Download citation
Download citation
link to html
In the title compound, [Cu(C7H6NO2)Cl(C10H9N3)]·H2O, the Cu atom has a distorted square-pyramidal geometry defined by one N,N-bidentate 2,2′-bipyridylamine (C10H9N3) mol­ecule, one O,O-bidentate p-amino­benzene­carboxyl­ate (C7H6NO2) anion and one apical chlorido ligand. The Cu atom deviates from the mean plane of the basal atoms towards the Cl atom by 0.2591 (1) Å. The component species are connected to each other by N—H...Cl, O—H...Cl, N—H...O and O—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807032837/hb2471sup1.cif
Contains datablocks General, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807032837/hb2471Isup2.hkl
Contains datablock I

CCDC reference: 657558

Key indicators

  • Single-crystal X-ray study
  • T = 123 K
  • Mean [sigma](C-C) = 0.002 Å
  • R factor = 0.021
  • wR factor = 0.062
  • Data-to-parameter ratio = 16.2

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT148_ALERT_3_B su on the a - Axis is Too Large (x 1000) . 10 Ang. PLAT232_ALERT_2_B Hirshfeld Test Diff (M-X) Cu1 - Cl1 .. 11.98 su
Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR) is > 1.10 Tmin and Tmax reported: 0.728 0.851 Tmin and Tmax expected: 0.654 0.864 RR = 1.130 Please check that your absorption correction is appropriate. PLAT060_ALERT_3_C Ratio Tmax/Tmin (Exp-to-Rep) (too) Large ....... 1.13 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 1.02 PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 1000 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O1 .. 6.18 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - O2 .. 5.04 su PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Cu1 - C11 .. 7.03 su
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.30
0 ALERT level A = In general: serious problem 2 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 4 ALERT type 2 Indicator that the structure model may be wrong or deficient 4 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

As part of our studies of new therapeutic drugs, we have reported the structures of the ternary Cu(II) complexes with the heterocyclic ligand, 2,2'-bipyridylamine (bpa) and various carboxylate-containing compounds, such as bpa and p-hydroxybenzenecarboxylate (p-HB) (Wang & Okabe, 2005), cyclobutane-1,1-dicarboxylate (Yodoshi, Mototsuji & Okabe, 2007), benzenecarboxylate (BA) (Okabe et al., 2007), and glycine (Yodoshi, Odoko & Okabe, 2007). In this study, we report the structure of the title Cu(II) complex, (I), with bpa and the p-aminobenzenecarboxylate (p-ABA) and chloride anions. An uncoordinated water molecule completes the structure.

The overall structure of (I) is similar to those of the Cu(II) complexes with bpa and p-HB (Wang & Okabe, 2005) and BA (Okabe et al., 2007). The central Cu atom in (I) (Fig. 1) has a square pyramidal CuN2O2Cl geometry (Table 1), resulting from its coordination by two N atoms from one bpa and two O atoms from one p-ABA and one chloride anion. The four basal ligand atoms (N1, N2,O1 and O2) are neary coplanar, and the Cu atom deviates from the mean square plane towards the apical Cl atom by 0.2591 (1) Å. The bite angles N1—Cu1—N2 and O1—Cu1—O2 are in the range normally observed for these complexes (Wang & Okabe, 2005; Okabe et al., 2007; Yodoshi, Mototsuji & Okabe, 2007; Yodoshi, Odoko & Okabe, 2007; Youngme et al., 2004). The Cu—Cl distance of 2.597 (1)%A in (I) is slightly longer than the median of the known values from 2.336 (2) to 2.733 (2) Å (Mao et al., 2004; Brophy et al., 1999) Such long Cu—Cl bonds are explained by the well known Jahn-Teller effect.

As shown in Fig. 2, the crystal structure of (I) is stabilized by N—H···Cl, O—H···Cl, N—H···O, and O—H···O hydrogen bonds (Table 2), and no π-π stacking interactions are present.

Related literature top

For related literature, see: Brophy et al. (1999); Mao et al. (2004); Okabe et al. (2007); Wang & Okabe (2005); Yodoshi, Mototsuji & Okabe (2007); Yodoshi, Odoko & Okabe (2007); Youngme et al. (2004).

For related literature, see: Altomare et al. (1999); Farrugia (1997); Kelland (2005); Li et al. (2005); Ranford et al. (1993); Selvakumar et al. (2006); Spek (2003).

Experimental top

2,2'-Bipyridylamine (5.0 mg, 0.03 mol) dissolved in 90%(v/v) methanol-water solution (2 ml) was reacted with p-aminobenzoic acid (4.0 mg, 0.03 mol), dissolved in the same solution (2 ml) for 5 min at room temperature. This was followed by the addition of CuCl2.2H2O (5.0 mg, 0.03 mol) dissolved in H2O (1 ml) and reacted for 15 min at room temperature. After several days green prismatic crystals of (I) appeared from the mother liquor.

Refinement top

The water H atoms were located in a difference map and refined as riding in their as-found relative postions with Uiso(H) = 1.5Ueq(O). The C– and N-bound H atoms were located in difference maps, relocated in idealized positions and treated as riding, with C—H = 0.93 Å, N—H = 0.86Å and Uiso(H) = 1.2Ueq(C,N).

Structure description top

As part of our studies of new therapeutic drugs, we have reported the structures of the ternary Cu(II) complexes with the heterocyclic ligand, 2,2'-bipyridylamine (bpa) and various carboxylate-containing compounds, such as bpa and p-hydroxybenzenecarboxylate (p-HB) (Wang & Okabe, 2005), cyclobutane-1,1-dicarboxylate (Yodoshi, Mototsuji & Okabe, 2007), benzenecarboxylate (BA) (Okabe et al., 2007), and glycine (Yodoshi, Odoko & Okabe, 2007). In this study, we report the structure of the title Cu(II) complex, (I), with bpa and the p-aminobenzenecarboxylate (p-ABA) and chloride anions. An uncoordinated water molecule completes the structure.

The overall structure of (I) is similar to those of the Cu(II) complexes with bpa and p-HB (Wang & Okabe, 2005) and BA (Okabe et al., 2007). The central Cu atom in (I) (Fig. 1) has a square pyramidal CuN2O2Cl geometry (Table 1), resulting from its coordination by two N atoms from one bpa and two O atoms from one p-ABA and one chloride anion. The four basal ligand atoms (N1, N2,O1 and O2) are neary coplanar, and the Cu atom deviates from the mean square plane towards the apical Cl atom by 0.2591 (1) Å. The bite angles N1—Cu1—N2 and O1—Cu1—O2 are in the range normally observed for these complexes (Wang & Okabe, 2005; Okabe et al., 2007; Yodoshi, Mototsuji & Okabe, 2007; Yodoshi, Odoko & Okabe, 2007; Youngme et al., 2004). The Cu—Cl distance of 2.597 (1)%A in (I) is slightly longer than the median of the known values from 2.336 (2) to 2.733 (2) Å (Mao et al., 2004; Brophy et al., 1999) Such long Cu—Cl bonds are explained by the well known Jahn-Teller effect.

As shown in Fig. 2, the crystal structure of (I) is stabilized by N—H···Cl, O—H···Cl, N—H···O, and O—H···O hydrogen bonds (Table 2), and no π-π stacking interactions are present.

For related literature, see: Brophy et al. (1999); Mao et al. (2004); Okabe et al. (2007); Wang & Okabe (2005); Yodoshi, Mototsuji & Okabe (2007); Yodoshi, Odoko & Okabe (2007); Youngme et al. (2004).

For related literature, see: Altomare et al. (1999); Farrugia (1997); Kelland (2005); Li et al. (2005); Ranford et al. (1993); Selvakumar et al. (2006); Spek (2003).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997), and PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. View of the molecular structure of (I) with displacement ellipsoids drawn at the 50% probability level (arbitrary spheres for the H atoms).
[Figure 2] Fig. 2. A view of the hydrogen bonds (dashed lines) in (I). Symmetry codes as in Table 2.
(4-Aminobenzoato-κ2O,O')chlorido(di-2-pyridylamine-\k2N,N')copper(II) monohydrat top
Crystal data top
[Cu(C7H6NO2)Cl(C10H9N3)]·H2OF(000) = 868.00
Mr = 424.35Dx = 1.646 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.7107 Å
Hall symbol: -P 2ynCell parameters from 14678 reflections
a = 9.86 (1) Åθ = 3.2–27.5°
b = 12.10 (1) ŵ = 1.46 mm1
c = 14.60 (1) ÅT = 123 K
β = 100.63 (3)°Prism, green
V = 1712 (3) Å30.30 × 0.30 × 0.10 mm
Z = 4
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3424 reflections with F2 > 2.0σ(F2)
Detector resolution: 10.00 pixels mm-1Rint = 0.017
ω scansθmax = 27.5°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 1212
Tmin = 0.728, Tmax = 0.851k = 1415
16167 measured reflectionsl = 1818
3922 independent reflections
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.021 w = 1/[σ2(Fo2) + (0.036P)2 + 0.6204P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.062(Δ/σ)max < 0.001
S = 1.07Δρmax = 0.36 e Å3
3922 reflectionsΔρmin = 0.42 e Å3
242 parameters
Crystal data top
[Cu(C7H6NO2)Cl(C10H9N3)]·H2OV = 1712 (3) Å3
Mr = 424.35Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.86 (1) ŵ = 1.46 mm1
b = 12.10 (1) ÅT = 123 K
c = 14.60 (1) Å0.30 × 0.30 × 0.10 mm
β = 100.63 (3)°
Data collection top
Rigaku R-AXIS RAPID
diffractometer
3922 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
3424 reflections with F2 > 2.0σ(F2)
Tmin = 0.728, Tmax = 0.851Rint = 0.017
16167 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.021242 parameters
wR(F2) = 0.062H-atom parameters constrained
S = 1.07Δρmax = 0.36 e Å3
3922 reflectionsΔρmin = 0.42 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement using all reflections. The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.93181 (2)0.23066 (1)0.48560 (1)0.01293 (6)
Cl10.70895 (4)0.33281 (3)0.40723 (2)0.01702 (8)
O10.9042 (1)0.08460 (8)0.40938 (7)0.0156 (2)
O20.8285 (1)0.11464 (8)0.53813 (7)0.0177 (2)
O30.5317 (1)0.51357 (9)0.26822 (8)0.0225 (2)
N11.0627 (1)0.3078 (1)0.42339 (8)0.0131 (2)
N20.9776 (1)0.32012 (9)0.60007 (8)0.0137 (2)
N31.1401 (1)0.43479 (9)0.54583 (8)0.0140 (2)
N40.4964 (1)0.3283 (1)0.41741 (9)0.0212 (3)
C11.0691 (1)0.2727 (1)0.3360 (1)0.0160 (3)
C21.1551 (1)0.3188 (1)0.2827 (1)0.0178 (3)
C31.2434 (1)0.4038 (1)0.3211 (1)0.0185 (3)
C41.2391 (1)0.4396 (1)0.4095 (1)0.0169 (3)
C51.1449 (1)0.3914 (1)0.45928 (9)0.0129 (2)
C61.0676 (1)0.4034 (1)0.61365 (9)0.0128 (2)
C71.0937 (1)0.4632 (1)0.69802 (9)0.0162 (3)
C81.0244 (2)0.4345 (1)0.7678 (1)0.0196 (3)
C90.9302 (2)0.3477 (1)0.7538 (1)0.0221 (3)
C100.9100 (2)0.2933 (1)0.6701 (1)0.0189 (3)
C110.8334 (1)0.0513 (1)0.46906 (9)0.0137 (3)
C120.7553 (1)0.0525 (1)0.45855 (9)0.0131 (3)
C130.6597 (1)0.0730 (1)0.51656 (9)0.0159 (3)
C140.5743 (1)0.1639 (1)0.50303 (9)0.0170 (3)
C150.5830 (1)0.2395 (1)0.4310 (1)0.0151 (3)
C160.6805 (1)0.2201 (1)0.37370 (9)0.0141 (3)
C170.7645 (1)0.1280 (1)0.38739 (9)0.0138 (3)
H11.01250.21460.31100.019*
H21.15450.29410.22230.021*
H31.30440.43560.28710.022*
H41.29810.49540.43640.020*
H51.15680.52110.70620.019*
H61.04020.47280.82390.024*
H70.88220.32710.80020.027*
H80.84710.23530.66070.023*
H91.19170.49180.56010.017*
H100.65390.02450.56500.019*
H110.51050.17540.54170.020*
H120.68840.26960.32630.017*
H130.82820.11590.34870.017*
H140.50070.37400.37290.025*
H150.43760.33860.45330.025*
H160.57690.46150.29350.034*
H170.55630.52340.21970.034*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0154 (1)0.0118 (1)0.0125 (1)0.00460 (6)0.00479 (6)0.00184 (5)
Cl10.0150 (2)0.0150 (2)0.0205 (2)0.0028 (1)0.0018 (1)0.0013 (1)
O10.0181 (5)0.0133 (5)0.0165 (5)0.0038 (4)0.0061 (4)0.0009 (3)
O20.0236 (6)0.0142 (5)0.0165 (5)0.0071 (4)0.0071 (4)0.0031 (4)
O30.0275 (6)0.0224 (6)0.0199 (6)0.0061 (5)0.0103 (4)0.0033 (4)
N10.0128 (6)0.0132 (6)0.0135 (5)0.0009 (4)0.0033 (4)0.0000 (4)
N20.0147 (6)0.0139 (6)0.0126 (5)0.0023 (4)0.0029 (4)0.0006 (4)
N30.0149 (6)0.0122 (6)0.0151 (6)0.0055 (4)0.0034 (4)0.0019 (4)
N40.0250 (7)0.0188 (6)0.0210 (6)0.0108 (5)0.0078 (5)0.0044 (5)
C10.0156 (7)0.0163 (7)0.0163 (7)0.0020 (5)0.0032 (5)0.0028 (5)
C20.0184 (7)0.0213 (7)0.0150 (7)0.0001 (6)0.0063 (5)0.0019 (5)
C30.0158 (7)0.0218 (7)0.0198 (7)0.0023 (6)0.0079 (5)0.0018 (5)
C40.0141 (7)0.0171 (7)0.0198 (7)0.0045 (5)0.0039 (5)0.0001 (5)
C50.0121 (6)0.0136 (6)0.0131 (6)0.0006 (5)0.0022 (5)0.0010 (5)
C60.0116 (6)0.0126 (6)0.0137 (6)0.0010 (5)0.0011 (5)0.0006 (5)
C70.0150 (7)0.0169 (7)0.0163 (7)0.0038 (5)0.0012 (5)0.0031 (5)
C80.0212 (8)0.0243 (8)0.0128 (7)0.0043 (6)0.0021 (5)0.0049 (5)
C90.0258 (8)0.0279 (8)0.0141 (7)0.0094 (6)0.0077 (6)0.0025 (6)
C100.0213 (8)0.0198 (7)0.0168 (7)0.0073 (6)0.0066 (5)0.0022 (5)
C110.0132 (7)0.0130 (6)0.0142 (6)0.0002 (5)0.0008 (5)0.0013 (5)
C120.0139 (7)0.0111 (6)0.0137 (6)0.0012 (5)0.0008 (5)0.0015 (4)
C130.0199 (7)0.0149 (7)0.0133 (6)0.0020 (5)0.0041 (5)0.0012 (5)
C140.0192 (7)0.0180 (7)0.0150 (7)0.0041 (5)0.0061 (5)0.0001 (5)
C150.0159 (7)0.0133 (6)0.0149 (7)0.0019 (5)0.0003 (5)0.0019 (5)
C160.0157 (7)0.0133 (7)0.0127 (6)0.0005 (5)0.0011 (5)0.0007 (4)
C170.0136 (7)0.0144 (6)0.0134 (6)0.0020 (5)0.0025 (5)0.0027 (5)
Geometric parameters (Å, º) top
Cu1—Cl12.596 (3)C3—C41.370 (2)
Cu1—O12.080 (1)C3—H30.9300
Cu1—O21.972 (1)C4—C51.408 (2)
Cu1—N11.948 (1)C4—H40.9300
Cu1—N21.973 (1)C6—C71.411 (2)
O1—C111.278 (2)C7—C81.371 (2)
O2—C111.275 (2)C7—H50.9299
O3—H160.8189C8—C91.393 (2)
O3—H170.7997C8—H60.9300
N1—C11.358 (2)C9—C101.370 (2)
N1—C51.341 (2)C9—H70.9299
N2—C61.334 (2)C10—H80.9300
N2—C101.359 (2)C11—C121.468 (2)
N3—C51.378 (2)C12—C131.401 (2)
N3—C61.378 (2)C12—C171.399 (2)
N3—H90.8601C13—C141.378 (2)
N4—C151.364 (2)C13—H100.9299
N4—H140.8600C14—C151.408 (2)
N4—H150.8600C14—H110.9299
C1—C21.371 (2)C15—C161.406 (2)
C1—H10.9300C16—C171.382 (2)
C2—C31.397 (2)C16—H120.9299
C2—H20.9301C17—H130.9300
O1—Cu1—O264.96 (4)H4—C4—C3120.1972
O1—Cu1—N1100.99 (5)C7—C6—N2121.8 (1)
O1—Cu1—N2155.07 (4)C7—C6—N3116.8 (1)
O2—Cu1—N1163.19 (5)C8—C7—C6118.9 (1)
O2—Cu1—N296.61 (5)C8—C7—H5120.5419
N1—Cu1—N293.69 (5)H5—C7—C6120.5617
C11—O1—Cu186.39 (8)C9—C8—C7119.5 (1)
C11—O2—Cu191.27 (9)C9—C8—H6120.2575
H16—O3—H17106.5428H6—C8—C7120.2656
C1—N1—Cu1116.01 (9)C10—C9—C8118.5 (2)
C1—N1—C5118.2 (1)C10—C9—H7120.7387
C5—N1—Cu1125.8 (1)H7—C9—C8120.7571
C6—N2—Cu1125.6 (1)H8—C10—N2118.4789
C6—N2—C10118.3 (1)H8—C10—C9118.4777
C10—N2—Cu1116.05 (9)C12—C11—O1122.7 (1)
C5—N3—C6131.6 (1)C12—C11—O2120.1 (1)
C5—N3—H9114.1757C13—C12—C11119.2 (1)
C6—N3—H9114.1759C13—C12—C17118.5 (1)
C15—N4—H14120.0009C17—C12—C11122.1 (1)
C15—N4—H15119.9993C14—C13—C12121.1 (1)
H14—N4—H15119.9998C14—C13—H10119.4483
C2—C1—N1123.2 (1)H10—C13—C12119.4502
C2—C1—H1118.3955C15—C14—C13120.4 (1)
H1—C1—N1118.3871C15—C14—H11119.8033
C3—C2—C1118.5 (1)H11—C14—C13119.8016
C3—C2—H2120.7520C16—C15—N4121.5 (1)
H2—C2—C1120.7608C16—C15—C14118.6 (1)
C4—C3—C2119.1 (1)C17—C16—C15120.4 (1)
C4—C3—H3120.4688C17—C16—H12119.7788
H3—C3—C2120.4693H12—C16—C15119.7821
C5—C4—C3119.6 (1)H13—C17—C12119.5207
C5—C4—H4120.2014H13—C17—C16119.5239
O2—Cu1—O1—C113.07 (6)C1—C2—C3—C41.4 (2)
O1—Cu1—O2—C113.07 (7)C2—C3—C4—C50.8 (2)
O1—Cu1—N1—C120.2 (1)C3—C4—C5—N12.7 (2)
O1—Cu1—N2—C6128.1 (1)C3—C4—C5—N3176.6 (1)
Cu1—O1—C11—O24.8 (1)N2—C6—C7—C80.1 (2)
Cu1—O2—C11—O15.1 (1)C6—C7—C8—C90.1 (2)
Cu1—N1—C1—C2179.5 (1)C7—C8—C9—C100.1 (2)
Cu1—N1—C5—N32.7 (2)C8—C9—C10—N20.0 (2)
Cu1—N1—C5—C4178.1 (1)O1—C11—C12—C13167.7 (1)
Cu1—N2—C6—N30.4 (2)C11—C12—C13—C14173.4 (1)
Cu1—N2—C10—C9179.9 (1)C11—C12—C17—C16173.9 (1)
C6—N3—C5—N15.3 (2)C12—C13—C14—C151.0 (2)
C6—N3—C5—C4175.5 (1)C13—C14—C15—N4179.0 (1)
C5—N3—C6—N23.6 (2)N4—C15—C16—C17178.3 (1)
H14—N4—C15—C14179.0C15—C16—C17—C120.4 (2)
N1—C1—C2—C32.0 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H9···Cl1i0.862.353.196 (3)169
N4—H14···O3ii0.862.112.968 (2)174
N4—H15···Cl1iii0.862.713.547 (2)166
O3—H16···Cl10.822.473.263 (4)164
O3—H17···O1iv0.802.132.911 (2)166
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+3/2, y+1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C7H6NO2)Cl(C10H9N3)]·H2O
Mr424.35
Crystal system, space groupMonoclinic, P21/n
Temperature (K)123
a, b, c (Å)9.86 (1), 12.10 (1), 14.60 (1)
β (°) 100.63 (3)
V3)1712 (3)
Z4
Radiation typeMo Kα
µ (mm1)1.46
Crystal size (mm)0.30 × 0.30 × 0.10
Data collection
DiffractometerRigaku R-AXIS RAPID
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.728, 0.851
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
16167, 3922, 3424
Rint0.017
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.021, 0.062, 1.07
No. of reflections3922
No. of parameters242
No. of restraints?
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.42

Computer programs: RAPID-AUTO (Rigaku, 1998), RAPID-AUTO, CrystalStructure (Rigaku/MSC, 2005) and CRYSTALS (Betteridge et al., 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997), and PLATON (Spek, 2003), CrystalStructure.

Selected geometric parameters (Å, º) top
Cu1—Cl12.596 (3)Cu1—N11.948 (1)
Cu1—O12.080 (1)Cu1—N21.973 (1)
Cu1—O21.972 (1)
O1—Cu1—O264.96 (4)N1—Cu1—N293.69 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H9···Cl1i0.862.353.196 (3)169
N4—H14···O3ii0.862.112.968 (2)174
N4—H15···Cl1iii0.862.713.547 (2)166
O3—H16···Cl10.822.473.263 (4)164
O3—H17···O1iv0.802.132.911 (2)166
Symmetry codes: (i) x+2, y+1, z+1; (ii) x, y1, z; (iii) x+1, y, z+1; (iv) x+3/2, y+1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds