Download citation
Download citation
link to html
In the title compound, C15H17N3OS2, the piperidine ring adopts a chair conformation. Weak inter­molecular C—H...O hydrogen bonds link the mol­ecules into chains along the c axis and further stability is provided by offset π–π stacking inter­actions [centroid separations = 3.73 (2)–3.78 (2) Å] involving the aromatic rings.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807036203/hb2479sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807036203/hb2479Isup2.hkl
Contains datablock I

CCDC reference: 657852

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C)= 0.004 Å
  • R factor = 0.048
  • wR factor = 0.125
  • Data-to-parameter ratio = 15.7

checkCIF/PLATON results

No syntax errors found


No errors found in this datablock

Comment top

Quinazolinone is a naturally occurring alkaloid as well as a core structural subunit in a growing class of bioactive natural products and synthetic compounds (Liu et al., 2006). Furthermore, piperidine derivatives are found to possess pharmacological activities and can form an essential part of the molecular structure of important drugs (Sagara et al., 2006). We report herein the crystal structure of the title dithiocarbamate derivative, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987) and are in accordance with the corresponding values in similar compounds (Jiang, 2007). The rings A (N3/C11–1 C5) are not planar having total puckering amplitude, QT of 0.567 (3) Å, and a chair conformation [φ = 198 (15)°, θ2 = 0.013 (3) Å, θ3 = -0.568 (3)Å (Cremer & Pople, 1975). Rings B (N1/N2/C6—C8) and C (C1—C6) are, of course, planar and they are also almost coplanar with a dihedral B/C angle of 1.38 (3)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis. Further stability is provided by offset π-π stacking interactions (Janiak, 2000), involving the rings; B and C. The adjacent C rings have a centroid-centroid distance of 3.73 (2) %A [symmetry code: 1 - x, 2 - y, - z], while rings B and C have a centroid-centroid distance of 3.78 (1) %A [symmetry codes: 1 - x, 2 - y, - z].

Related literature top

For related literature, see: Liu et al. (2006); Sagara et al. (2006); Cao et al. (2005); Cremer & Pople (1975); Janiak (2000). For bond-length data, see: Allen et al. (1987). For related structures, see: Jiang (2007).

Experimental top

The title compound was synthesized according to the literature method (Cao et al., 2005) and blue blocks of (I) were obtained by slow evaporation of a dichloromethane solution at 283 K.

Refinement top

The H atoms were positioned geometrically, with C—H = 0.93 and 0.97 Å for aromatic and methylene H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C).

Structure description top

Quinazolinone is a naturally occurring alkaloid as well as a core structural subunit in a growing class of bioactive natural products and synthetic compounds (Liu et al., 2006). Furthermore, piperidine derivatives are found to possess pharmacological activities and can form an essential part of the molecular structure of important drugs (Sagara et al., 2006). We report herein the crystal structure of the title dithiocarbamate derivative, (I).

In the molecule of (I), (Fig. 1) the bond lengths and angles are generally within normal ranges (Allen et al., 1987) and are in accordance with the corresponding values in similar compounds (Jiang, 2007). The rings A (N3/C11–1 C5) are not planar having total puckering amplitude, QT of 0.567 (3) Å, and a chair conformation [φ = 198 (15)°, θ2 = 0.013 (3) Å, θ3 = -0.568 (3)Å (Cremer & Pople, 1975). Rings B (N1/N2/C6—C8) and C (C1—C6) are, of course, planar and they are also almost coplanar with a dihedral B/C angle of 1.38 (3)°.

In the crystal structure, weak intermolecular C—H···O hydrogen bonds (Table 1) link the molecules into chains along the c axis. Further stability is provided by offset π-π stacking interactions (Janiak, 2000), involving the rings; B and C. The adjacent C rings have a centroid-centroid distance of 3.73 (2) %A [symmetry code: 1 - x, 2 - y, - z], while rings B and C have a centroid-centroid distance of 3.78 (1) %A [symmetry codes: 1 - x, 2 - y, - z].

For related literature, see: Liu et al. (2006); Sagara et al. (2006); Cao et al. (2005); Cremer & Pople (1975); Janiak (2000). For bond-length data, see: Allen et al. (1987). For related structures, see: Jiang (2007).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
(4-Oxo-3,4-dihydroquinazolin-3-yl)methyl piperidine-1-carbodithioate top
Crystal data top
C15H17N3OS2F(000) = 672
Mr = 319.44Dx = 1.398 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2499 reflections
a = 11.0217 (12) Åθ = 2.5–24.4°
b = 8.4199 (9) ŵ = 0.35 mm1
c = 17.2294 (19) ÅT = 292 K
β = 108.354 (2)°Block, blue
V = 1517.6 (3) Å30.30 × 0.20 × 0.20 mm
Z = 4
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2425 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.025
Graphite monochromatorθmax = 26.0°, θmin = 2.0°
φ and ω scansh = 1311
8066 measured reflectionsk = 108
2982 independent reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.048Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.125H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0622P)2 + 0.3628P]
where P = (Fo2 + 2Fc2)/3
2982 reflections(Δ/σ)max = 0.001
190 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C15H17N3OS2V = 1517.6 (3) Å3
Mr = 319.44Z = 4
Monoclinic, P21/nMo Kα radiation
a = 11.0217 (12) ŵ = 0.35 mm1
b = 8.4199 (9) ÅT = 292 K
c = 17.2294 (19) Å0.30 × 0.20 × 0.20 mm
β = 108.354 (2)°
Data collection top
Bruker SMART 4K CCD area-detector
diffractometer
2425 reflections with I > 2σ(I)
8066 measured reflectionsRint = 0.025
2982 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0480 restraints
wR(F2) = 0.125H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
2982 reflectionsΔρmin = 0.19 e Å3
190 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.5285 (2)1.0998 (2)0.10061 (13)0.0421 (5)
C20.4044 (2)1.0422 (3)0.08460 (15)0.0544 (6)
H20.38900.95700.11450.065*
C30.3050 (3)1.1106 (3)0.02491 (17)0.0647 (7)
H30.22221.07260.01460.078*
C40.3285 (3)1.2365 (3)0.01997 (16)0.0647 (7)
H40.26091.28250.06050.078*
C50.4488 (3)1.2942 (3)0.00588 (15)0.0570 (6)
H50.46291.37810.03710.068*
C60.5516 (2)1.2276 (2)0.05554 (13)0.0458 (5)
C70.7630 (2)1.2294 (3)0.12735 (14)0.0496 (5)
H70.84421.27300.13800.060*
C80.6342 (2)1.0307 (2)0.16534 (13)0.0432 (5)
C90.8636 (2)1.0460 (3)0.23950 (13)0.0505 (6)
H9A0.84471.04970.29080.061*
H9B0.93421.11810.24400.061*
C101.0075 (2)0.8722 (3)0.15837 (13)0.0457 (5)
C111.0068 (3)0.5750 (3)0.15399 (18)0.0640 (7)
H11A0.95570.52050.10500.077*
H11B0.95620.58460.19070.077*
C121.1246 (3)0.4807 (3)0.19436 (17)0.0659 (7)
H12A1.10050.37500.20650.079*
H12B1.17180.53090.24570.079*
C131.2096 (3)0.4680 (3)0.14057 (19)0.0718 (8)
H13A1.16650.40670.09200.086*
H13B1.28810.41350.16990.086*
C141.2404 (3)0.6332 (4)0.11589 (19)0.0744 (8)
H14A1.29320.68930.16380.089*
H14B1.28810.62400.07750.089*
C151.1202 (3)0.7259 (3)0.07737 (17)0.0717 (8)
H15A1.14200.83250.06500.086*
H15B1.07150.67570.02640.086*
N10.75210 (17)1.1016 (2)0.17428 (10)0.0416 (4)
N20.6728 (2)1.2941 (2)0.07065 (12)0.0533 (5)
N31.0413 (2)0.7346 (2)0.13230 (13)0.0605 (6)
O10.62564 (16)0.92246 (19)0.21039 (10)0.0564 (4)
S10.91313 (6)0.84706 (7)0.22454 (4)0.0515 (2)
S21.04652 (7)1.04974 (7)0.13190 (4)0.0617 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0517 (13)0.0367 (11)0.0415 (11)0.0018 (9)0.0197 (10)0.0077 (9)
C20.0577 (15)0.0546 (15)0.0563 (14)0.0054 (12)0.0256 (12)0.0060 (11)
C30.0482 (15)0.0742 (18)0.0714 (18)0.0019 (13)0.0183 (14)0.0148 (14)
C40.0623 (17)0.0619 (17)0.0593 (15)0.0133 (13)0.0039 (13)0.0063 (13)
C50.0705 (17)0.0443 (13)0.0500 (13)0.0062 (12)0.0100 (12)0.0021 (11)
C60.0553 (14)0.0376 (11)0.0459 (12)0.0003 (10)0.0178 (11)0.0071 (9)
C70.0522 (14)0.0387 (12)0.0584 (14)0.0056 (10)0.0180 (12)0.0015 (10)
C80.0555 (14)0.0374 (11)0.0426 (12)0.0016 (10)0.0236 (10)0.0040 (9)
C90.0562 (14)0.0508 (14)0.0442 (12)0.0036 (11)0.0156 (11)0.0019 (10)
C100.0446 (12)0.0460 (13)0.0453 (12)0.0016 (10)0.0124 (10)0.0084 (10)
C110.0727 (18)0.0443 (14)0.0844 (19)0.0009 (12)0.0384 (15)0.0035 (13)
C120.081 (2)0.0482 (15)0.0720 (17)0.0015 (13)0.0291 (15)0.0061 (12)
C130.0756 (19)0.0622 (18)0.0811 (19)0.0133 (14)0.0295 (16)0.0005 (14)
C140.077 (2)0.079 (2)0.081 (2)0.0004 (15)0.0442 (17)0.0045 (15)
C150.094 (2)0.0644 (17)0.0728 (18)0.0065 (15)0.0503 (17)0.0104 (14)
N10.0496 (11)0.0363 (9)0.0404 (10)0.0022 (8)0.0164 (8)0.0007 (7)
N20.0625 (13)0.0391 (10)0.0564 (12)0.0029 (9)0.0161 (10)0.0072 (9)
N30.0738 (15)0.0460 (12)0.0757 (14)0.0061 (10)0.0435 (12)0.0107 (10)
O10.0660 (11)0.0528 (10)0.0578 (10)0.0023 (8)0.0304 (9)0.0149 (8)
S10.0585 (4)0.0467 (4)0.0552 (4)0.0073 (3)0.0264 (3)0.0134 (3)
S20.0726 (5)0.0445 (4)0.0753 (5)0.0047 (3)0.0339 (4)0.0094 (3)
Geometric parameters (Å, º) top
C1—C21.394 (3)C9—H9B0.9700
C1—C61.396 (3)C10—N31.337 (3)
C1—C81.457 (3)C10—S21.658 (2)
C2—C31.371 (4)C10—S11.782 (2)
C2—H20.9300C11—N31.477 (3)
C3—C41.384 (4)C11—C121.493 (4)
C3—H30.9300C11—H11A0.9700
C4—C51.361 (4)C11—H11B0.9700
C4—H40.9300C12—C131.514 (4)
C5—C61.401 (3)C12—H12A0.9700
C5—H50.9300C12—H12B0.9700
C6—N21.396 (3)C13—C141.524 (4)
C7—N21.276 (3)C13—H13A0.9700
C7—N11.374 (3)C13—H13B0.9700
C7—H70.9300C14—C151.500 (4)
C8—O11.220 (2)C14—H14A0.9700
C8—N11.394 (3)C14—H14B0.9700
C9—N11.457 (3)C15—N31.475 (3)
C9—S11.805 (2)C15—H15A0.9700
C9—H9A0.9700C15—H15B0.9700
C2—C1—C6119.8 (2)N3—C11—H11B109.6
C2—C1—C8120.7 (2)C12—C11—H11B109.6
C6—C1—C8119.5 (2)H11A—C11—H11B108.1
C3—C2—C1120.3 (2)C11—C12—C13111.5 (2)
C3—C2—H2119.8C11—C12—H12A109.3
C1—C2—H2119.8C13—C12—H12A109.3
C2—C3—C4119.6 (2)C11—C12—H12B109.3
C2—C3—H3120.2C13—C12—H12B109.3
C4—C3—H3120.2H12A—C12—H12B108.0
C5—C4—C3121.2 (2)C12—C13—C14110.0 (2)
C5—C4—H4119.4C12—C13—H13A109.7
C3—C4—H4119.4C14—C13—H13A109.7
C4—C5—C6120.2 (2)C12—C13—H13B109.7
C4—C5—H5119.9C14—C13—H13B109.7
C6—C5—H5119.9H13A—C13—H13B108.2
N2—C6—C1122.5 (2)C15—C14—C13110.8 (3)
N2—C6—C5118.6 (2)C15—C14—H14A109.5
C1—C6—C5118.9 (2)C13—C14—H14A109.5
N2—C7—N1126.4 (2)C15—C14—H14B109.5
N2—C7—H7116.8C13—C14—H14B109.5
N1—C7—H7116.8H14A—C14—H14B108.1
O1—C8—N1120.4 (2)N3—C15—C14111.0 (2)
O1—C8—C1125.6 (2)N3—C15—H15A109.4
N1—C8—C1113.98 (18)C14—C15—H15A109.4
N1—C9—S1114.06 (15)N3—C15—H15B109.4
N1—C9—H9A108.7C14—C15—H15B109.4
S1—C9—H9A108.7H15A—C15—H15B108.0
N1—C9—H9B108.7C7—N1—C8121.46 (19)
S1—C9—H9B108.7C7—N1—C9119.77 (19)
H9A—C9—H9B107.6C8—N1—C9118.58 (18)
N3—C10—S2124.41 (17)C7—N2—C6116.2 (2)
N3—C10—S1113.08 (16)C10—N3—C15122.7 (2)
S2—C10—S1122.50 (14)C10—N3—C11125.7 (2)
N3—C11—C12110.3 (2)C15—N3—C11111.6 (2)
N3—C11—H11A109.6C10—S1—C9104.16 (11)
C12—C11—H11A109.6
C6—C1—C2—C30.1 (3)O1—C8—N1—C7176.3 (2)
C8—C1—C2—C3178.4 (2)C1—C8—N1—C72.5 (3)
C1—C2—C3—C40.6 (4)O1—C8—N1—C91.4 (3)
C2—C3—C4—C50.1 (4)C1—C8—N1—C9177.51 (17)
C3—C4—C5—C60.8 (4)S1—C9—N1—C7116.52 (19)
C2—C1—C6—N2177.7 (2)S1—C9—N1—C868.4 (2)
C8—C1—C6—N20.8 (3)N1—C7—N2—C60.1 (3)
C2—C1—C6—C50.7 (3)C1—C6—N2—C71.4 (3)
C8—C1—C6—C5179.24 (19)C5—C6—N2—C7179.8 (2)
C4—C5—C6—N2177.3 (2)S2—C10—N3—C151.1 (4)
C4—C5—C6—C11.2 (3)S1—C10—N3—C15179.6 (2)
C2—C1—C8—O10.8 (3)S2—C10—N3—C11179.3 (2)
C6—C1—C8—O1177.7 (2)S1—C10—N3—C110.0 (3)
C2—C1—C8—N1179.60 (18)C14—C15—N3—C10121.4 (3)
C6—C1—C8—N11.1 (3)C14—C15—N3—C1158.3 (3)
N3—C11—C12—C1357.0 (3)C12—C11—N3—C10121.2 (3)
C11—C12—C13—C1454.9 (3)C12—C11—N3—C1558.4 (3)
C12—C13—C14—C1553.9 (3)N3—C10—S1—C9172.68 (17)
C13—C14—C15—N355.9 (3)S2—C10—S1—C96.57 (18)
N2—C7—N1—C82.2 (3)N1—C9—S1—C1082.82 (18)
N2—C7—N1—C9177.1 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.563.375 (3)142
Symmetry code: (i) x+3/2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC15H17N3OS2
Mr319.44
Crystal system, space groupMonoclinic, P21/n
Temperature (K)292
a, b, c (Å)11.0217 (12), 8.4199 (9), 17.2294 (19)
β (°) 108.354 (2)
V3)1517.6 (3)
Z4
Radiation typeMo Kα
µ (mm1)0.35
Crystal size (mm)0.30 × 0.20 × 0.20
Data collection
DiffractometerBruker SMART 4K CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
8066, 2982, 2425
Rint0.025
(sin θ/λ)max1)0.617
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.048, 0.125, 1.06
No. of reflections2982
No. of parameters190
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.19

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C11—H11B···O1i0.972.563.375 (3)142
Symmetry code: (i) x+3/2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds