Download citation
Download citation
link to html
The title compound, [Ag(C10H8NO3S)(C10H9N)2], has a mononuclear structure in which the Ag+ cation is three-coordinated by two N atoms from two different 3-methyl­isoquinoline mol­ecules and one O atom from a 6-amino­naphthalene-1-sulfonate anion in a distorted trigonal–planar AgN2O arrangement. A network of N—H...O hydrogen bonds consolidates the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807039955/hb2506sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807039955/hb2506Isup2.hkl
Contains datablock I

CCDC reference: 660120

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.007 Å
  • R factor = 0.048
  • wR factor = 0.074
  • Data-to-parameter ratio = 16.9

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.96
Alert level C GOODF01_ALERT_2_C The least squares goodness of fit parameter lies outside the range 0.80 <> 2.00 Goodness of fit given = 0.755 PLAT026_ALERT_3_C Ratio Observed / Unique Reflections too Low .... 41 Perc. PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 3.00 Ratio PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ag1 - O3 .. 8.11 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Ag1 (9) 0.83 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In this paper, the structure of the title compound, (I) (Fig. 1), containing two 3-methylisoquinoline molecules and one 6-amino-1-naphthalenesulfonate (L) anion is described.

In (I), two 3-methylisoquinoline molecules and one L anion are coordinated to the metal, resulting in a highly distorted trigonal planar coordination geometry for Ag (Table 1). Atoms Ag1, N2, N3 and O3 are close to coplanar and the bond-angle sum about Ag is 347.11°. The Ag—N distances in (I) are similar to the equivalent values in a related compound (Li et al., 2007). The dihedral angle between the quinoline rings of the two coordinated 3-methylisoquinoline molecules is 22.2 (3)°.

The structure of (I) is completed by N—H···O hydrogen bonds (Table 2) to result in chains propagating in [100].

Related literature top

For the related compound, Ag(L1)(3-iso) (L1 = 2-amino-3,5-dimethylbenzenesulfonate, 3-iso = 3-methylisoquinoline), containing a trigonal–planar AgN3 arrangement, see: Li et al. (2007).

Experimental top

An aqueous solution (10 ml) of 6-amino-1-naphthalenesulfonic acid (0.1115 g, 0.5 mmol) was added to solid Ag2CO3 (0.069 g, 0.25 mmol) and stirred for several minutes until no further CO2 was given off; 3-methylisoquinoline (0.0715 g, 0.5 mmol) in methanol (5 ml) was then added and a white precipitate formed. The precipitate was dissolved by dropwise addition of an aqueous solution of NH3 (14 M). Crystals of (I) were obtained by evaporation of the solution for several days at room temperature.

Refinement top

The N-bound H atoms were located in a difference map and their positions were freely refined with Uiso(H) = 1.2Ueq(N). The C-bound H atoms were positioned geometrically (C—H = 0.93–0.96 Å) and refined as riding, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

In this paper, the structure of the title compound, (I) (Fig. 1), containing two 3-methylisoquinoline molecules and one 6-amino-1-naphthalenesulfonate (L) anion is described.

In (I), two 3-methylisoquinoline molecules and one L anion are coordinated to the metal, resulting in a highly distorted trigonal planar coordination geometry for Ag (Table 1). Atoms Ag1, N2, N3 and O3 are close to coplanar and the bond-angle sum about Ag is 347.11°. The Ag—N distances in (I) are similar to the equivalent values in a related compound (Li et al., 2007). The dihedral angle between the quinoline rings of the two coordinated 3-methylisoquinoline molecules is 22.2 (3)°.

The structure of (I) is completed by N—H···O hydrogen bonds (Table 2) to result in chains propagating in [100].

For the related compound, Ag(L1)(3-iso) (L1 = 2-amino-3,5-dimethylbenzenesulfonate, 3-iso = 3-methylisoquinoline), containing a trigonal–planar AgN3 arrangement, see: Li et al. (2007).

Computing details top

Data collection: SMART (Bruker, 1999); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL-Plus (Sheldrick, 1990); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with 30% probability displacement ellipsoids for non-H atoms.
(6-Aminonaphthalene-1-sulfonato-κO)bis(3-methylisoquinoline-κN)silver(I) top
Crystal data top
[Ag(C10H8NO3S)(C10H9N)2]Z = 2
Mr = 616.47F(000) = 628
Triclinic, P1Dx = 1.562 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 9.8810 (14) ÅCell parameters from 5933 reflections
b = 10.2220 (17) Åθ = 2.0–28.3°
c = 13.256 (2) ŵ = 0.89 mm1
α = 80.108 (11)°T = 292 K
β = 86.653 (11)°Block, colourless
γ = 84.143 (10)°0.35 × 0.33 × 0.29 mm
V = 1311.0 (4) Å3
Data collection top
Bruker SMART APEX CCD
diffractometer
5933 independent reflections
Radiation source: fine-focus sealed tube2404 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.064
ω scansθmax = 28.3°, θmin = 2.0°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1212
Tmin = 0.709, Tmax = 0.766k = 1310
8844 measured reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: difmap and geom
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.76 w = 1/[σ2(Fo2)]
where P = (Fo2 + 2Fc2)/3
5933 reflections(Δ/σ)max = 0.001
351 parametersΔρmax = 0.38 e Å3
3 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Ag(C10H8NO3S)(C10H9N)2]γ = 84.143 (10)°
Mr = 616.47V = 1311.0 (4) Å3
Triclinic, P1Z = 2
a = 9.8810 (14) ÅMo Kα radiation
b = 10.2220 (17) ŵ = 0.89 mm1
c = 13.256 (2) ÅT = 292 K
α = 80.108 (11)°0.35 × 0.33 × 0.29 mm
β = 86.653 (11)°
Data collection top
Bruker SMART APEX CCD
diffractometer
5933 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
2404 reflections with I > 2σ(I)
Tmin = 0.709, Tmax = 0.766Rint = 0.064
8844 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0483 restraints
wR(F2) = 0.074H atoms treated by a mixture of independent and constrained refinement
S = 0.76Δρmax = 0.38 e Å3
5933 reflectionsΔρmin = 0.35 e Å3
351 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ag10.45151 (4)0.67693 (4)0.24609 (3)0.05828 (15)
C10.3993 (5)0.4468 (5)0.4152 (4)0.0483 (13)
H10.47660.41320.38120.058*
C20.3389 (5)0.3592 (5)0.4960 (4)0.0488 (14)
C30.3883 (6)0.2245 (6)0.5219 (5)0.0706 (18)
H30.46440.19050.48680.085*
C40.3243 (7)0.1436 (6)0.5989 (5)0.083 (2)
H40.35590.05390.61500.099*
C50.2106 (8)0.1950 (7)0.6541 (5)0.089 (2)
H50.16920.14000.70780.107*
C60.1621 (6)0.3237 (6)0.6291 (4)0.0735 (18)
H60.08690.35580.66620.088*
C70.2215 (5)0.4123 (6)0.5483 (4)0.0534 (14)
C80.1762 (5)0.5456 (5)0.5152 (4)0.0599 (15)
H80.10070.58370.54860.072*
C90.2389 (5)0.6209 (5)0.4359 (4)0.0523 (14)
C100.1897 (5)0.7653 (5)0.3960 (4)0.0753 (17)
H10A0.18260.77750.32300.113*
H10B0.25330.82270.41240.113*
H10C0.10210.78700.42730.113*
C130.5358 (4)0.9633 (4)0.1512 (3)0.0332 (11)
C140.6092 (4)1.0543 (4)0.0927 (3)0.0397 (12)
H140.59021.14410.09730.048*
C150.7154 (4)1.0151 (4)0.0239 (3)0.0359 (12)
C160.7952 (5)1.1056 (5)0.0401 (4)0.0494 (14)
H160.77751.19660.03970.059*
C170.8978 (5)1.0607 (5)0.1025 (4)0.0533 (14)
H170.95021.12090.14390.064*
C180.9241 (5)0.9244 (5)0.1040 (4)0.0497 (14)
H180.99470.89480.14650.060*
C190.8488 (5)0.8337 (5)0.0447 (3)0.0445 (13)
H190.86750.74320.04730.053*
C200.7421 (4)0.8779 (4)0.0207 (3)0.0351 (11)
C210.6583 (4)0.7912 (4)0.0831 (4)0.0412 (13)
H210.67400.70070.07970.049*
C220.4221 (4)1.0036 (4)0.2248 (3)0.0547 (14)
H22A0.42980.94500.28950.082*
H22B0.33580.99760.19700.082*
H22C0.42881.09360.23440.082*
C230.8414 (4)0.3038 (4)0.2552 (3)0.0328 (11)
C240.8408 (5)0.1891 (4)0.3251 (4)0.0443 (13)
H240.75960.15080.34340.053*
C250.9623 (5)0.1283 (4)0.3697 (4)0.0504 (14)
H250.96070.04950.41660.061*
C260.9638 (4)0.3629 (4)0.2255 (3)0.0299 (11)
C270.9763 (4)0.4796 (4)0.1512 (3)0.0349 (12)
H270.89800.52480.12170.042*
C281.0982 (4)0.5274 (4)0.1217 (3)0.0383 (12)
H281.10190.60340.07200.046*
C291.2213 (4)0.4623 (5)0.1660 (4)0.0383 (12)
C301.2132 (5)0.3537 (4)0.2412 (3)0.0382 (12)
H301.29180.31330.27290.046*
C311.0875 (4)0.3017 (4)0.2714 (3)0.0331 (11)
C321.0812 (5)0.1832 (5)0.3453 (4)0.0496 (14)
H321.15990.14310.37720.060*
O10.7019 (3)0.3847 (3)0.0920 (2)0.0576 (9)
O20.5813 (3)0.2902 (3)0.2478 (2)0.0493 (9)
O30.6625 (3)0.5087 (3)0.2318 (2)0.0513 (9)
S10.68386 (11)0.37694 (12)0.20242 (10)0.0403 (3)
N11.3436 (4)0.5164 (4)0.1317 (3)0.0478 (12)
N20.3539 (4)0.5727 (4)0.3847 (3)0.0435 (10)
N30.5578 (4)0.8287 (3)0.1470 (3)0.0403 (10)
H1N1.419 (4)0.461 (4)0.147 (3)0.060*
H2N1.363 (5)0.556 (4)0.075 (3)0.060*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ag10.0562 (3)0.0463 (3)0.0664 (3)0.0042 (2)0.0173 (2)0.0005 (2)
C10.051 (3)0.056 (4)0.042 (3)0.014 (3)0.004 (3)0.012 (3)
C20.057 (4)0.050 (4)0.043 (4)0.023 (3)0.013 (3)0.004 (3)
C30.071 (4)0.061 (4)0.081 (5)0.016 (4)0.017 (4)0.006 (4)
C40.100 (6)0.061 (4)0.087 (6)0.029 (4)0.046 (5)0.012 (4)
C50.116 (6)0.083 (5)0.070 (5)0.056 (5)0.016 (5)0.015 (4)
C60.097 (5)0.088 (5)0.037 (4)0.040 (4)0.011 (3)0.001 (4)
C70.066 (4)0.069 (4)0.030 (3)0.029 (3)0.005 (3)0.009 (3)
C80.068 (4)0.070 (4)0.045 (4)0.021 (3)0.020 (3)0.019 (3)
C90.055 (4)0.058 (4)0.046 (4)0.011 (3)0.015 (3)0.017 (3)
C100.076 (4)0.064 (4)0.077 (4)0.004 (3)0.029 (3)0.003 (4)
C130.033 (3)0.030 (3)0.036 (3)0.002 (2)0.005 (2)0.004 (2)
C140.046 (3)0.028 (3)0.048 (3)0.001 (2)0.006 (3)0.012 (3)
C150.035 (3)0.034 (3)0.039 (3)0.005 (2)0.009 (2)0.005 (2)
C160.055 (4)0.040 (3)0.056 (4)0.015 (3)0.000 (3)0.010 (3)
C170.050 (3)0.062 (4)0.050 (4)0.022 (3)0.000 (3)0.006 (3)
C180.046 (3)0.060 (4)0.048 (4)0.007 (3)0.000 (3)0.024 (3)
C190.046 (3)0.045 (3)0.043 (3)0.002 (3)0.001 (3)0.015 (3)
C200.035 (3)0.032 (3)0.041 (3)0.004 (2)0.006 (2)0.011 (3)
C210.043 (3)0.032 (3)0.051 (4)0.001 (2)0.005 (3)0.013 (3)
C220.048 (3)0.054 (3)0.063 (4)0.002 (3)0.007 (3)0.017 (3)
C230.032 (3)0.033 (3)0.034 (3)0.003 (2)0.001 (2)0.008 (2)
C240.050 (3)0.036 (3)0.048 (3)0.013 (3)0.002 (3)0.005 (3)
C250.068 (4)0.035 (3)0.042 (3)0.003 (3)0.004 (3)0.009 (3)
C260.034 (3)0.026 (2)0.029 (3)0.001 (2)0.002 (2)0.006 (2)
C270.030 (3)0.028 (3)0.045 (3)0.000 (2)0.006 (2)0.002 (2)
C280.040 (3)0.031 (3)0.043 (3)0.006 (2)0.007 (3)0.000 (2)
C290.027 (3)0.046 (3)0.048 (3)0.005 (2)0.003 (3)0.021 (3)
C300.037 (3)0.035 (3)0.043 (3)0.005 (2)0.012 (3)0.009 (3)
C310.037 (3)0.035 (3)0.028 (3)0.000 (2)0.006 (2)0.007 (2)
C320.055 (4)0.048 (3)0.040 (3)0.000 (3)0.004 (3)0.010 (3)
O10.048 (2)0.085 (3)0.038 (2)0.0121 (19)0.0052 (18)0.002 (2)
O20.0342 (19)0.048 (2)0.068 (2)0.0149 (16)0.0086 (18)0.0135 (18)
O30.0411 (19)0.0293 (18)0.084 (3)0.0022 (15)0.0004 (18)0.0138 (18)
S10.0297 (7)0.0384 (8)0.0523 (9)0.0043 (6)0.0004 (6)0.0065 (7)
N10.028 (2)0.064 (3)0.052 (3)0.010 (2)0.000 (2)0.008 (3)
N20.051 (3)0.044 (3)0.037 (3)0.009 (2)0.000 (2)0.011 (2)
N30.043 (2)0.031 (2)0.047 (3)0.0069 (19)0.006 (2)0.003 (2)
Geometric parameters (Å, º) top
Ag1—N32.170 (4)C18—C191.361 (6)
Ag1—N22.184 (4)C18—H180.9300
Ag1—O32.583 (3)C19—C201.414 (5)
C1—N21.321 (5)C19—H190.9300
C1—C21.417 (6)C20—C211.404 (6)
C1—H10.9300C21—N31.337 (5)
C2—C31.404 (6)C21—H210.9300
C2—C71.425 (6)C22—H22A0.9600
C3—C41.366 (7)C22—H22B0.9600
C3—H30.9300C22—H22C0.9600
C4—C51.411 (8)C23—C241.364 (5)
C4—H40.9300C23—C261.412 (5)
C5—C61.345 (7)C23—S11.783 (4)
C5—H50.9300C24—C251.407 (6)
C6—C71.419 (6)C24—H240.9300
C6—H60.9300C25—C321.351 (6)
C7—C81.393 (6)C25—H250.9300
C8—C91.351 (6)C26—C271.421 (5)
C8—H80.9300C26—C311.434 (5)
C9—N21.380 (5)C27—C281.358 (5)
C9—C101.520 (6)C27—H270.9300
C10—H10A0.9600C28—C291.432 (5)
C10—H10B0.9600C28—H280.9300
C10—H10C0.9600C29—C301.364 (6)
C13—C141.349 (5)C29—N11.400 (5)
C13—N31.381 (5)C30—C311.411 (5)
C13—C221.516 (5)C30—H300.9300
C14—C151.422 (5)C31—C321.425 (6)
C14—H140.9300C32—H320.9300
C15—C201.408 (5)O1—S11.453 (3)
C15—C161.414 (6)O2—S11.450 (3)
C16—C171.364 (6)O3—S11.457 (3)
C16—H160.9300N1—H1N0.90 (3)
C17—C181.394 (6)N1—H2N0.81 (3)
C17—H170.9300
N3—Ag1—N2159.18 (13)C21—C20—C19123.2 (4)
N3—Ag1—O389.17 (12)C15—C20—C19119.5 (5)
N2—Ag1—O398.76 (13)N3—C21—C20125.0 (4)
N2—C1—C2124.9 (5)N3—C21—H21117.5
N2—C1—H1117.5C20—C21—H21117.5
C2—C1—H1117.5C13—C22—H22A109.5
C3—C2—C1122.3 (6)C13—C22—H22B109.5
C3—C2—C7120.7 (5)H22A—C22—H22B109.5
C1—C2—C7117.0 (5)C13—C22—H22C109.5
C4—C3—C2119.9 (6)H22A—C22—H22C109.5
C4—C3—H3120.1H22B—C22—H22C109.5
C2—C3—H3120.1C24—C23—C26120.7 (4)
C3—C4—C5120.5 (6)C24—C23—S1118.3 (4)
C3—C4—H4119.8C26—C23—S1121.0 (3)
C5—C4—H4119.8C23—C24—C25120.5 (4)
C6—C5—C4120.0 (7)C23—C24—H24119.8
C6—C5—H5120.0C25—C24—H24119.8
C4—C5—H5120.0C32—C25—C24120.8 (5)
C5—C6—C7122.5 (6)C32—C25—H25119.6
C5—C6—H6118.8C24—C25—H25119.6
C7—C6—H6118.8C23—C26—C27125.2 (4)
C8—C7—C6126.5 (6)C23—C26—C31118.9 (4)
C8—C7—C2117.0 (5)C27—C26—C31115.9 (4)
C6—C7—C2116.5 (5)C28—C27—C26122.4 (4)
C9—C8—C7121.8 (5)C28—C27—H27118.8
C9—C8—H8119.1C26—C27—H27118.8
C7—C8—H8119.1C27—C28—C29120.8 (4)
C8—C9—N2122.5 (5)C27—C28—H28119.6
C8—C9—C10123.1 (5)C29—C28—H28119.6
N2—C9—C10114.4 (5)C30—C29—N1123.4 (4)
C9—C10—H10A109.5C30—C29—C28118.7 (4)
C9—C10—H10B109.5N1—C29—C28117.9 (5)
H10A—C10—H10B109.5C29—C30—C31121.0 (4)
C9—C10—H10C109.5C29—C30—H30119.5
H10A—C10—H10C109.5C31—C30—H30119.5
H10B—C10—H10C109.5C30—C31—C32120.7 (4)
C14—C13—N3122.4 (4)C30—C31—C26121.0 (4)
C14—C13—C22121.6 (4)C32—C31—C26118.2 (4)
N3—C13—C22116.0 (4)C25—C32—C31120.8 (4)
C13—C14—C15121.0 (4)C25—C32—H32119.6
C13—C14—H14119.5C31—C32—H32119.6
C15—C14—H14119.5S1—O3—Ag1134.03 (16)
C20—C15—C16118.8 (4)O2—S1—O1113.23 (19)
C20—C15—C14117.5 (4)O2—S1—O3112.74 (17)
C16—C15—C14123.7 (4)O1—S1—O3111.9 (2)
C17—C16—C15120.6 (5)O2—S1—C23106.3 (2)
C17—C16—H16119.7O1—S1—C23106.46 (19)
C15—C16—H16119.7O3—S1—C23105.52 (18)
C16—C17—C18120.0 (5)C29—N1—H1N115 (3)
C16—C17—H17120.0C29—N1—H2N128 (3)
C18—C17—H17120.0H1N—N1—H2N103 (4)
C19—C18—C17121.5 (5)C1—N2—C9116.8 (4)
C19—C18—H18119.3C1—N2—Ag1116.9 (3)
C17—C18—H18119.3C9—N2—Ag1125.9 (4)
C18—C19—C20119.6 (4)C21—N3—C13116.8 (4)
C18—C19—H19120.2C21—N3—Ag1119.1 (3)
C20—C19—H19120.2C13—N3—Ag1123.9 (3)
C21—C20—C15117.3 (4)
N2—C1—C2—C3177.0 (4)C27—C28—C29—C302.2 (6)
N2—C1—C2—C70.7 (7)C27—C28—C29—N1179.7 (4)
C1—C2—C3—C4178.5 (5)N1—C29—C30—C31178.8 (4)
C7—C2—C3—C40.8 (8)C28—C29—C30—C313.2 (6)
C2—C3—C4—C51.4 (9)C29—C30—C31—C32176.0 (4)
C3—C4—C5—C61.9 (9)C29—C30—C31—C261.2 (6)
C4—C5—C6—C70.2 (9)C23—C26—C31—C30177.3 (4)
C5—C6—C7—C8178.1 (6)C27—C26—C31—C301.9 (6)
C5—C6—C7—C21.9 (8)C23—C26—C31—C320.1 (6)
C3—C2—C7—C8177.6 (5)C27—C26—C31—C32179.1 (4)
C1—C2—C7—C80.2 (7)C24—C25—C32—C312.0 (7)
C3—C2—C7—C62.4 (7)C30—C31—C32—C25175.8 (4)
C1—C2—C7—C6179.8 (4)C26—C31—C32—C251.5 (6)
C6—C7—C8—C9178.8 (5)N3—Ag1—O3—S1126.1 (3)
C2—C7—C8—C91.1 (7)N2—Ag1—O3—S173.2 (3)
C7—C8—C9—N22.1 (8)Ag1—O3—S1—O244.1 (3)
C7—C8—C9—C10178.2 (5)Ag1—O3—S1—O184.9 (3)
N3—C13—C14—C150.9 (7)Ag1—O3—S1—C23159.8 (2)
C22—C13—C14—C15179.9 (4)C24—C23—S1—O21.0 (4)
C13—C14—C15—C201.1 (6)C26—C23—S1—O2179.0 (3)
C13—C14—C15—C16179.4 (4)C24—C23—S1—O1122.0 (4)
C20—C15—C16—C171.2 (6)C26—C23—S1—O158.0 (4)
C14—C15—C16—C17178.3 (4)C24—C23—S1—O3118.9 (4)
C15—C16—C17—C180.5 (7)C26—C23—S1—O361.0 (4)
C16—C17—C18—C190.4 (7)C2—C1—N2—C90.1 (7)
C17—C18—C19—C200.5 (7)C2—C1—N2—Ag1172.5 (3)
C16—C15—C20—C21178.2 (4)C8—C9—N2—C11.5 (7)
C14—C15—C20—C212.3 (6)C10—C9—N2—C1178.7 (4)
C16—C15—C20—C191.0 (6)C8—C9—N2—Ag1173.1 (4)
C14—C15—C20—C19178.5 (4)C10—C9—N2—Ag17.1 (6)
C18—C19—C20—C21179.0 (4)N3—Ag1—N2—C1125.3 (4)
C18—C19—C20—C150.2 (6)O3—Ag1—N2—C113.9 (3)
C15—C20—C21—N31.8 (7)N3—Ag1—N2—C963.1 (6)
C19—C20—C21—N3179.0 (4)O3—Ag1—N2—C9174.5 (3)
C26—C23—C24—C250.7 (7)C20—C21—N3—C130.0 (6)
S1—C23—C24—C25179.3 (3)C20—C21—N3—Ag1174.9 (3)
C23—C24—C25—C320.9 (7)C14—C13—N3—C211.4 (6)
C24—C23—C26—C27178.0 (4)C22—C13—N3—C21179.5 (4)
S1—C23—C26—C272.1 (6)C14—C13—N3—Ag1176.0 (3)
C24—C23—C26—C311.1 (6)C22—C13—N3—Ag14.9 (5)
S1—C23—C26—C31178.9 (3)N2—Ag1—N3—C21136.8 (4)
C23—C26—C27—C28176.2 (4)O3—Ag1—N3—C2123.9 (3)
C31—C26—C27—C282.9 (6)N2—Ag1—N3—C1337.6 (6)
C26—C27—C28—C290.9 (6)O3—Ag1—N3—C13150.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.90 (4)2.51 (4)3.365 (5)160 (3)
N1—H2N···O1ii0.81 (4)2.30 (4)3.008 (5)146 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.

Experimental details

Crystal data
Chemical formula[Ag(C10H8NO3S)(C10H9N)2]
Mr616.47
Crystal system, space groupTriclinic, P1
Temperature (K)292
a, b, c (Å)9.8810 (14), 10.2220 (17), 13.256 (2)
α, β, γ (°)80.108 (11), 86.653 (11), 84.143 (10)
V3)1311.0 (4)
Z2
Radiation typeMo Kα
µ (mm1)0.89
Crystal size (mm)0.35 × 0.33 × 0.29
Data collection
DiffractometerBruker SMART APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.709, 0.766
No. of measured, independent and
observed [I > 2σ(I)] reflections
8844, 5933, 2404
Rint0.064
(sin θ/λ)max1)0.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.074, 0.76
No. of reflections5933
No. of parameters351
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.38, 0.35

Computer programs: SMART (Bruker, 1999), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL-Plus (Sheldrick, 1990), SHELXL97.

Selected geometric parameters (Å, º) top
Ag1—N32.170 (4)Ag1—O32.583 (3)
Ag1—N22.184 (4)
N3—Ag1—N2159.18 (13)N2—Ag1—O398.76 (13)
N3—Ag1—O389.17 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O2i0.90 (4)2.51 (4)3.365 (5)160 (3)
N1—H2N···O1ii0.81 (4)2.30 (4)3.008 (5)146 (4)
Symmetry codes: (i) x+1, y, z; (ii) x+2, y+1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds