Download citation
Download citation
link to html
The title compound, C22H24N2O4, is a disubstituted α,α′-o-phenyl­enediamine whose hydroxyl groups engage in inter­molecular O—H...N hydrogen bonding to form a chain. The amino groups have pyramidal configurations; their H atoms are not involved in any strong hydrogen-bonding inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702452X/hb2420sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702452X/hb2420Isup2.hkl
Contains datablock I

CCDC reference: 651495

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.045
  • wR factor = 0.132
  • Data-to-parameter ratio = 16.4

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT416_ALERT_2_C Short Intra D-H..H-D H1N .. H2N .. 1.93 Ang.
Alert level G PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 4
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In this study, we synthesized the Schiff base, 1,2-bis(2-hydroxy-3-methoxybenzylideneamino)benzene, whose constitution is similar to that of the heterocyclic analog, 3,4-bis(2-hydroxy-3-methoxybenzylideneamino)pyridine, and whose structure we have recently reported (Bi et al., 2007). We then reduced the carbon–nitrogen double-bond of the Schiff base to form the title double-amine, which should function as a flexible tetradentate chelate in the formation of metal complexes.

For 1,2-bis(2-hydroxy-3-methoxybenzylideneamino)benzene Schiff base itself, the rigid nature is seen is the strained bond dimensions found in, for example, the manganese (Przychodzeń et al., 2005), cobalt (Wu et al., 2006) and copper (Salmon et al., 2005) complexes.

Related literature top

For related structures and background, see: Bi et al. (2007); Przychodzeń et al., (2005); Wu et al. (2006) and Salmon et al. (2006).

Experimental top

The precursor bis(3-methoxysalicylaldimine)-o-phenylene was prepared by condensing 3-methoxysalicylaldehyde with o-phenylenediamine. To a solution of the Schiff base (0.38 g, 1 mol) in methanol (80 ml) at room temperature was added solid potassium borohydride (0.27 g, 5 mol). The solution was stirred for several hours until the yellow color had disappeared. The solvent was removed and dichloromethane (50 ml) was added. A small amount of anhydrous sodium sulfate was added to remove traces of water. The colorless solution was dried to obtain a brown solid. This was purified by recrystallization from anhydrous methanol to give brown crystals of (I) in about 60% yield. CH&N elemental analysis. Calculated for C22H24N2O4: C 69.46, H 6.36, N 7.36; found: C 69.43, H 6.44, N 7.29%.

Refinement top

Carbon-bound hydrogen atoms were placed in calculated positions (C—H 0.93–0.96 Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with a distance restraint of N—H = O—H = 0.85±0.01 Å; their Uiso vaules were freely refined.

Structure description top

In this study, we synthesized the Schiff base, 1,2-bis(2-hydroxy-3-methoxybenzylideneamino)benzene, whose constitution is similar to that of the heterocyclic analog, 3,4-bis(2-hydroxy-3-methoxybenzylideneamino)pyridine, and whose structure we have recently reported (Bi et al., 2007). We then reduced the carbon–nitrogen double-bond of the Schiff base to form the title double-amine, which should function as a flexible tetradentate chelate in the formation of metal complexes.

For 1,2-bis(2-hydroxy-3-methoxybenzylideneamino)benzene Schiff base itself, the rigid nature is seen is the strained bond dimensions found in, for example, the manganese (Przychodzeń et al., 2005), cobalt (Wu et al., 2006) and copper (Salmon et al., 2005) complexes.

For related structures and background, see: Bi et al. (2007); Przychodzeń et al., (2005); Wu et al. (2006) and Salmon et al. (2006).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. View of (I) as a displacement ellipsoid plot (50% probability). Hydrogen atoms are drawn as spheres of arbitrary radius.
1,2-Bis[(2-hydroxy-3-methoxyphenyl)methylamino]benzene top
Crystal data top
C22H24N2O4F(000) = 1616
Mr = 380.43Dx = 1.306 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3418 reflections
a = 10.4665 (7) Åθ = 2.6–21.5°
b = 15.778 (1) ŵ = 0.09 mm1
c = 23.439 (2) ÅT = 295 K
V = 3870.8 (4) Å3Block, brown
Z = 80.37 × 0.27 × 0.18 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2372 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.052
Graphite monochromatorθmax = 27.5°, θmin = 2.5°
φ and ω scansh = 1313
21495 measured reflectionsk = 2019
4411 independent reflectionsl = 3022
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.99 w = 1/[σ2(Fo2) + (0.0522P)2 + 0.9447P]
where P = (Fo2 + 2Fc2)/3
4411 reflections(Δ/σ)max = 0.001
269 parametersΔρmax = 0.16 e Å3
4 restraintsΔρmin = 0.14 e Å3
Crystal data top
C22H24N2O4V = 3870.8 (4) Å3
Mr = 380.43Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.4665 (7) ŵ = 0.09 mm1
b = 15.778 (1) ÅT = 295 K
c = 23.439 (2) Å0.37 × 0.27 × 0.18 mm
Data collection top
Bruker APEX CCD area-detector
diffractometer
2372 reflections with I > 2σ(I)
21495 measured reflectionsRint = 0.052
4411 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0454 restraints
wR(F2) = 0.132H atoms treated by a mixture of independent and constrained refinement
S = 0.99Δρmax = 0.16 e Å3
4411 reflectionsΔρmin = 0.14 e Å3
269 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32120 (15)0.66198 (11)0.60670 (6)0.0675 (5)
O20.36109 (14)0.67543 (11)0.71842 (7)0.0606 (4)
O30.86678 (13)0.46432 (10)0.76967 (6)0.0504 (4)
O41.08944 (13)0.50169 (11)0.81913 (6)0.0674 (5)
N10.59204 (16)0.65856 (11)0.78926 (7)0.0459 (4)
N20.59019 (15)0.49037 (11)0.81097 (7)0.0426 (4)
C10.44971 (19)0.70552 (13)0.68120 (9)0.0467 (5)
C20.4333 (2)0.70033 (13)0.62250 (9)0.0504 (5)
C30.5247 (2)0.73288 (15)0.58635 (10)0.0622 (6)
H30.51440.72930.54700.075*
C40.6333 (2)0.77142 (17)0.60961 (11)0.0719 (7)
H40.69500.79420.58550.086*
C50.6496 (2)0.77591 (15)0.66762 (11)0.0645 (7)
H50.72260.80120.68250.077*
C60.55805 (18)0.74309 (13)0.70423 (9)0.0480 (5)
C70.2956 (3)0.65090 (18)0.54835 (10)0.0794 (8)
H7A0.21460.62310.54380.119*
H7B0.36150.61680.53150.119*
H7C0.29310.70520.52990.119*
C80.5692 (2)0.74491 (13)0.76782 (9)0.0549 (6)
H8A0.63930.78160.77890.066*
H8B0.49120.76730.78430.066*
C90.54105 (17)0.63253 (13)0.84202 (8)0.0439 (5)
C100.4937 (2)0.68866 (16)0.88249 (9)0.0625 (6)
H100.49470.74670.87550.075*
C110.4449 (2)0.65783 (19)0.93341 (10)0.0743 (8)
H110.41150.69540.96010.089*
C120.4452 (2)0.57282 (19)0.94485 (9)0.0687 (7)
H120.41140.55270.97900.082*
C130.49600 (19)0.51689 (15)0.90553 (8)0.0531 (5)
H130.49750.45920.91380.064*
C140.54468 (17)0.54540 (13)0.85409 (8)0.0405 (5)
C150.65038 (19)0.40989 (13)0.82723 (9)0.0483 (5)
H15A0.66340.37600.79320.058*
H15B0.59280.37900.85210.058*
C160.77694 (19)0.42103 (12)0.85726 (8)0.0447 (5)
C170.7925 (2)0.40482 (14)0.91521 (9)0.0590 (6)
H170.72430.38350.93620.071*
C180.9069 (3)0.41991 (17)0.94171 (10)0.0749 (8)
H180.91590.40840.98040.090*
C191.0091 (2)0.45205 (16)0.91134 (10)0.0684 (7)
H191.08640.46250.92970.082*
C200.9966 (2)0.46862 (14)0.85399 (9)0.0524 (5)
C210.88098 (19)0.45128 (12)0.82675 (8)0.0428 (5)
C221.2061 (2)0.52865 (19)0.84492 (11)0.0809 (8)
H22A1.26240.55040.81610.121*
H22B1.24580.48140.86370.121*
H22C1.18850.57230.87230.121*
H2O0.2899 (16)0.6617 (18)0.7028 (11)0.111 (11)*
H3O0.9387 (14)0.4747 (16)0.7532 (9)0.084 (9)*
H1N0.5700 (19)0.6231 (11)0.7634 (7)0.053 (6)*
H2N0.6401 (15)0.5163 (11)0.7879 (7)0.042 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0620 (10)0.0901 (13)0.0504 (9)0.0097 (9)0.0049 (8)0.0025 (8)
O20.0473 (9)0.0791 (12)0.0555 (10)0.0105 (8)0.0002 (8)0.0063 (8)
O30.0445 (8)0.0652 (10)0.0414 (8)0.0049 (8)0.0054 (7)0.0027 (7)
O40.0427 (8)0.1014 (14)0.0581 (10)0.0082 (9)0.0091 (7)0.0113 (9)
N10.0495 (10)0.0381 (10)0.0501 (11)0.0026 (8)0.0049 (8)0.0011 (8)
N20.0432 (9)0.0437 (10)0.0411 (10)0.0003 (8)0.0025 (8)0.0007 (8)
C10.0440 (11)0.0421 (12)0.0540 (13)0.0062 (10)0.0009 (10)0.0054 (9)
C20.0465 (12)0.0496 (13)0.0552 (13)0.0064 (10)0.0020 (10)0.0029 (10)
C30.0634 (15)0.0695 (17)0.0539 (14)0.0108 (13)0.0049 (12)0.0087 (12)
C40.0569 (14)0.0809 (19)0.0779 (18)0.0008 (13)0.0124 (13)0.0230 (14)
C50.0486 (13)0.0611 (16)0.0839 (18)0.0048 (11)0.0050 (12)0.0166 (13)
C60.0447 (11)0.0366 (11)0.0627 (13)0.0052 (9)0.0059 (10)0.0077 (10)
C70.0802 (18)0.105 (2)0.0529 (15)0.0062 (16)0.0019 (13)0.0120 (14)
C80.0557 (13)0.0400 (12)0.0689 (15)0.0010 (11)0.0137 (11)0.0005 (10)
C90.0380 (10)0.0528 (13)0.0409 (11)0.0045 (9)0.0087 (9)0.0052 (9)
C100.0689 (15)0.0640 (16)0.0544 (14)0.0181 (12)0.0107 (12)0.0135 (11)
C110.0770 (17)0.096 (2)0.0496 (15)0.0328 (16)0.0064 (12)0.0218 (14)
C120.0580 (14)0.107 (2)0.0413 (13)0.0199 (15)0.0027 (11)0.0002 (13)
C130.0435 (11)0.0702 (15)0.0455 (12)0.0044 (11)0.0001 (10)0.0032 (11)
C140.0315 (9)0.0523 (13)0.0378 (10)0.0039 (9)0.0067 (8)0.0036 (9)
C150.0513 (12)0.0391 (12)0.0546 (13)0.0032 (10)0.0028 (10)0.0029 (9)
C160.0523 (12)0.0354 (11)0.0463 (12)0.0069 (9)0.0020 (10)0.0015 (9)
C170.0664 (15)0.0620 (15)0.0487 (13)0.0086 (12)0.0052 (12)0.0084 (11)
C180.0862 (19)0.094 (2)0.0442 (14)0.0218 (16)0.0122 (14)0.0050 (13)
C190.0602 (14)0.0934 (19)0.0515 (14)0.0155 (14)0.0145 (12)0.0066 (13)
C200.0477 (12)0.0617 (15)0.0478 (12)0.0077 (11)0.0072 (10)0.0092 (10)
C210.0482 (12)0.0391 (11)0.0409 (11)0.0071 (9)0.0078 (9)0.0031 (9)
C220.0468 (13)0.113 (2)0.0827 (18)0.0067 (14)0.0139 (13)0.0261 (16)
Geometric parameters (Å, º) top
O1—C21.372 (3)C8—H8A0.9700
O1—C71.405 (3)C8—H8B0.9700
O2—C11.359 (2)C9—C101.389 (3)
O2—H2O0.858 (10)C9—C141.404 (3)
O3—C211.362 (2)C10—C111.387 (3)
O3—H3O0.862 (10)C10—H100.9300
O4—C201.373 (3)C11—C121.368 (4)
O4—C221.427 (2)C11—H110.9300
N1—C91.408 (2)C12—C131.382 (3)
N1—C81.472 (3)C12—H120.9300
N1—H1N0.857 (9)C13—C141.384 (3)
N2—C141.415 (2)C13—H130.9300
N2—C151.468 (3)C15—C161.510 (3)
N2—H2N0.856 (9)C15—H15A0.9700
C1—C61.389 (3)C15—H15B0.9700
C1—C21.389 (3)C16—C211.387 (3)
C2—C31.377 (3)C16—C171.392 (3)
C3—C41.400 (3)C17—C181.370 (3)
C3—H30.9300C17—H170.9300
C4—C51.372 (3)C18—C191.381 (3)
C4—H40.9300C18—H180.9300
C5—C61.387 (3)C19—C201.376 (3)
C5—H50.9300C19—H190.9300
C6—C81.495 (3)C20—C211.395 (3)
C7—H7A0.9600C22—H22A0.9600
C7—H7B0.9600C22—H22B0.9600
C7—H7C0.9600C22—H22C0.9600
C2—O1—C7118.78 (18)C11—C10—H10120.1
C1—O2—H2O114 (2)C9—C10—H10120.1
C21—O3—H3O111.9 (17)C12—C11—C10120.8 (2)
C20—O4—C22117.84 (18)C12—C11—H11119.6
C9—N1—C8120.56 (17)C10—C11—H11119.6
C9—N1—H1N109.2 (14)C11—C12—C13119.8 (2)
C8—N1—H1N108.6 (14)C11—C12—H12120.1
C14—N2—C15119.34 (16)C13—C12—H12120.1
C14—N2—H2N111.3 (13)C12—C13—C14121.0 (2)
C15—N2—H2N108.4 (13)C12—C13—H13119.5
O2—C1—C6117.19 (18)C14—C13—H13119.5
O2—C1—C2122.08 (19)C13—C14—C9118.94 (18)
C6—C1—C2120.7 (2)C13—C14—N2123.13 (19)
O1—C2—C3126.3 (2)C9—C14—N2117.78 (17)
O1—C2—C1113.52 (18)N2—C15—C16113.37 (16)
C3—C2—C1120.1 (2)N2—C15—H15A108.9
C2—C3—C4119.1 (2)C16—C15—H15A108.9
C2—C3—H3120.5N2—C15—H15B108.9
C4—C3—H3120.5C16—C15—H15B108.9
C5—C4—C3120.6 (2)H15A—C15—H15B107.7
C5—C4—H4119.7C21—C16—C17118.33 (19)
C3—C4—H4119.7C21—C16—C15119.22 (17)
C4—C5—C6120.6 (2)C17—C16—C15122.41 (19)
C4—C5—H5119.7C18—C17—C16120.8 (2)
C6—C5—H5119.7C18—C17—H17119.6
C5—C6—C1118.9 (2)C16—C17—H17119.6
C5—C6—C8123.8 (2)C17—C18—C19120.5 (2)
C1—C6—C8117.36 (19)C17—C18—H18119.8
O1—C7—H7A109.5C19—C18—H18119.8
O1—C7—H7B109.5C20—C19—C18120.0 (2)
H7A—C7—H7B109.5C20—C19—H19120.0
O1—C7—H7C109.5C18—C19—H19120.0
H7A—C7—H7C109.5O4—C20—C19125.9 (2)
H7B—C7—H7C109.5O4—C20—C21114.60 (18)
N1—C8—C6109.58 (17)C19—C20—C21119.5 (2)
N1—C8—H8A109.8O3—C21—C16118.21 (17)
C6—C8—H8A109.8O3—C21—C20120.97 (19)
N1—C8—H8B109.8C16—C21—C20120.82 (18)
C6—C8—H8B109.8O4—C22—H22A109.5
H8A—C8—H8B108.2O4—C22—H22B109.5
C10—C9—C14119.76 (19)H22A—C22—H22B109.5
C10—C9—N1123.3 (2)O4—C22—H22C109.5
C14—C9—N1116.89 (16)H22A—C22—H22C109.5
C11—C10—C9119.7 (2)H22B—C22—H22C109.5
C7—O1—C2—C32.4 (3)C12—C13—C14—N2175.84 (19)
C7—O1—C2—C1178.2 (2)C10—C9—C14—C132.5 (3)
O2—C1—C2—O10.4 (3)N1—C9—C14—C13179.80 (16)
C6—C1—C2—O1179.61 (18)C10—C9—C14—N2178.18 (17)
O2—C1—C2—C3178.97 (19)N1—C9—C14—N24.5 (2)
C6—C1—C2—C30.2 (3)C15—N2—C14—C1332.3 (3)
O1—C2—C3—C4178.9 (2)C15—N2—C14—C9152.26 (17)
C1—C2—C3—C40.3 (3)C14—N2—C15—C1667.7 (2)
C2—C3—C4—C50.8 (4)N2—C15—C16—C2168.9 (2)
C3—C4—C5—C60.6 (4)N2—C15—C16—C17108.8 (2)
C4—C5—C6—C10.1 (3)C21—C16—C17—C181.2 (3)
C4—C5—C6—C8179.5 (2)C15—C16—C17—C18176.5 (2)
O2—C1—C6—C5178.86 (19)C16—C17—C18—C190.4 (4)
C2—C1—C6—C50.4 (3)C17—C18—C19—C200.4 (4)
O2—C1—C6—C81.7 (3)C22—O4—C20—C196.0 (3)
C2—C1—C6—C8179.09 (18)C22—O4—C20—C21174.1 (2)
C9—N1—C8—C6145.63 (18)C18—C19—C20—O4178.9 (2)
C5—C6—C8—N1109.3 (2)C18—C19—C20—C211.2 (3)
C1—C6—C8—N170.2 (2)C17—C16—C21—O3177.79 (18)
C8—N1—C9—C1015.4 (3)C15—C16—C21—O34.4 (3)
C8—N1—C9—C14167.46 (17)C17—C16—C21—C202.8 (3)
C14—C9—C10—C113.0 (3)C15—C16—C21—C20174.97 (18)
N1—C9—C10—C11179.90 (19)O4—C20—C21—O32.1 (3)
C9—C10—C11—C121.4 (4)C19—C20—C21—O3177.81 (19)
C10—C11—C12—C130.7 (4)O4—C20—C21—C16177.26 (18)
C11—C12—C13—C141.2 (3)C19—C20—C21—C162.8 (3)
C12—C13—C14—C90.4 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N1i0.86 (1)2.08 (2)2.834 (2)146 (3)
O3—H3O···N2ii0.86 (1)2.20 (1)3.035 (2)163 (2)
N1—H1N···O20.86 (1)2.56 (2)2.945 (2)108 (2)
N2—H2N···O30.86 (1)2.55 (2)3.080 (2)121 (2)
N2—H2N···O4i0.86 (1)2.57 (2)3.055 (2)117 (2)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2.

Experimental details

Crystal data
Chemical formulaC22H24N2O4
Mr380.43
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)295
a, b, c (Å)10.4665 (7), 15.778 (1), 23.439 (2)
V3)3870.8 (4)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.37 × 0.27 × 0.18
Data collection
DiffractometerBruker APEX CCD area-detector
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21495, 4411, 2372
Rint0.052
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.132, 0.99
No. of reflections4411
No. of parameters269
No. of restraints4
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.16, 0.14

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2007).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H2O···N1i0.86 (1)2.08 (2)2.834 (2)146 (3)
O3—H3O···N2ii0.86 (1)2.20 (1)3.035 (2)163 (2)
N1—H1N···O20.86 (1)2.56 (2)2.945 (2)108 (2)
N2—H2N···O30.86 (1)2.55 (2)3.080 (2)121 (2)
N2—H2N···O4i0.86 (1)2.57 (2)3.055 (2)117 (2)
Symmetry codes: (i) x1/2, y, z+3/2; (ii) x+1/2, y, z+3/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds