Download citation
Download citation
link to html
The deprotonated Schiff-base dianion in the title compound, [Ni(C11H9NO4)(H2O)3]·H2O, occupies the meridional sites of the NiO5N octa­hedron. The neutral complex mol­ecule inter­acts with the uncoordinated water mol­ecule by way of O—H...O hydrogen bonds to give rise to a three-dimensional network. The ethylidene part of the molecule is disordered over two positions in a 0.74:0.26 ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807024518/hb2419sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807024518/hb2419Isup2.hkl
Contains datablock I

CCDC reference: 650706

Key indicators

  • Single-crystal X-ray study
  • T = 295 K
  • Mean [sigma](C-C) = 0.004 Å
  • Disorder in main residue
  • R factor = 0.036
  • wR factor = 0.099
  • Data-to-parameter ratio = 12.3

checkCIF/PLATON results

No syntax errors found



Alert level B PLAT029_ALERT_3_B _diffrn_measured_fraction_theta_full Low ....... 0.95
Alert level C PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 300 Deg. PLAT250_ALERT_2_C Large U3/U1 Ratio for Average U(i,j) Tensor .... 2.04 PLAT301_ALERT_3_C Main Residue Disorder ......................... 9.00 Perc. PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 11 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.845(10) ...... 3.00 su-Ra O1W -H1W1 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.85(3), Rep 0.845(10) ...... 3.00 su-Ra O2W -H2W1 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O3W -H3W1 1.555 1.555 PLAT731_ALERT_1_C Bond Calc 0.84(3), Rep 0.847(10) ...... 3.00 su-Ra O3W -H3W2 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.850(10) ...... 3.00 su-Ra O1W -H4# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.85(3), Rep 0.850(10) ...... 3.00 su-Ra O2W -H6# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.840(10) ...... 3.00 su-Ra O3W -H8# 1.555 1.555 PLAT735_ALERT_1_C D-H Calc 0.84(3), Rep 0.850(10) ...... 3.00 su-Ra O3W -H9# 1.555 1.555 PLAT736_ALERT_1_C H...A Calc 1.95(3), Rep 1.950(10) ...... 3.00 su-Ra H4# -O1 1.555 2.666 PLAT736_ALERT_1_C H...A Calc 1.93(3), Rep 1.930(10) ...... 3.00 su-Ra H6# -O3 1.555 2.676 PLAT736_ALERT_1_C H...A Calc 1.94(3), Rep 1.950(10) ...... 3.00 su-Ra H8# -O2 1.555 2.766 PLAT736_ALERT_1_C H...A Calc 1.85(3), Rep 1.850(10) ...... 3.00 su-Ra H9# -O4W 1.555 1.565 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 29.30 Deg. C2 -N1 -C2' 1.555 1.555 1.555 PLAT779_ALERT_2_C Suspect or Irrelevant (Bond) Angle in CIF ...... 28.40 Deg. C2 -C1 -C2' 1.555 1.555 1.555
Alert level G PLAT793_ALERT_1_G Check the Absolute Configuration of C2 = ... R PLAT793_ALERT_1_G Check the Absolute Configuration of C2' = ... S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 35
0 ALERT level A = In general: serious problem 1 ALERT level B = Potentially serious problem 18 ALERT level C = Check and explain 3 ALERT level G = General alerts; check 15 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 3 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The salicylidene-glycine carboxylic acid when doubly deprotonated generally chelates to metal centers through its N,O,O' atoms. The planar ligand chelates to nickel in this manner in, for example, the tripyridinenickel complex for which it occupies the meridional sites (Cui et al., 1992). The 3-methoxy analog also affords a six-coordinate tripyridine complex, but it also contains ethanol as the solvate molecule (Cui et al., 1993). The N-(5-bromosalicylidene)tryptophanate complex is a triaqua complex that crystallizes with two uncoordinated water molecules (Rodríguez et al., 1990).

This chelating feature is also found in the title compound, (I), (Table 1) which has a formyl group as substituent in the aromatic ring. The formyl substitutent in involved in hydrogen bonding interactions with the water molecules to give rise to a three-dimenional network architecture (Table 2).

Related literature top

For the structures of other salicylidene-glycine-nickel complexes, see Cui et al. (1992, 1993); Rodríguez et al. (1990).

Experimental top

5-Formylsalicylaldehyde (0.2 mmol, 0.27 g), D,L-alanine (0.2 mmol, 0.18 g) and potassium hydroxide (0.2 mmol, 0.11 g) were dissolved in 80% aqueous methanol (15 ml). The mixture was stirred for 1 h to give a clear yellow solution. To the solution was added an aqueous solution (15 ml) of nickel(II) acetate hexahydrate (0.2 mmol, 0.57 g). The mixture heated at 323 K for 3 h. Green crystals of (I) were obtained in about 50% yield.

Refinement top

The ethylidene part of the molecule is disordered over two positions; the disorder refined to a 0.737 (11):0.263 (11) ratio. Pairs of equivalent carbon-carbon distances were restrained to within 0.01 Å of each other, and the disordered atoms were restrained to vibrate in a nearly isotropic manner.

The carbon-bound H atoms were placed in calculated positions (C—H 0.93 Å), and were included in the refinement in the riding model approximation, with Uiso(H) = 1.2Ueq(C).

The water H-atoms were located in a difference Fourier map, and were refined with a distance restraint of O–H = 0.85±0.01 Å; Uiso was freely varied for each H atom.

Structure description top

The salicylidene-glycine carboxylic acid when doubly deprotonated generally chelates to metal centers through its N,O,O' atoms. The planar ligand chelates to nickel in this manner in, for example, the tripyridinenickel complex for which it occupies the meridional sites (Cui et al., 1992). The 3-methoxy analog also affords a six-coordinate tripyridine complex, but it also contains ethanol as the solvate molecule (Cui et al., 1993). The N-(5-bromosalicylidene)tryptophanate complex is a triaqua complex that crystallizes with two uncoordinated water molecules (Rodríguez et al., 1990).

This chelating feature is also found in the title compound, (I), (Table 1) which has a formyl group as substituent in the aromatic ring. The formyl substitutent in involved in hydrogen bonding interactions with the water molecules to give rise to a three-dimenional network architecture (Table 2).

For the structures of other salicylidene-glycine-nickel complexes, see Cui et al. (1992, 1993); Rodríguez et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2003); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2006).

Figures top
[Figure 1] Fig. 1. View of (I) as a displacement ellipsoid plot (50% probability). Hydrogen atoms are drawn as spheres of arbitrary radii; the minor disorder component is not shown.
Triaqua(5-formyl-N-salicylidene-D,L-alaninato-κ3N,\ O,O')nickel(II) monohydrate top
Crystal data top
[Ni(C11H9NO4)(H2O)3].H2OZ = 2
Mr = 349.97F(000) = 364
Triclinic, P1Dx = 1.647 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.861 (2) ÅCell parameters from 2418 reflections
b = 8.664 (2) Åθ = 2.3–27.1°
c = 12.363 (3) ŵ = 1.41 mm1
α = 82.967 (3)°T = 295 K
β = 80.639 (3)°Block, green
γ = 77.706 (3)°0.20 × 0.10 × 0.05 mm
V = 705.5 (3) Å3
Data collection top
Bruker SMART CCD
diffractometer
2966 independent reflections
Radiation source: fine-focus sealed tube2635 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
φ and ω scansθmax = 27.1°, θmin = 1.7°
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
h = 58
Tmin = 0.870, Tmax = 0.933k = 911
4072 measured reflectionsl = 1415
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.059P)2 + 0.1949P]
where P = (Fo2 + 2Fc2)/3
2966 reflections(Δ/σ)max = 0.001
241 parametersΔρmax = 0.55 e Å3
35 restraintsΔρmin = 0.43 e Å3
Crystal data top
[Ni(C11H9NO4)(H2O)3].H2Oγ = 77.706 (3)°
Mr = 349.97V = 705.5 (3) Å3
Triclinic, P1Z = 2
a = 6.861 (2) ÅMo Kα radiation
b = 8.664 (2) ŵ = 1.41 mm1
c = 12.363 (3) ÅT = 295 K
α = 82.967 (3)°0.20 × 0.10 × 0.05 mm
β = 80.639 (3)°
Data collection top
Bruker SMART CCD
diffractometer
2966 independent reflections
Absorption correction: multi-scan
SADABS (Sheldrick, 1996)
2635 reflections with I > 2σ(I)
Tmin = 0.870, Tmax = 0.933Rint = 0.020
4072 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03635 restraints
wR(F2) = 0.099H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.55 e Å3
2966 reflectionsΔρmin = 0.43 e Å3
241 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni10.62546 (4)0.75271 (3)0.39426 (2)0.02769 (12)
O10.7525 (3)0.52716 (18)0.44937 (13)0.0347 (4)
O20.9267 (3)0.3003 (2)0.39286 (16)0.0463 (5)
O30.5195 (3)0.96942 (18)0.32259 (13)0.0315 (4)
O40.6313 (4)1.3584 (2)0.14612 (15)0.0495 (5)
O1W0.3722 (3)0.6685 (2)0.36805 (15)0.0396 (4)
O2W0.4613 (3)0.8013 (2)0.54397 (15)0.0382 (4)
O3W0.8478 (3)0.8416 (2)0.44387 (17)0.0445 (5)
O4W1.0881 (3)0.0138 (2)0.31021 (19)0.0474 (5)
N10.7874 (3)0.6852 (2)0.25235 (17)0.0356 (5)
C10.8554 (4)0.4445 (3)0.3764 (2)0.0355 (5)
C20.9180 (6)0.5251 (4)0.2619 (3)0.0302 (10)0.737 (11)
H21.05980.53420.25350.036*0.737 (11)
C30.8859 (14)0.4276 (7)0.1736 (6)0.065 (2)0.737 (11)
H3A0.92250.31670.19670.097*0.737 (11)
H3B0.96840.45200.10580.097*0.737 (11)
H3C0.74680.45290.16300.097*0.737 (11)
C2'0.817 (2)0.5062 (9)0.2564 (6)0.045 (4)0.263 (11)
H2'0.68950.48030.24570.054*0.263 (11)
C3'0.980 (2)0.430 (2)0.1702 (14)0.049 (4)0.263 (11)
H3'10.95420.47860.09850.073*0.263 (11)
H3'20.98050.31900.17440.073*0.263 (11)
H3'31.10850.44560.18310.073*0.263 (11)
C40.8019 (4)0.7699 (3)0.1609 (2)0.0361 (5)
H40.88340.72220.10150.043*
C50.7030 (3)0.9339 (3)0.14088 (18)0.0284 (5)
C60.7401 (4)1.0054 (3)0.03400 (19)0.0320 (5)
H60.82490.94590.01900.038*
C70.6553 (4)1.1611 (3)0.00411 (19)0.0326 (5)
C80.5282 (4)1.2502 (3)0.0832 (2)0.0372 (5)
H80.47121.35550.06430.045*
C90.4865 (4)1.1843 (3)0.1885 (2)0.0375 (6)
H90.40051.24580.24000.045*
C100.5710 (3)1.0242 (3)0.22144 (18)0.0279 (4)
C110.6961 (4)1.2240 (3)0.1101 (2)0.0386 (6)
H110.77791.15600.15900.046*
H1W10.336 (5)0.601 (3)0.418 (2)0.058 (10)*
H1W20.369 (6)0.640 (4)0.3058 (16)0.066 (11)*
H2W10.473 (6)0.875 (3)0.580 (3)0.065 (11)*
H2W20.3354 (18)0.810 (4)0.548 (3)0.069 (12)*
H3W10.933 (4)0.787 (3)0.482 (2)0.046 (9)*
H3W20.930 (4)0.886 (4)0.399 (2)0.061 (11)*
H4W11.048 (5)0.1082 (18)0.326 (3)0.052 (9)*
H4W21.207 (3)0.009 (4)0.325 (3)0.071 (12)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni10.03501 (19)0.02257 (17)0.02212 (17)0.00216 (12)0.00137 (12)0.00139 (11)
O10.0449 (10)0.0265 (8)0.0270 (8)0.0007 (7)0.0002 (7)0.0024 (6)
O20.0660 (13)0.0256 (8)0.0379 (10)0.0062 (8)0.0041 (9)0.0025 (7)
O30.0409 (9)0.0247 (7)0.0234 (8)0.0008 (7)0.0009 (7)0.0012 (6)
O40.0741 (14)0.0393 (10)0.0324 (10)0.0108 (9)0.0107 (9)0.0109 (8)
O1W0.0515 (11)0.0420 (10)0.0285 (9)0.0172 (8)0.0077 (8)0.0020 (8)
O2W0.0443 (11)0.0399 (10)0.0305 (9)0.0111 (8)0.0032 (8)0.0105 (7)
O3W0.0438 (11)0.0461 (11)0.0454 (11)0.0136 (9)0.0159 (9)0.0105 (9)
O4W0.0417 (11)0.0376 (10)0.0598 (13)0.0030 (9)0.0008 (10)0.0093 (9)
N10.0460 (12)0.0244 (9)0.0283 (10)0.0029 (8)0.0019 (9)0.0024 (7)
C10.0442 (14)0.0258 (11)0.0322 (13)0.0020 (10)0.0042 (10)0.0034 (9)
C20.0248 (19)0.0265 (16)0.0328 (18)0.0014 (13)0.0023 (14)0.0028 (12)
C30.112 (6)0.033 (2)0.042 (3)0.013 (3)0.020 (4)0.0076 (19)
C2'0.049 (7)0.036 (5)0.038 (5)0.004 (5)0.011 (5)0.004 (4)
C3'0.057 (7)0.037 (6)0.036 (6)0.007 (6)0.007 (6)0.010 (4)
C40.0437 (14)0.0333 (12)0.0236 (11)0.0018 (10)0.0034 (10)0.0006 (9)
C50.0312 (11)0.0268 (10)0.0257 (11)0.0058 (9)0.0038 (9)0.0032 (8)
C60.0356 (12)0.0342 (12)0.0249 (11)0.0065 (10)0.0016 (9)0.0012 (9)
C70.0414 (13)0.0326 (12)0.0241 (11)0.0100 (10)0.0075 (10)0.0047 (9)
C80.0507 (15)0.0253 (11)0.0326 (13)0.0046 (10)0.0068 (11)0.0051 (9)
C90.0520 (15)0.0263 (11)0.0288 (12)0.0002 (10)0.0018 (11)0.0005 (9)
C100.0313 (11)0.0268 (10)0.0248 (11)0.0050 (9)0.0052 (9)0.0008 (8)
C110.0500 (15)0.0383 (13)0.0281 (12)0.0132 (11)0.0068 (10)0.0045 (10)
Geometric parameters (Å, º) top
Ni1—N11.999 (2)C2—C31.528 (6)
Ni1—O32.0149 (16)C2—H20.9800
Ni1—O2W2.0450 (19)C3—H3A0.9600
Ni1—O12.0455 (16)C3—H3B0.9600
Ni1—O3W2.053 (2)C3—H3C0.9600
Ni1—O1W2.1063 (19)C2'—C3'1.512 (9)
C1—O11.250 (3)C2'—H2'0.9800
C1—O21.245 (3)C3'—H3'10.9600
O3—C101.302 (3)C3'—H3'20.9600
O4—C111.212 (3)C3'—H3'30.9600
O1W—H1W10.845 (10)C4—C51.449 (3)
O1W—H1W20.842 (10)C4—H40.9300
O2W—H2W10.845 (10)C5—C61.397 (3)
O2W—H2W20.845 (10)C5—C101.421 (3)
O3W—H3W10.840 (10)C6—C71.382 (3)
O3W—H3W20.847 (10)C6—H60.9300
O4W—H4W10.841 (10)C7—C81.390 (4)
O4W—H4W20.844 (10)C7—C111.454 (3)
N1—C41.272 (3)C8—C91.368 (3)
N1—C21.485 (4)C8—H80.9300
N1—C2'1.516 (8)C9—C101.422 (3)
C1—C21.538 (4)C9—H90.9300
C1—C2'1.558 (8)C11—H110.9300
N1—Ni1—O391.55 (7)C1—C2—H2110.1
N1—Ni1—O2W175.02 (7)C2—C3—H3A109.5
O3—Ni1—O2W93.10 (7)C2—C3—H3B109.5
N1—Ni1—O181.70 (7)H3A—C3—H3B109.5
O3—Ni1—O1173.25 (6)C2—C3—H3C109.5
O2W—Ni1—O193.65 (7)H3A—C3—H3C109.5
N1—Ni1—O3W95.22 (9)H3B—C3—H3C109.5
O3—Ni1—O3W89.33 (8)C3'—C2'—N1114.9 (11)
O2W—Ni1—O3W86.63 (8)C3'—C2'—C1113.1 (11)
O1—Ni1—O3W91.04 (8)N1—C2'—C1105.0 (6)
N1—Ni1—O1W93.73 (9)C3'—C2'—H2'107.8
O3—Ni1—O1W91.45 (7)N1—C2'—H2'107.8
O2W—Ni1—O1W84.37 (8)C1—C2'—H2'107.8
O1—Ni1—O1W89.24 (7)C2'—C3'—H3'1109.5
O3W—Ni1—O1W170.99 (8)C2'—C3'—H3'2109.5
C1—O1—Ni1114.98 (14)H3'1—C3'—H3'2109.5
C10—O3—Ni1126.69 (14)C2'—C3'—H3'3109.5
Ni1—O1W—H1W1114 (2)H3'1—C3'—H3'3109.5
Ni1—O1W—H1W2119 (3)H3'2—C3'—H3'3109.5
H1W1—O1W—H1W2110 (3)N1—C4—C5125.9 (2)
Ni1—O2W—H2W1124 (3)N1—C4—H4117.0
Ni1—O2W—H2W2116 (3)C5—C4—H4117.0
H2W1—O2W—H2W2104 (4)C6—C5—C10118.8 (2)
Ni1—O3W—H3W1123 (2)C6—C5—C4116.7 (2)
Ni1—O3W—H3W2122 (2)C10—C5—C4124.6 (2)
H3W1—O3W—H3W296 (3)C7—C6—C5122.4 (2)
H4W1—O4W—H4W2103 (3)C7—C6—H6118.8
C4—N1—C2118.8 (2)C5—C6—H6118.8
C4—N1—C2'121.0 (3)C6—C7—C8118.9 (2)
C2—N1—C2'29.3 (5)C6—C7—C11118.7 (2)
C4—N1—Ni1126.63 (17)C8—C7—C11122.3 (2)
C2—N1—Ni1114.18 (17)C9—C8—C7120.5 (2)
C2'—N1—Ni1107.9 (4)C9—C8—H8119.8
O2—C1—O1123.8 (2)C7—C8—H8119.8
O2—C1—C2116.6 (2)C8—C9—C10121.8 (2)
O1—C1—C2119.3 (2)C8—C9—H9119.1
O2—C1—C2'116.3 (3)C10—C9—H9119.1
O1—C1—C2'115.2 (4)O3—C10—C5124.49 (19)
C2—C1—C2'28.4 (5)O3—C10—C9117.9 (2)
N1—C2—C3109.6 (4)C5—C10—C9117.6 (2)
N1—C2—C1107.6 (2)O4—C11—C7124.9 (3)
C3—C2—C1109.3 (4)O4—C11—H11117.6
N1—C2—H2110.1C7—C11—H11117.6
C3—C2—H2110.1
N1—Ni1—O1—C15.22 (18)C4—N1—C2'—C3'37.6 (17)
O2W—Ni1—O1—C1172.96 (19)C2—N1—C2'—C3'57.0 (15)
O3W—Ni1—O1—C1100.35 (19)Ni1—N1—C2'—C3'164.6 (12)
O1W—Ni1—O1—C188.66 (19)C4—N1—C2'—C1162.6 (5)
N1—Ni1—O3—C104.48 (19)C2—N1—C2'—C168.0 (8)
O2W—Ni1—O3—C10177.31 (19)Ni1—N1—C2'—C139.7 (9)
O3W—Ni1—O3—C1090.72 (19)O2—C1—C2'—C3'38.8 (16)
O1W—Ni1—O3—C1098.26 (19)O1—C1—C2'—C3'164.5 (11)
O3—Ni1—N1—C42.1 (2)C2—C1—C2'—C3'58.9 (15)
O1—Ni1—N1—C4177.6 (3)O2—C1—C2'—N1164.9 (5)
O3W—Ni1—N1—C487.3 (2)O1—C1—C2'—N138.4 (10)
O1W—Ni1—N1—C493.7 (2)C2—C1—C2'—N167.1 (8)
O3—Ni1—N1—C2175.2 (2)C2—N1—C4—C5172.8 (3)
O1—Ni1—N1—C24.6 (2)C2'—N1—C4—C5153.3 (7)
O3W—Ni1—N1—C285.7 (2)Ni1—N1—C4—C50.0 (4)
O1W—Ni1—N1—C293.3 (2)N1—C4—C5—C6179.8 (3)
O3—Ni1—N1—C2'154.0 (6)N1—C4—C5—C101.1 (4)
O1—Ni1—N1—C2'26.2 (6)C10—C5—C6—C70.9 (4)
O3W—Ni1—N1—C2'116.5 (6)C4—C5—C6—C7179.9 (2)
O1W—Ni1—N1—C2'62.5 (6)C5—C6—C7—C80.1 (4)
Ni1—O1—C1—O2172.5 (2)C5—C6—C7—C11177.7 (2)
Ni1—O1—C1—C214.0 (3)C6—C7—C8—C90.6 (4)
Ni1—O1—C1—C2'17.7 (7)C11—C7—C8—C9176.9 (2)
C4—N1—C2—C356.1 (6)C7—C8—C9—C100.4 (4)
C2'—N1—C2—C346.6 (8)Ni1—O3—C10—C54.8 (3)
Ni1—N1—C2—C3130.3 (4)Ni1—O3—C10—C9176.50 (17)
C4—N1—C2—C1174.9 (3)C6—C5—C10—O3177.6 (2)
C2'—N1—C2—C172.2 (6)C4—C5—C10—O31.5 (4)
Ni1—N1—C2—C111.5 (4)C6—C5—C10—C91.1 (3)
O2—C1—C2—N1169.1 (3)C4—C5—C10—C9179.8 (2)
O1—C1—C2—N116.9 (4)C8—C9—C10—O3178.3 (2)
C2'—C1—C2—N172.4 (6)C8—C9—C10—C50.5 (4)
O2—C1—C2—C350.2 (5)C6—C7—C11—O4179.7 (3)
O1—C1—C2—C3135.9 (4)C8—C7—C11—O42.8 (4)
C2'—C1—C2—C346.5 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1i0.85 (1)1.95 (1)2.784 (2)170 (3)
O1w—H1w2···O4ii0.84 (1)1.97 (2)2.786 (3)162 (4)
O2w—H2w1···O3iii0.85 (1)1.93 (1)2.769 (2)173 (4)
O2w—H2w2···O2i0.85 (1)2.19 (2)2.937 (3)147 (3)
O3w—H3w1···O2iv0.84 (1)1.95 (1)2.753 (3)161 (3)
O3w—H3w2···O4wv0.85 (1)1.85 (1)2.689 (3)171 (4)
O4w—H4w1···O20.84 (1)1.92 (1)2.741 (3)166 (3)
O4w—H4w2···O3vi0.84 (1)2.11 (2)2.929 (3)165 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y1, z.

Experimental details

Crystal data
Chemical formula[Ni(C11H9NO4)(H2O)3].H2O
Mr349.97
Crystal system, space groupTriclinic, P1
Temperature (K)295
a, b, c (Å)6.861 (2), 8.664 (2), 12.363 (3)
α, β, γ (°)82.967 (3), 80.639 (3), 77.706 (3)
V3)705.5 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.41
Crystal size (mm)0.20 × 0.10 × 0.05
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
SADABS (Sheldrick, 1996)
Tmin, Tmax0.870, 0.933
No. of measured, independent and
observed [I > 2σ(I)] reflections
4072, 2966, 2635
Rint0.020
(sin θ/λ)max1)0.641
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.036, 0.099, 1.04
No. of reflections2966
No. of parameters241
No. of restraints35
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.43

Computer programs: SMART (Bruker, 2003), SAINT (Bruker, 2003), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), X-SEED (Barbour, 2001), publCIF (Westrip, 2006).

Selected bond lengths (Å) top
Ni1—N11.999 (2)Ni1—O12.0455 (16)
Ni1—O32.0149 (16)Ni1—O3W2.053 (2)
Ni1—O2W2.0450 (19)Ni1—O1W2.1063 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1w—H1w1···O1i0.85 (1)1.95 (1)2.784 (2)170 (3)
O1w—H1w2···O4ii0.84 (1)1.97 (2)2.786 (3)162 (4)
O2w—H2w1···O3iii0.85 (1)1.93 (1)2.769 (2)173 (4)
O2w—H2w2···O2i0.85 (1)2.19 (2)2.937 (3)147 (3)
O3w—H3w1···O2iv0.84 (1)1.95 (1)2.753 (3)161 (3)
O3w—H3w2···O4wv0.85 (1)1.85 (1)2.689 (3)171 (4)
O4w—H4w1···O20.84 (1)1.92 (1)2.741 (3)166 (3)
O4w—H4w2···O3vi0.84 (1)2.11 (2)2.929 (3)165 (4)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x+1, y+2, z; (iii) x+1, y+2, z+1; (iv) x+2, y+1, z+1; (v) x, y+1, z; (vi) x+1, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds