5122.0 (4)
O2—S1—O1—Ag52.9 (5)Ag—N1—C5—C4174.0 (3)
O3—S1—O1—Ag75.4 (5)C3—C4—C5—N10.3 (7)
C13—S1—O1—Ag170.1 (5)C6—C4—C5—N1179.4 (4)
N4i—Ag—O1—S13.4 (5)N3—N2—C6—C4179.5 (4)
N1—Ag—O1—S1174.6 (5)C3—C4—C6—N2171.5 (4)
Agii—Ag—O1—S172.7 (5)C5—C4—C6—N28.8 (6)
N4i—Ag—N1—C5113.0 (7)N2—N3—C7—C8179.4 (4)
O1—Ag—N1—C513.4 (3)N3—C7—C8—C12169.5 (4)
Agii—Ag—N1—C569.9 (3)N3—C7—C8—C911.0 (7)
N4i—Ag—N1—C161.4 (8)C10—N4—C9—C82.6 (6)
O1—Ag—N1—C1172.2 (4)Agiii—N4—C9—C8169.7 (3)
Agii—Ag—N1—C1115.7 (3)C12—C8—C9—N40.3 (7)
C6—N2—N3—C7174.7 (4)C7—C8—C9—N4179.2 (4)
C5—N1—C1—C21.1 (6)C9—N4—C10—C112.9 (7)
Ag—N1—C1—C2173.7 (3)Agiii—N4—C10—C11169.1 (3)
N1—C1—C2—C30.6 (7)N4—C10—C11—C120.9 (8)
C1—C2—C3—C40.2 (7)C10—C11—C12—C81.5 (7)
C2—C3—C4—C6180.0 (4)C7—C8—C12—C11178.7 (4)
C2—C3—C4—C50.3 (6)C9—C8—C12—C111.8 (6)
C1—N1—C5—C40.9 (6)
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z1; (iii) x+1, y, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2iv0.952.563.283 (6)133
C2—H2···O3v0.952.473.268 (7)142
C13—H13A···N3vi0.982.563.500 (7)160
Symmetry codes: (iv) x+1, y+2, z; (v) x1, y1, z; (vi) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C12H10N4)](CH3SO3)
Mr413.21
Crystal system, space groupTriclinic, P1
Temperature (K)98
a, b, c (Å)7.7818 (13), 9.6799 (16), 9.9742 (15)
α, β, γ (°)106.50 (1), 91.12 (1), 106.50 (1)
V3)686.63 (19)
Z2
Radiation typeMo Kα
µ (mm1)1.64
Crystal size (mm)0.15 × 0.05 × 0.03
Data collection
DiffractometerRigaku AFC12κ Saturn724
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.641, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
4287, 2793, 2686
Rint0.030
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.115, 1.09
No. of reflections2793
No. of parameters199
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.33, 1.74

Computer programs: CrystalClear (Rigaku, 2005), CrystalClear, SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976) and DIAMOND (Brandenburg, 2006), SHELXL97.

Selected geometric parameters (Å, º) top
Ag—N12.247 (4)Ag—Agii3.1402 (8)
Ag—N4i2.227 (4)
N4i—Ag—N1169.11 (14)
Symmetry codes: (i) x1, y, z1; (ii) x, y+1, z1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···O2iii0.952.563.283 (6)133
C2—H2···O3iv0.952.473.268 (7)142
C13—H13A···N3v0.982.563.500 (7)160
Symmetry codes: (iii) x+1, y+2, z; (iv) x1, y1, z; (v) x+1, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds