Download citation
Download citation
link to html
In the title compound, [Ni(C6H16N2)2(H2O)2]Cl2, the NiII cation (site symmetry \overline{1}) is coordinated by two N,N-bidentate ligands and two water mol­ecules, resulting in a slightly distorted trans-NiO2N4 octa­hedron. The complex cations and chloride anions are linked by N—H...Cl and O—H...Cl hydrogen bonds into a chain.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807031467/hb2461sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807031467/hb2461Isup2.hkl
Contains datablock I

CCDC reference: 657518

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.030
  • wR factor = 0.078
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.82 PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 100 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 4 PLAT232_ALERT_2_C Hirshfeld Test Diff (M-X) Ni1 - O1W .. 5.48 su PLAT710_ALERT_4_C Delete 1-2-3 or 2-3-4 Linear Torsion Angle ... # 21 N2 -NI1 -N2 -C5 11.00 0.00 3.666 1.555 1.555 1.555 PLAT715_ALERT_1_C D-H Unknown or Inconsistent Label .......... O1<I>W< PLAT715_ALERT_1_C D-H Unknown or Inconsistent Label .......... O1<I>W< PLAT716_ALERT_1_C H...A Unknown or Inconsistent Label .......... H1<I>N< PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.824 Tmax scaled 0.824 Tmin scaled 0.706 PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 10 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 5 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

A number of nickel dichloride complexes of substituted ethylenediamines have been characterized by X-ray diffraction; these have the nickel atom chelated by two ligands. The octahedral geometry is completed by two water molecules. Such aquanickel salts are exemplified by the N,N-dimethylethylenediamine and N,N-diethylethylenediamine complexes (Ide & Norman, 2007; Ihara et al., 1991). The title compound, (I), shows a similar metal geometry (Fig. 1, Table 1). and the bite angle of the ligand is also similar to those found in such compounds. The components interact by way of N—H···Cl and O—H···Cl hydrogen bonds (Table 2).

Related literature top

For other nickel dichloride complexes of substituted ethylenediamines, see Ide & Norman (2007) and Ihara et al. (1991).

Experimental top

To an ethanol solution (5 ml) of nickel chloride hexahydrate (0.119 g, 0.5 mmol) was added an ethanol solution (5 ml) of N,N-dimethyl-N'-ethyl-ethylenediamine (1.6 ml, 1 mmol). The solution was filtered. Ether was diffused into the filtrate; light blue crystals of (I) were isolated after a week.

Refinement top

The C-bound hydrogen atoms were placed at calculated positions in the riding model approximation [C—H = 0.93–0.98 Å, U(H) = 1.2–1.5 Ueq(C)]. The water and amino H atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = N–H = 0.85±0.01 Å and free refinement of their Uiso values.

Structure description top

A number of nickel dichloride complexes of substituted ethylenediamines have been characterized by X-ray diffraction; these have the nickel atom chelated by two ligands. The octahedral geometry is completed by two water molecules. Such aquanickel salts are exemplified by the N,N-dimethylethylenediamine and N,N-diethylethylenediamine complexes (Ide & Norman, 2007; Ihara et al., 1991). The title compound, (I), shows a similar metal geometry (Fig. 1, Table 1). and the bite angle of the ligand is also similar to those found in such compounds. The components interact by way of N—H···Cl and O—H···Cl hydrogen bonds (Table 2).

For other nickel dichloride complexes of substituted ethylenediamines, see Ide & Norman (2007) and Ihara et al. (1991).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. View of part of a chain in (I) showing 50% displacement ellipsoids for the non-hydrogen atoms.
Diaquabis[N,N-dimethyl-N'-ethylethylenediamine-κ2N,N']nickel(II) dichloride top
Crystal data top
[Ni(C6H16N2)2(H2O)2]Cl2F(000) = 428
Mr = 398.06Dx = 1.366 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 2782 reflections
a = 7.802 (1) Åθ = 2.6–27.5°
b = 12.550 (1) ŵ = 1.29 mm1
c = 9.935 (1) ÅT = 295 K
β = 95.750 (1)°Block, light blue
V = 967.9 (2) Å30.20 × 0.20 × 0.15 mm
Z = 2
Data collection top
Bruker APEX CCD
diffractometer
2203 independent reflections
Radiation source: fine-focus sealed tube1843 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
φ and ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 99
Tmin = 0.856, Tmax = 1.000k = 1216
5912 measured reflectionsl = 1212
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.030Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0399P)2 + 0.2921P]
where P = (Fo2 + 2Fc2)/3
2203 reflections(Δ/σ)max = 0.001
109 parametersΔρmax = 0.47 e Å3
3 restraintsΔρmin = 0.36 e Å3
Crystal data top
[Ni(C6H16N2)2(H2O)2]Cl2V = 967.9 (2) Å3
Mr = 398.06Z = 2
Monoclinic, P21/nMo Kα radiation
a = 7.802 (1) ŵ = 1.29 mm1
b = 12.550 (1) ÅT = 295 K
c = 9.935 (1) Å0.20 × 0.20 × 0.15 mm
β = 95.750 (1)°
Data collection top
Bruker APEX CCD
diffractometer
2203 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
1843 reflections with I > 2σ(I)
Tmin = 0.856, Tmax = 1.000Rint = 0.019
5912 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0303 restraints
wR(F2) = 0.078H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.47 e Å3
2203 reflectionsΔρmin = 0.36 e Å3
109 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Ni10.50000.50000.50000.02374 (11)
Cl10.02304 (6)0.31615 (4)0.44701 (7)0.05183 (18)
O1W0.23497 (17)0.52469 (12)0.44802 (15)0.0353 (3)
N10.4525 (2)0.33584 (12)0.46081 (17)0.0303 (3)
N20.5432 (2)0.50319 (12)0.28146 (16)0.0340 (4)
C10.4882 (3)0.14532 (19)0.5352 (3)0.0565 (6)
H1A0.56750.09800.58540.085*
H1B0.46700.12060.44360.085*
H1C0.38180.14700.57600.085*
C20.5644 (3)0.25613 (15)0.5361 (2)0.0415 (5)
H2A0.58790.27960.62910.050*
H2B0.67340.25310.49710.050*
C30.4438 (3)0.32060 (16)0.3122 (2)0.0431 (5)
H3A0.32940.33870.27120.052*
H3B0.46550.24640.29220.052*
C40.5748 (3)0.38971 (18)0.2536 (2)0.0441 (5)
H4A0.68940.37010.29270.053*
H4B0.56890.37850.15670.053*
C50.6964 (3)0.5649 (2)0.2497 (2)0.0560 (6)
H5A0.70560.56220.15410.084*
H5B0.79810.53470.29730.084*
H5C0.68460.63760.27710.084*
C60.3960 (3)0.5413 (2)0.1889 (2)0.0508 (6)
H6A0.42610.53970.09760.076*
H6B0.36810.61300.21250.076*
H6C0.29830.49600.19660.076*
H1W10.170 (3)0.4708 (13)0.448 (3)0.055 (8)*
H1W20.177 (3)0.5738 (14)0.478 (2)0.056 (8)*
H1N0.3539 (16)0.3279 (16)0.486 (2)0.034 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.01999 (17)0.02258 (17)0.02879 (18)0.00071 (11)0.00310 (12)0.00120 (12)
Cl10.0282 (3)0.0379 (3)0.0903 (5)0.0015 (2)0.0104 (3)0.0152 (3)
O1W0.0237 (7)0.0315 (8)0.0510 (9)0.0016 (6)0.0045 (6)0.0039 (6)
N10.0249 (8)0.0259 (8)0.0403 (9)0.0000 (6)0.0038 (6)0.0011 (6)
N20.0353 (9)0.0365 (9)0.0304 (8)0.0016 (7)0.0047 (7)0.0004 (7)
C10.0533 (15)0.0329 (12)0.0823 (18)0.0003 (10)0.0025 (13)0.0111 (11)
C20.0350 (11)0.0296 (10)0.0581 (14)0.0022 (8)0.0045 (9)0.0015 (9)
C30.0523 (13)0.0337 (11)0.0427 (12)0.0035 (9)0.0016 (10)0.0100 (9)
C40.0495 (13)0.0461 (13)0.0377 (12)0.0050 (10)0.0099 (9)0.0077 (9)
C50.0536 (14)0.0733 (18)0.0436 (13)0.0183 (13)0.0171 (11)0.0022 (12)
C60.0577 (15)0.0583 (14)0.0351 (12)0.0045 (12)0.0010 (10)0.0042 (10)
Geometric parameters (Å, º) top
Ni1—O1W2.103 (1)C1—H1B0.9600
Ni1—O1Wi2.103 (1)C1—H1C0.9600
Ni1—N12.122 (2)C2—H2A0.9700
Ni1—N1i2.122 (2)C2—H2B0.9700
Ni1—N22.231 (2)C3—C41.501 (3)
Ni1—N2i2.231 (2)C3—H3A0.9700
O1W—H1W10.84 (1)C3—H3B0.9700
O1W—H1W20.84 (1)C4—H4A0.9700
N1—C21.480 (2)C4—H4B0.9700
N1—C31.484 (3)C5—H5A0.9600
N1—H1N0.84 (1)C5—H5B0.9600
N2—C41.476 (3)C5—H5C0.9600
N2—C61.477 (3)C6—H6A0.9600
N2—C51.484 (3)C6—H6B0.9600
C1—C21.512 (3)C6—H6C0.9600
C1—H1A0.9600
O1Wi—Ni1—O1W180.0C2—C1—H1C109.5
O1Wi—Ni1—N192.95 (6)H1A—C1—H1C109.5
O1W—Ni1—N187.05 (6)H1B—C1—H1C109.5
O1Wi—Ni1—N1i87.05 (6)N1—C2—C1114.00 (17)
O1W—Ni1—N1i92.95 (6)N1—C2—H2A108.8
N1—Ni1—N1i180.0C1—C2—H2A108.8
O1Wi—Ni1—N290.05 (6)N1—C2—H2B108.8
O1W—Ni1—N289.95 (6)C1—C2—H2B108.8
N1—Ni1—N283.08 (6)H2A—C2—H2B107.6
N1i—Ni1—N296.92 (6)N1—C3—C4110.26 (16)
O1Wi—Ni1—N2i89.95 (6)N1—C3—H3A109.6
O1W—Ni1—N2i90.05 (6)C4—C3—H3A109.6
N1—Ni1—N2i96.92 (6)N1—C3—H3B109.6
N1i—Ni1—N2i83.08 (6)C4—C3—H3B109.6
N2—Ni1—N2i180.0H3A—C3—H3B108.1
Ni1—O1W—H1W1116.9 (18)N2—C4—C3110.61 (17)
Ni1—O1W—H1W2125.3 (17)N2—C4—H4A109.5
H1W1—O1W—H1W2104 (3)C3—C4—H4A109.5
C2—N1—C3112.42 (16)N2—C4—H4B109.5
C2—N1—Ni1118.68 (13)C3—C4—H4B109.5
C3—N1—Ni1107.30 (12)H4A—C4—H4B108.1
C2—N1—H1N106.3 (14)N2—C5—H5A109.5
C3—N1—H1N109.3 (15)N2—C5—H5B109.5
Ni1—N1—H1N102.1 (14)H5A—C5—H5B109.5
C4—N2—C6109.24 (17)N2—C5—H5C109.5
C4—N2—C5108.09 (17)H5A—C5—H5C109.5
C6—N2—C5106.93 (18)H5B—C5—H5C109.5
C4—N2—Ni1102.09 (12)N2—C6—H6A109.5
C6—N2—Ni1115.32 (13)N2—C6—H6B109.5
C5—N2—Ni1114.83 (13)H6A—C6—H6B109.5
C2—C1—H1A109.5N2—C6—H6C109.5
C2—C1—H1B109.5H6A—C6—H6C109.5
H1A—C1—H1B109.5H6B—C6—H6C109.5
O1Wi—Ni1—N1—C229.32 (15)N1i—Ni1—N2—C680.96 (15)
O1W—Ni1—N1—C2150.68 (15)O1Wi—Ni1—N2—C542.98 (16)
N2—Ni1—N1—C2119.01 (15)O1W—Ni1—N2—C5137.02 (16)
N2i—Ni1—N1—C260.99 (15)N1—Ni1—N2—C5135.94 (16)
O1Wi—Ni1—N1—C399.41 (13)N1i—Ni1—N2—C544.06 (16)
O1W—Ni1—N1—C380.59 (13)N2i—Ni1—N2—C5114 (100)
N2—Ni1—N1—C39.72 (13)C3—N1—C2—C172.2 (2)
N2i—Ni1—N1—C3170.28 (13)Ni1—N1—C2—C1161.47 (17)
O1Wi—Ni1—N2—C473.70 (13)C2—N1—C3—C494.2 (2)
O1W—Ni1—N2—C4106.30 (13)Ni1—N1—C3—C438.0 (2)
N1—Ni1—N2—C419.27 (12)C6—N2—C4—C376.6 (2)
N1i—Ni1—N2—C4160.74 (12)C5—N2—C4—C3167.39 (18)
O1Wi—Ni1—N2—C6168.00 (15)Ni1—N2—C4—C345.94 (19)
O1W—Ni1—N2—C612.00 (15)N1—C3—C4—N259.9 (2)
N1—Ni1—N2—C699.04 (15)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.84 (1)2.26 (1)3.095 (2)174 (2)
O1W—H1W2···Cl1ii0.84 (1)2.26 (1)3.090 (2)169 (2)
N1—H1N···Cl10.84 (1)2.58 (1)3.349 (2)154 (2)
Symmetry code: (ii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Ni(C6H16N2)2(H2O)2]Cl2
Mr398.06
Crystal system, space groupMonoclinic, P21/n
Temperature (K)295
a, b, c (Å)7.802 (1), 12.550 (1), 9.935 (1)
β (°) 95.750 (1)
V3)967.9 (2)
Z2
Radiation typeMo Kα
µ (mm1)1.29
Crystal size (mm)0.20 × 0.20 × 0.15
Data collection
DiffractometerBruker APEX CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.856, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
5912, 2203, 1843
Rint0.019
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.04
No. of reflections2203
No. of parameters109
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.47, 0.36

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Selected bond lengths (Å) top
Ni1—O1W2.103 (1)Ni1—N22.231 (2)
Ni1—N12.122 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1W—H1W1···Cl10.84 (1)2.26 (1)3.095 (2)174 (2)
O1W—H1W2···Cl1i0.84 (1)2.26 (1)3.090 (2)169 (2)
N1—H1N···Cl10.84 (1)2.58 (1)3.349 (2)154 (2)
Symmetry code: (i) x, y+1, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds