Download citation
Download citation
link to html
The title compound, [Cu2(C2H3O2)4(C12H11NS)2], is a centrosymmetric dimer. The Cu centre presents a CuO4N square-pyramidal geometry arising from four syn–syn bridging acetate anions and a 2-(phenyl­sulfanylmeth­yl)pyridine ligand N-coordinated in the apical position. The Cu...Cu separation is 2.6309 (6) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807026189/hb2435sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807026189/hb2435Isup2.hkl
Contains datablock I

CCDC reference: 657598

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.028
  • wR factor = 0.078
  • Data-to-parameter ratio = 14.6

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.98 PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.81 Ratio PLAT764_ALERT_4_C Overcomplete CIF Bond List Detected (Rep/Expd) . 1.12 Ratio
Alert level G PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.10
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 2 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 2 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

In the preparation of CuII complex with the ligand, 2-(phenylsulfanyl)methylpyridine (L), we obtained the title compound, (I), (Fig. 1).

The complex consists of a centrosymmetric dicopper(II) core with four acetate anions bridging the two copper atoms and two monodentate L ligands. The intradimer Cu···Cui (i = -x, 1 - y, -z) distance is 2.6309 (6) Å, which is similar to that (2.63 Å) in [Cu(O2CPh)2(DMF)]2 (Del Sesto et al., 2000). The copper ion in (I) presents a nearly square pyramidal geometry with four oxygen atoms in a plane, at a mean distance of 1.971 (2) Å. The axial site is occupied by the pyridine N atom of a ligand molecule at 2.232 (2) Å. The CuII ion is displaced from the basal plane towards the apical N atom by 0.199 (2) A. The L ligand takes a gauche conformation with a C6—S1—C7—C8 torsion angle of 76.8 (2)° between the two aryl groups.

Related literature top

For a related structure and background, see: Del Sesto et al. (2000).

Experimental top

Thiophenol (630 mg, 5.7 mmol) was added to a stirred solution of KOH (320 mg, 5.7 mmol) in ethanol (30 ml). The mixture was refluxed for 30 min and a solution of 2-bromomethylpyridine (986 mg, 5.7 mmol) in ethanol (25 ml) was slowly added to it. The mixture was refluxed for 4 h more. The KBr precipitate was filtered off, and the filtrate was washed by water and evaporated to obtain ligand L as a brown oil in 40% yield. A solution (5.0 ml) of Cu(OAc)2 (0.1 mmol) and L (0.2 mmol) in methanol/chloroform (1:1 v/v) was stirred for 30 min at room temperature, and then filtered. Green single crystals of (I) were obtained from the filtrate.

Refinement top

The H atoms were positioned geometrically (C—H = 0.93–0.97 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

In the preparation of CuII complex with the ligand, 2-(phenylsulfanyl)methylpyridine (L), we obtained the title compound, (I), (Fig. 1).

The complex consists of a centrosymmetric dicopper(II) core with four acetate anions bridging the two copper atoms and two monodentate L ligands. The intradimer Cu···Cui (i = -x, 1 - y, -z) distance is 2.6309 (6) Å, which is similar to that (2.63 Å) in [Cu(O2CPh)2(DMF)]2 (Del Sesto et al., 2000). The copper ion in (I) presents a nearly square pyramidal geometry with four oxygen atoms in a plane, at a mean distance of 1.971 (2) Å. The axial site is occupied by the pyridine N atom of a ligand molecule at 2.232 (2) Å. The CuII ion is displaced from the basal plane towards the apical N atom by 0.199 (2) A. The L ligand takes a gauche conformation with a C6—S1—C7—C8 torsion angle of 76.8 (2)° between the two aryl groups.

For a related structure and background, see: Del Sesto et al. (2000).

Computing details top

Data collection: RAPID-AUTO (Rigaku, 2004); cell refinement: RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: CrystalStructure (Rigaku, 2004).

Figures top
[Figure 1] Fig. 1. View of (I) with 30% probability displacement ellipsoids (arbitrary spheres of H atoms). Symmetry code: (i) -x, 1 - y, -z.
Tetra-µ-acetato-κ8O:O'-bis{[2-(phenylsulfanylmethyl)pyridine-κN]copper(II)} top
Crystal data top
[Cu2(C2H3O2)4(C12H11NS)2]Z = 1
Mr = 765.85F(000) = 394
Triclinic, P1Dx = 1.551 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.7587 (16) ÅCell parameters from 7557 reflections
b = 7.9690 (16) Åθ = 3.1–27.5°
c = 13.986 (3) ŵ = 1.48 mm1
α = 102.51 (3)°T = 293 K
β = 101.86 (2)°Block, green
γ = 94.29 (3)°0.34 × 0.33 × 0.30 mm
V = 819.7 (3) Å3
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3029 independent reflections
Radiation source: rotating anode2859 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.029
ω scansθmax = 25.5°, θmin = 3.1°
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
h = 99
Tmin = 0.622, Tmax = 0.652k = 98
6775 measured reflectionsl = 1616
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.078H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0382P)2 + 0.5716P]
where P = (Fo2 + 2Fc2)/3
3029 reflections(Δ/σ)max = 0.001
208 parametersΔρmax = 0.41 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu2(C2H3O2)4(C12H11NS)2]γ = 94.29 (3)°
Mr = 765.85V = 819.7 (3) Å3
Triclinic, P1Z = 1
a = 7.7587 (16) ÅMo Kα radiation
b = 7.9690 (16) ŵ = 1.48 mm1
c = 13.986 (3) ÅT = 293 K
α = 102.51 (3)°0.34 × 0.33 × 0.30 mm
β = 101.86 (2)°
Data collection top
Rigaku R-AXIS RAPID IP area-detector
diffractometer
3029 independent reflections
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
2859 reflections with I > 2σ(I)
Tmin = 0.622, Tmax = 0.652Rint = 0.029
6775 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.05Δρmax = 0.41 e Å3
3029 reflectionsΔρmin = 0.37 e Å3
208 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.15681 (7)1.02827 (7)0.41049 (4)0.02382 (14)
N10.3502 (2)0.7760 (2)0.18067 (12)0.0167 (3)
Cu10.12181 (3)0.60867 (3)0.069933 (16)0.01511 (10)
O10.0394 (2)0.78294 (19)0.04802 (11)0.0230 (3)
O20.2453 (2)0.59886 (19)0.07185 (12)0.0271 (4)
O30.0150 (2)0.5378 (2)0.16144 (11)0.0245 (3)
O40.2209 (2)0.3513 (2)0.04359 (11)0.0259 (3)
C10.2586 (3)1.3074 (3)0.33349 (17)0.0296 (5)
H1A0.25901.22890.27370.036*
C20.3046 (4)1.4820 (3)0.34379 (19)0.0377 (6)
H2A0.33541.52050.29060.045*
C30.3055 (4)1.5996 (3)0.4319 (2)0.0416 (6)
H3A0.33861.71700.43880.050*
C40.2570 (5)1.5422 (4)0.5097 (2)0.0471 (7)
H4A0.25581.62160.56900.057*
C50.2101 (4)1.3675 (3)0.50064 (19)0.0375 (6)
H5A0.17761.32980.55360.045*
C60.2118 (3)1.2487 (3)0.41206 (16)0.0236 (5)
C70.1672 (3)0.9108 (3)0.28692 (15)0.0213 (4)
H7A0.10120.79680.27380.026*
H7B0.10660.96970.23850.026*
C80.3503 (3)0.8875 (3)0.26746 (15)0.0168 (4)
C90.5058 (3)0.9744 (3)0.33319 (16)0.0236 (5)
H9A0.50221.05130.39290.028*
C100.6667 (3)0.9446 (3)0.30849 (17)0.0275 (5)
H10A0.77271.00070.35170.033*
C110.6675 (3)0.8307 (3)0.21884 (18)0.0268 (5)
H11A0.77370.80970.20020.032*
C120.5073 (3)0.7486 (3)0.15746 (16)0.0224 (4)
H12A0.50800.67100.09740.027*
C130.1833 (3)0.7472 (3)0.01779 (15)0.0185 (4)
C140.2888 (3)0.8945 (3)0.03217 (19)0.0287 (5)
H14A0.23220.99830.01670.043*
H14B0.40670.86750.02380.043*
H14C0.29480.91170.09860.043*
C150.1492 (3)0.4248 (3)0.13311 (15)0.0201 (4)
C160.2312 (4)0.3755 (3)0.21380 (18)0.0355 (6)
H16A0.32400.28080.18370.053*
H16B0.27960.47300.24710.053*
H16C0.14190.34120.26180.053*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0221 (3)0.0269 (3)0.0200 (3)0.0009 (2)0.0070 (2)0.0002 (2)
N10.0151 (8)0.0168 (8)0.0174 (8)0.0000 (6)0.0027 (6)0.0037 (7)
Cu10.01397 (14)0.01466 (15)0.01485 (14)0.00007 (9)0.00168 (9)0.00172 (10)
O10.0225 (8)0.0181 (7)0.0248 (8)0.0029 (6)0.0003 (6)0.0020 (6)
O20.0206 (8)0.0187 (8)0.0350 (9)0.0029 (6)0.0038 (6)0.0006 (7)
O30.0280 (8)0.0255 (8)0.0175 (7)0.0063 (6)0.0046 (6)0.0036 (6)
O40.0232 (8)0.0316 (9)0.0193 (7)0.0075 (6)0.0058 (6)0.0011 (6)
C10.0370 (13)0.0312 (13)0.0189 (10)0.0094 (10)0.0038 (9)0.0031 (9)
C20.0503 (16)0.0350 (14)0.0304 (13)0.0098 (12)0.0052 (11)0.0156 (11)
C30.0603 (18)0.0260 (13)0.0348 (14)0.0091 (12)0.0001 (12)0.0083 (11)
C40.081 (2)0.0278 (14)0.0295 (13)0.0116 (13)0.0139 (14)0.0016 (11)
C50.0564 (17)0.0329 (13)0.0252 (12)0.0099 (12)0.0141 (11)0.0049 (11)
C60.0198 (10)0.0258 (11)0.0218 (10)0.0062 (8)0.0000 (8)0.0020 (9)
C70.0146 (10)0.0241 (11)0.0201 (10)0.0004 (8)0.0025 (8)0.0037 (8)
C80.0144 (9)0.0170 (10)0.0177 (9)0.0007 (7)0.0021 (7)0.0042 (8)
C90.0191 (10)0.0262 (11)0.0196 (10)0.0005 (8)0.0005 (8)0.0026 (9)
C100.0134 (10)0.0337 (13)0.0296 (12)0.0013 (9)0.0013 (8)0.0021 (10)
C110.0147 (10)0.0329 (12)0.0315 (12)0.0028 (9)0.0060 (9)0.0040 (10)
C120.0177 (10)0.0248 (11)0.0233 (10)0.0024 (8)0.0050 (8)0.0023 (9)
C130.0186 (10)0.0187 (10)0.0214 (10)0.0041 (8)0.0091 (8)0.0067 (8)
C140.0270 (12)0.0231 (11)0.0358 (12)0.0074 (9)0.0037 (10)0.0088 (10)
C150.0235 (11)0.0178 (10)0.0209 (10)0.0040 (8)0.0081 (8)0.0054 (8)
C160.0446 (15)0.0380 (14)0.0252 (12)0.0083 (11)0.0165 (11)0.0065 (10)
Geometric parameters (Å, º) top
S1—C61.771 (2)C4—C51.384 (4)
S1—C71.799 (2)C4—H4A0.9300
N1—C81.340 (3)C5—C61.390 (3)
N1—C121.345 (3)C5—H5A0.9300
Cu1—O31.9663 (15)C7—C81.517 (3)
Cu1—O11.9680 (16)C7—H7A0.9700
Cu1—N12.2227 (19)C7—H7B0.9700
Cu1—O4i1.9743 (16)C8—C91.387 (3)
Cu1—O2i1.9746 (16)C9—C101.385 (3)
Cu1—Cu1i2.6309 (13)C9—H9A0.9300
O1—C131.262 (3)C10—C111.381 (3)
O2—C131.257 (3)C10—H10A0.9300
O2—Cu1i1.9746 (16)C11—C121.381 (3)
O3—C151.260 (3)C11—H11A0.9300
O4—C151.252 (3)C12—H12A0.9300
O4—Cu1i1.9743 (16)C13—C141.505 (3)
C1—C21.379 (4)C14—H14A0.9600
C1—C61.385 (3)C14—H14B0.9600
C1—H1A0.9300C14—H14C0.9600
C2—C31.376 (4)C15—C161.511 (3)
C2—H2A0.9300C16—H16A0.9600
C3—C41.376 (4)C16—H16B0.9600
C3—H3A0.9300C16—H16C0.9600
C6—S1—C7104.84 (11)C1—C6—S1124.78 (17)
C8—N1—C12118.22 (17)C8—C7—S1117.10 (14)
C8—N1—Cu1128.57 (13)C8—C7—H7A108.0
C12—N1—Cu1113.04 (13)S1—C7—H7A108.0
O3—Cu1—O189.29 (7)C8—C7—H7B108.0
O3—Cu1—O4i168.33 (6)S1—C7—H7B108.0
O1—Cu1—O4i89.15 (7)H7A—C7—H7B107.3
O3—Cu1—O2i88.87 (7)N1—C8—C9122.23 (18)
O1—Cu1—O2i168.47 (6)N1—C8—C7114.47 (17)
O4i—Cu1—O2i90.36 (8)C9—C8—C7123.30 (18)
O3—Cu1—N1100.28 (6)C10—C9—C8118.96 (19)
O1—Cu1—N1100.09 (7)C10—C9—H9A120.5
O4i—Cu1—N191.38 (6)C8—C9—H9A120.5
O2i—Cu1—N191.44 (7)C11—C10—C9119.1 (2)
O3—Cu1—Cu1i83.62 (5)C11—C10—H10A120.4
O1—Cu1—Cu1i85.08 (5)C9—C10—H10A120.4
O4i—Cu1—Cu1i84.73 (5)C12—C11—C10118.6 (2)
O2i—Cu1—Cu1i83.41 (5)C12—C11—H11A120.7
N1—Cu1—Cu1i173.51 (5)C10—C11—H11A120.7
C13—O1—Cu1122.22 (14)N1—C12—C11122.9 (2)
C13—O2—Cu1i124.00 (14)N1—C12—H12A118.6
C15—O3—Cu1123.84 (14)C11—C12—H12A118.6
C15—O4—Cu1i122.33 (14)O2—C13—O1125.2 (2)
C2—C1—C6120.1 (2)O2—C13—C14117.68 (19)
C2—C1—H1A120.0O1—C13—C14117.14 (19)
C6—C1—H1A120.0C13—C14—H14A109.5
C1—C2—C3120.7 (2)C13—C14—H14B109.5
C1—C2—H2A119.7H14A—C14—H14B109.5
C3—C2—H2A119.7C13—C14—H14C109.5
C4—C3—C2119.5 (3)H14A—C14—H14C109.5
C4—C3—H3A120.3H14B—C14—H14C109.5
C2—C3—H3A120.3O4—C15—O3125.3 (2)
C3—C4—C5120.7 (2)O4—C15—C16117.43 (19)
C3—C4—H4A119.7O3—C15—C16117.25 (19)
C5—C4—H4A119.7C15—C16—H16A109.5
C4—C5—C6119.7 (2)C15—C16—H16B109.5
C4—C5—H5A120.1H16A—C16—H16B109.5
C6—C5—H5A120.1C15—C16—H16C109.5
C5—C6—C1119.4 (2)H16A—C16—H16C109.5
C5—C6—S1115.81 (19)H16B—C16—H16C109.5
C8—N1—Cu1—O338.69 (18)C2—C1—C6—S1177.9 (2)
C12—N1—Cu1—O3136.51 (15)C7—S1—C6—C5179.03 (18)
C8—N1—Cu1—O152.42 (18)C7—S1—C6—C12.4 (2)
C12—N1—Cu1—O1132.38 (15)C6—S1—C7—C876.80 (19)
C8—N1—Cu1—O4i141.80 (18)C12—N1—C8—C90.0 (3)
C12—N1—Cu1—O4i43.00 (16)Cu1—N1—C8—C9175.01 (15)
C8—N1—Cu1—O2i127.81 (18)C12—N1—C8—C7179.67 (19)
C12—N1—Cu1—O2i47.39 (16)Cu1—N1—C8—C75.3 (3)
O3—Cu1—O1—C1386.13 (16)S1—C7—C8—N1169.58 (15)
O4i—Cu1—O1—C1382.31 (16)S1—C7—C8—C910.8 (3)
O2i—Cu1—O1—C135.3 (4)N1—C8—C9—C100.2 (3)
N1—Cu1—O1—C13173.56 (15)C7—C8—C9—C10179.8 (2)
Cu1i—Cu1—O1—C132.47 (15)C8—C9—C10—C110.6 (4)
O1—Cu1—O3—C1588.00 (18)C9—C10—C11—C120.8 (4)
O4i—Cu1—O3—C155.7 (4)C8—N1—C12—C110.3 (3)
O2i—Cu1—O3—C1580.62 (18)Cu1—N1—C12—C11176.01 (18)
N1—Cu1—O3—C15171.88 (17)C10—C11—C12—N10.7 (4)
Cu1i—Cu1—O3—C152.87 (17)Cu1i—O2—C13—O13.6 (3)
C6—C1—C2—C30.3 (4)Cu1i—O2—C13—C14176.56 (15)
C1—C2—C3—C41.1 (4)Cu1—O1—C13—O24.3 (3)
C2—C3—C4—C50.9 (5)Cu1—O1—C13—C14175.83 (14)
C3—C4—C5—C60.0 (5)Cu1i—O4—C15—O34.3 (3)
C4—C5—C6—C10.7 (4)Cu1i—O4—C15—C16176.35 (16)
C4—C5—C6—S1177.9 (2)Cu1—O3—C15—O45.1 (3)
C2—C1—C6—C50.6 (4)Cu1—O3—C15—C16175.48 (16)
Symmetry code: (i) x, y+1, z.

Experimental details

Crystal data
Chemical formula[Cu2(C2H3O2)4(C12H11NS)2]
Mr765.85
Crystal system, space groupTriclinic, P1
Temperature (K)293
a, b, c (Å)7.7587 (16), 7.9690 (16), 13.986 (3)
α, β, γ (°)102.51 (3), 101.86 (2), 94.29 (3)
V3)819.7 (3)
Z1
Radiation typeMo Kα
µ (mm1)1.48
Crystal size (mm)0.34 × 0.33 × 0.30
Data collection
DiffractometerRigaku R-AXIS RAPID IP area-detector
Absorption correctionMulti-scan
(ABSCOR; Higashi, 1995)
Tmin, Tmax0.622, 0.652
No. of measured, independent and
observed [I > 2σ(I)] reflections
6775, 3029, 2859
Rint0.029
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.078, 1.05
No. of reflections3029
No. of parameters208
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.41, 0.37

Computer programs: RAPID-AUTO (Rigaku, 2004), RAPID-AUTO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), CrystalStructure (Rigaku, 2004).

Selected bond lengths (Å) top
Cu1—O31.9663 (15)Cu1—N12.2227 (19)
Cu1—O11.9680 (16)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds