Download citation
Download citation
link to html
In the title compound, {[Mn(C7H3NO4)(C10H8N2)(H2O)]·H2O}n, the Mn(II) atom has a distorted fac-MnN3O3 octa­hedral coordination geometry, defined by one N,N′-chelating bipyridine mol­ecule, one N-bonded pyridine-3,4-dicarboxyl­ate (pdb) anion, two monodentate O-bonded pdb anions and one water mol­ecule. Adjacent MnII ions are bridged by pairs of pdb ligands to form distinctive squares, which are further linked by other pdb ligands to result in a layered coordination polymer exhibiting a wave-like structure. Hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules help to consolidate the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807023586/hb2406sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807023586/hb2406Isup2.hkl
Contains datablock I

CCDC reference: 1167715

Key indicators

  • Single-crystal X-ray study
  • T = 292 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.034
  • wR factor = 0.092
  • Data-to-parameter ratio = 12.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT415_ALERT_2_C Short Inter D-H..H-X H1W .. H16A .. 2.13 Ang.
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Mn1 (2) 2.04
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 1 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 1 ALERT type 5 Informative message, check

Comment top

Due to both their structural and topological novelty as well as for their potential applications as functional materials, the rational design of inorganic coordination networks has attracted much recent attention (Biradha et al., 2000, Moulton et al., 2001, Eddaoudi et al., 2001, Cao et al., 2003, Kortz et al., 2003). To date, a variety of extended frameworks have been obtained through the use of polydentate ligands, such as polycarboxylic acids (Pan et al., 2003, Noro et al., 2000). Herein, we report the crystal structure of the title compound, (I), which shows a layered polymeric structure.

The MnII ion in (I) has a distorted octahedral coordination geometry, defined by three N atoms and three carboxyl O atoms from chelating bipy, pyridine-3,4-dicarboxylate (pdb) ligands and one water molecule (Fig. 1, Table 1) The polymeric layers in (I) feature squares constructed from two MnII ions bridged by two pdb ligands. Such squares are further connected by pdb ligands, forming a sheet (Fig. 2). A network of O—H···O hydrogen bonds arising from the water molecules (Table 2) helps to consolidate the structure.

Related literature top

For related literature, see: Biradha et al. (2000); Cao et al. (2003); Eddaoudi et al. (2001); Kortz et al. (2003); Moulton & Zaworotko (2001); Noro et al. (2000); Pan et al. (2003).

Experimental top

Compound (I) was prepared from a mixture of Mn(CH3CO2)2.4H2O (0.120 g, 0.5 mmol), pyridine-3,4-dicarboxylic acid (0.083 g, 0.5 mmol), 2,2-bipyridine (0.078 g, 0.5 mmol) and H2O (18 ml) in a 30 ml Teflon-lined autoclave under autogenous pressure at 423 K for 5 d. After cooling to room temperature, yellow crystals suitable for X-ray structure analysis were obtained. Analysis, calculated for C17H15MnN3O6: C 49.5, H 3.7, N 10.2%; found: C 49.4, H 3.6, N 10.0%.

Refinement top

The C-bonded H atoms and H4W were generated geometrically (C—H = 0.93 Å, O—H =0.82 Å) and refined as riding with Uiso(H)= 1.2Ueq(C) or Uiso(H4W) = 0.05 Å2. The other H atoms of the water molecules were located in difference maps and their positions and Uiso values were freely refined.

Structure description top

Due to both their structural and topological novelty as well as for their potential applications as functional materials, the rational design of inorganic coordination networks has attracted much recent attention (Biradha et al., 2000, Moulton et al., 2001, Eddaoudi et al., 2001, Cao et al., 2003, Kortz et al., 2003). To date, a variety of extended frameworks have been obtained through the use of polydentate ligands, such as polycarboxylic acids (Pan et al., 2003, Noro et al., 2000). Herein, we report the crystal structure of the title compound, (I), which shows a layered polymeric structure.

The MnII ion in (I) has a distorted octahedral coordination geometry, defined by three N atoms and three carboxyl O atoms from chelating bipy, pyridine-3,4-dicarboxylate (pdb) ligands and one water molecule (Fig. 1, Table 1) The polymeric layers in (I) feature squares constructed from two MnII ions bridged by two pdb ligands. Such squares are further connected by pdb ligands, forming a sheet (Fig. 2). A network of O—H···O hydrogen bonds arising from the water molecules (Table 2) helps to consolidate the structure.

For related literature, see: Biradha et al. (2000); Cao et al. (2003); Eddaoudi et al. (2001); Kortz et al. (2003); Moulton & Zaworotko (2001); Noro et al. (2000); Pan et al. (2003).

Computing details top

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1999); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) expanded to show the coordination of the Mn atom drawn with 30% probability displacement ellipsoids (arbitrary spheres for the H atoms). Atoms O3I and N4I are at the symmetry positions (1 - x, -y, -z) and (1/2 - x, 3/2 - y, z) respectively.
[Figure 2] Fig. 2. Part of a polymeric layer in (I). Mn atoms are represented by green hatched spheres, N atoms by blue dotted spheres, O atoms by red grid spheres, and C atoms by grey spheres. H atoms have been omitted for clarity.
Poly[[aqua(2,2-bipyridyl)(µ3pyridine-3,4-dicarboxylato)manganese(II)] monohydrate] top
Crystal data top
[Mn(C7H3NO4)(C10H8N2)(H2O)]·H2OF(000) = 1688
Mr = 412.26Dx = 1.669 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abθ = 2.4–26.1°
a = 15.614 (2) ŵ = 0.85 mm1
b = 12.4561 (18) ÅT = 292 K
c = 16.870 (3) ÅBlock, yellow
V = 3281.1 (8) Å30.10 × 0.10 × 0.10 mm
Z = 8
Data collection top
Bruker SMART CCD
diffractometer
2562 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.073
Graphite monochromatorθmax = 26.1°, θmin = 2.4°
ω scansh = 1919
26510 measured reflectionsk = 1515
3249 independent reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0541P)2]
where P = (Fo2 + 2Fc2)/3
3249 reflections(Δ/σ)max < 0.001
256 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.55 e Å3
Crystal data top
[Mn(C7H3NO4)(C10H8N2)(H2O)]·H2OV = 3281.1 (8) Å3
Mr = 412.26Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 15.614 (2) ŵ = 0.85 mm1
b = 12.4561 (18) ÅT = 292 K
c = 16.870 (3) Å0.10 × 0.10 × 0.10 mm
Data collection top
Bruker SMART CCD
diffractometer
2562 reflections with I > 2σ(I)
26510 measured reflectionsRint = 0.073
3249 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.55 e Å3
3249 reflectionsΔρmin = 0.55 e Å3
256 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mn10.43851 (2)0.18948 (3)0.06880 (2)0.02453 (12)
C130.31857 (13)0.12791 (17)0.07018 (13)0.0244 (5)
O20.30663 (11)0.00140 (13)0.12384 (10)0.0383 (4)
O10.38982 (9)0.04326 (11)0.02127 (9)0.0296 (4)
N20.51764 (11)0.25010 (14)0.03251 (11)0.0264 (4)
O50.26473 (12)0.13867 (14)0.26106 (12)0.0387 (4)
C160.22594 (13)0.15776 (17)0.04054 (13)0.0257 (5)
H16A0.20940.13830.09150.031*
N40.18302 (11)0.23754 (15)0.00607 (11)0.0295 (4)
N10.49150 (11)0.35320 (15)0.10606 (11)0.0269 (4)
C140.27565 (14)0.21355 (18)0.10597 (15)0.0321 (5)
H14A0.29130.23580.15660.038*
C150.20980 (15)0.26556 (19)0.06634 (14)0.0331 (6)
H4A0.18290.32290.09140.040*
C10.52431 (15)0.20098 (19)0.10279 (15)0.0339 (6)
H1A0.49240.13910.11170.041*
C20.57649 (16)0.2385 (2)0.16233 (15)0.0422 (6)
H2A0.57970.20240.21050.051*
C120.29349 (13)0.10105 (16)0.00670 (12)0.0227 (5)
C110.33328 (13)0.01213 (16)0.05444 (13)0.0242 (5)
C100.47938 (15)0.40019 (19)0.17620 (14)0.0332 (5)
H10A0.43570.37400.20830.040*
C90.52727 (16)0.48483 (19)0.20416 (15)0.0368 (6)
H9A0.51600.51570.25320.044*
C50.56416 (13)0.33975 (18)0.01934 (13)0.0255 (5)
C40.61805 (15)0.38030 (19)0.07749 (14)0.0347 (6)
H4B0.65030.44160.06770.042*
C30.62353 (16)0.3293 (2)0.14975 (16)0.0428 (6)
H3A0.65880.35640.18940.051*
C60.55396 (13)0.39158 (18)0.05899 (13)0.0261 (5)
C70.60589 (17)0.4750 (2)0.08444 (15)0.0442 (7)
H7A0.65020.49930.05220.053*
C80.59225 (18)0.5219 (2)0.15697 (16)0.0456 (7)
H8A0.62680.57820.17390.055*
C170.38450 (14)0.06848 (17)0.11963 (12)0.0263 (5)
O30.45903 (10)0.10620 (13)0.12223 (10)0.0372 (4)
O40.35811 (11)0.00841 (14)0.15903 (10)0.0412 (4)
O60.36338 (11)0.18742 (13)0.18066 (10)0.0335 (4)
H4W0.33440.13260.18250.050*
H1W0.2400 (18)0.100 (2)0.2944 (18)0.053 (9)*
H2W0.2883 (19)0.093 (3)0.2303 (18)0.064 (10)*
H3W0.322 (2)0.241 (3)0.195 (2)0.080 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mn10.02398 (19)0.01951 (19)0.0301 (2)0.00234 (13)0.00148 (14)0.00011 (13)
C130.0207 (10)0.0215 (11)0.0309 (12)0.0045 (8)0.0042 (9)0.0009 (9)
O20.0512 (10)0.0328 (9)0.0309 (10)0.0135 (8)0.0092 (8)0.0064 (7)
O10.0304 (8)0.0228 (8)0.0356 (9)0.0064 (7)0.0020 (7)0.0023 (7)
N20.0245 (9)0.0243 (10)0.0304 (11)0.0005 (8)0.0017 (8)0.0009 (8)
O50.0482 (11)0.0335 (10)0.0342 (10)0.0002 (9)0.0064 (9)0.0004 (9)
C160.0287 (11)0.0239 (11)0.0245 (11)0.0004 (9)0.0007 (9)0.0005 (9)
N40.0278 (10)0.0269 (10)0.0337 (11)0.0040 (8)0.0004 (9)0.0010 (8)
N10.0250 (10)0.0260 (10)0.0297 (11)0.0031 (8)0.0018 (8)0.0023 (8)
C140.0333 (13)0.0332 (13)0.0297 (13)0.0003 (10)0.0022 (10)0.0074 (10)
C150.0325 (13)0.0280 (13)0.0388 (14)0.0083 (10)0.0009 (11)0.0063 (10)
C10.0320 (12)0.0322 (14)0.0376 (14)0.0019 (10)0.0020 (11)0.0073 (11)
C20.0431 (15)0.0502 (17)0.0334 (15)0.0013 (12)0.0033 (12)0.0115 (12)
C120.0224 (10)0.0181 (11)0.0275 (12)0.0005 (8)0.0047 (9)0.0023 (9)
C110.0233 (11)0.0176 (11)0.0317 (13)0.0013 (9)0.0015 (9)0.0017 (9)
C100.0330 (13)0.0352 (14)0.0314 (13)0.0052 (10)0.0044 (10)0.0013 (10)
C90.0444 (14)0.0333 (14)0.0328 (14)0.0035 (11)0.0013 (11)0.0069 (11)
C50.0223 (11)0.0241 (11)0.0301 (12)0.0007 (9)0.0012 (9)0.0026 (9)
C40.0347 (13)0.0306 (13)0.0387 (15)0.0080 (10)0.0065 (11)0.0003 (10)
C30.0401 (15)0.0492 (17)0.0391 (15)0.0034 (12)0.0112 (12)0.0023 (12)
C60.0250 (11)0.0220 (11)0.0311 (13)0.0016 (9)0.0015 (9)0.0033 (9)
C70.0466 (16)0.0447 (16)0.0412 (16)0.0250 (13)0.0087 (12)0.0040 (12)
C80.0552 (16)0.0407 (16)0.0408 (16)0.0225 (13)0.0001 (13)0.0075 (12)
C170.0298 (12)0.0271 (12)0.0219 (12)0.0013 (10)0.0031 (9)0.0041 (9)
O30.0258 (9)0.0431 (10)0.0428 (11)0.0092 (7)0.0034 (7)0.0098 (8)
O40.0454 (10)0.0365 (10)0.0416 (11)0.0110 (8)0.0012 (8)0.0153 (8)
O60.0355 (9)0.0281 (9)0.0370 (10)0.0046 (7)0.0038 (8)0.0006 (7)
Geometric parameters (Å, º) top
Mn1—O3i2.1091 (16)C15—H4A0.9300
Mn1—O12.1303 (15)C1—C21.375 (4)
Mn1—O62.2221 (17)C1—H1A0.9300
Mn1—N22.2401 (19)C2—C31.365 (4)
Mn1—N12.2888 (18)C2—H2A0.9300
Mn1—N4ii2.3552 (18)C12—C111.504 (3)
C13—C121.395 (3)C10—C91.376 (3)
C13—C141.397 (3)C10—H10A0.9300
C13—C171.518 (3)C9—C81.370 (4)
O2—C111.254 (3)C9—H9A0.9300
O1—C111.252 (2)C5—C41.388 (3)
N2—C11.338 (3)C5—C61.479 (3)
N2—C51.351 (3)C4—C31.377 (4)
O5—H1W0.83 (3)C4—H4B0.9300
O5—H2W0.86 (3)C3—H3A0.9300
C16—N41.332 (3)C6—C71.386 (3)
C16—C121.392 (3)C7—C81.372 (4)
C16—H16A0.9300C7—H7A0.9300
N4—C151.337 (3)C8—H8A0.9300
N4—Mn1iii2.3552 (18)C17—O41.236 (3)
N1—C101.334 (3)C17—O31.256 (2)
N1—C61.345 (3)O3—Mn1i2.1091 (16)
C14—C151.387 (3)O6—H4W0.8200
C14—H14A0.9300O6—H3W0.96 (3)
O3i—Mn1—O190.63 (6)C3—C2—C1119.1 (2)
O3i—Mn1—O691.82 (6)C3—C2—H2A120.4
O1—Mn1—O696.97 (6)C1—C2—H2A120.4
O3i—Mn1—N294.21 (6)C16—C12—C13118.18 (19)
O1—Mn1—N2101.41 (6)C16—C12—C11117.85 (19)
O6—Mn1—N2160.57 (6)C13—C12—C11123.94 (19)
O3i—Mn1—N192.67 (7)O1—C11—O2125.2 (2)
O1—Mn1—N1173.81 (6)O1—C11—C12117.24 (19)
O6—Mn1—N188.16 (6)O2—C11—C12117.50 (18)
N2—Mn1—N173.13 (7)N1—C10—C9124.3 (2)
O3i—Mn1—N4ii173.24 (7)N1—C10—H10A117.9
O1—Mn1—N4ii82.73 (6)C9—C10—H10A117.9
O6—Mn1—N4ii87.75 (6)C8—C9—C10117.5 (2)
N2—Mn1—N4ii88.36 (6)C8—C9—H9A121.3
N1—Mn1—N4ii94.06 (6)C10—C9—H9A121.3
C12—C13—C14116.8 (2)N2—C5—C4120.7 (2)
C12—C13—C17125.75 (19)N2—C5—C6116.74 (19)
C14—C13—C17117.39 (19)C4—C5—C6122.5 (2)
C11—O1—Mn1123.67 (14)C3—C4—C5119.7 (2)
C1—N2—C5118.81 (19)C3—C4—H4B120.1
C1—N2—Mn1124.39 (15)C5—C4—H4B120.1
C5—N2—Mn1116.73 (15)C2—C3—C4119.1 (2)
H1W—O5—H2W103 (3)C2—C3—H3A120.5
N4—C16—C12125.5 (2)C4—C3—H3A120.5
N4—C16—H16A117.2N1—C6—C7120.5 (2)
C12—C16—H16A117.2N1—C6—C5116.75 (19)
C16—N4—C15115.85 (19)C7—C6—C5122.7 (2)
C16—N4—Mn1iii119.81 (15)C8—C7—C6120.3 (2)
C15—N4—Mn1iii124.16 (15)C8—C7—H7A119.9
C10—N1—C6118.1 (2)C6—C7—H7A119.9
C10—N1—Mn1125.69 (15)C9—C8—C7119.3 (2)
C6—N1—Mn1114.62 (14)C9—C8—H8A120.3
C15—C14—C13120.3 (2)C7—C8—H8A120.3
C15—C14—H14A119.9O4—C17—O3125.4 (2)
C13—C14—H14A119.9O4—C17—C13116.58 (19)
N4—C15—C14123.4 (2)O3—C17—C13117.72 (19)
N4—C15—H4A118.3C17—O3—Mn1i150.70 (16)
C14—C15—H4A118.3Mn1—O6—H4W109.5
N2—C1—C2122.5 (2)Mn1—O6—H3W124 (2)
N2—C1—H1A118.7H4W—O6—H3W101.7
C2—C1—H1A118.7
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z; (iii) x+1/2, y1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O2iv0.84 (3)2.01 (3)2.838 (3)174 (3)
O5—H2W···O40.85 (3)1.93 (3)2.779 (3)170 (3)
O6—H3W···O5v0.96 (3)1.90 (4)2.834 (2)165 (3)
O6—H4W···O20.821.962.659 (2)143
Symmetry codes: (iv) x+1/2, y, z+1/2; (v) x, y+1/2, z1/2.

Experimental details

Crystal data
Chemical formula[Mn(C7H3NO4)(C10H8N2)(H2O)]·H2O
Mr412.26
Crystal system, space groupOrthorhombic, Pbca
Temperature (K)292
a, b, c (Å)15.614 (2), 12.4561 (18), 16.870 (3)
V3)3281.1 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.85
Crystal size (mm)0.10 × 0.10 × 0.10
Data collection
DiffractometerBruker SMART CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
26510, 3249, 2562
Rint0.073
(sin θ/λ)max1)0.618
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.034, 0.092, 1.01
No. of reflections3249
No. of parameters256
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.55, 0.55

Computer programs: SMART (Bruker, 1998), SAINT (Bruker, 1999), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL.

Selected bond lengths (Å) top
Mn1—O3i2.1091 (16)Mn1—N22.2401 (19)
Mn1—O12.1303 (15)Mn1—N12.2888 (18)
Mn1—O62.2221 (17)Mn1—N4ii2.3552 (18)
Symmetry codes: (i) x+1, y, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O5—H1W···O2iii0.84 (3)2.01 (3)2.838 (3)174 (3)
O5—H2W···O40.85 (3)1.93 (3)2.779 (3)170 (3)
O6—H3W···O5iv0.96 (3)1.90 (4)2.834 (2)165 (3)
O6—H4W···O20.821.962.659 (2)143
Symmetry codes: (iii) x+1/2, y, z+1/2; (iv) x, y+1/2, z1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds