Download citation
Download citation
link to html
In the title compound, [Cu(C3H4O4)(C12H8N2)(H2O)]·1.5H2O, there are two complex mol­ecules and three uncoordinated water mol­ecules in the asymmetric unit. In both complex mol­ecules, the Cu atom is five-coordinated by one bidentate 1,10-phenanthroline mol­ecule, one bidentate malonate dianion and one water mol­ecule, resulting in a distorted square-based pyramidal CuN2O3 chromophore. The structure is stabilized by O—H...O hydrogen bonds involving both the coordinated and uncoordinated water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S160053680702332X/hb2396sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S160053680702332X/hb2396Isup2.hkl
Contains datablock I

CCDC reference: 278951

Key indicators

  • Single-crystal X-ray study
  • T = 173 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.045
  • wR factor = 0.124
  • Data-to-parameter ratio = 20.2

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT041_ALERT_1_C Calc. and Rep. SumFormula Strings Differ .... ? PLAT042_ALERT_1_C Calc. and Rep. MoietyFormula Strings Differ .... ? PLAT045_ALERT_1_C Calculated and Reported Z Differ by ............ 0.50 Ratio PLAT153_ALERT_1_C The su's on the Cell Axes are Equal (x 100000) 20 Ang. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
Alert level G PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu1 (2) 2.24 PLAT794_ALERT_5_G Check Predicted Bond Valency for Cu2 (2) 2.22
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 5 ALERT level C = Check and explain 2 ALERT level G = General alerts; check 4 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 2 ALERT type 5 Informative message, check
checkCIF publication errors
Alert level A PUBL024_ALERT_1_A The number of authors is greater than 5. Please specify the role of each of the co-authors for your paper.
Author Response: DIALLO Madina and DIENG Moussa do the synthesis of the compound, obtain the monocrystal and do the analysis. BARRY Aliou Hamady and CHAHRAZED Beghidja resolve the structure of the crystal. GAYE Mohamed and SALL Abdou Salam write the manuscripts.

1 ALERT level A = Data missing that is essential or data in wrong format 0 ALERT level G = General alerts. Data that may be required is missing

Comment top

The title compound, (I), consists of a mononuclear Cu(II) complex with two neutral molecules in the asymmetric unit (Fig. 1). The Cu(II) ion displays a five coordinated-geometry where the Cu atom is coordinated by two nitrogen atoms of one 1,10-phenanthroline ligand, two oxygen atoms of one non-bridging dicarboxylate group and one oxygen atom of a water molecule (Table 1). Furthermore the largest angles around the Cu(II) centers (β:N1—Cu2—O7=168.67 (8)° and β: N4—Cu1—O2=172.50 (8)°) are slightly larger than the second-largest ones (α: N2—Cu2—O3=164.80 (8)° and α: N3—Cu1—O1=164.14 (9)°). Since the distortion value of the coordination polyhedron, τ=(β-α)/60 is evaluated by the two largest angles in the five coordinated geometry (Addison et al. 1984), the values of τ=0.14 for Cu1 and τ=0.06 for Cu2 which can be compared with the ideal values of 1 for a trigonal-bipyramidal and 0 for a square-pyramidal seem to indicate a distorted square pyramidal geometry around the two Cu centers. Atoms [O1, O2, N4 and N3] and [O3, O7, N1 and N2] consist of a square planar geometry with some deviation from perfect square plane. The apical positions are occupied by O6 and O10 respectively. The malonate ligand afforded two deprotonated carboxylate groups leading to a dinegative charge on the ligand. The structure of (I) is stablisied by O—H···O hydrogen bonds (Table 2).

This structure is comparable to that of [Cu(L-glu)(phen)(H2O)] (Anitolini et al. 1985) in which the Cu ions also have distorted square-pyramidal coordination geometry comprised of a bidentate phenanthroline ligand and an O,N-bidentate glutamate dianion and an apical coordination water O atom. The Cu—Owater lengths are 2.303 (2) and 2.268 (2) Å in the two molecules, slighly shorter than the value of 2.332 (4) Å observed for Cu—Owater Å in the complex [Cu(Hdapsox)(H2O)](ClO4) where H2dapsox is 2',2'''-(2,6-pyridindiyldiethylidene) dioxamohydrazide (Ivanovic-Burmazovic et al. 1998) but similar to that observed in the complex [Cu2(mal)2(IX)(H2O)6]n (Chawla et al. 2004) where IX is 1,4-bis(imidazole-1-yl-methylene)benzene) (2.277 Å).

Related literature top

For related structures: see Anitolini et al. (1985); Ivanovic-Burmazovic et al. (1998); Chawla et al., (2004). For related literature, see: Addison et al. (1984); Farrugia (1997).

Experimental top

Into an aqueous solution (5 ml) of Cu(NO3)2 3H2O (0.3011 g, 1.25 mmol) was poured 1.5 ml of a molar solution of Na2CO3. The mixture was stirred for 5 minutes and centrifuged. The solid which was isolated was added into a methanolic solution (10 ml) of 1,10-phenanthroline monohydrate (0.2478 g, 1.25 mmol) and malonic acid (0.1301 g, 1.25 mmol). The resulting mixture was heated at 343 K for thirty minutes. The green solution was filtered and then allowed to evaporate slowly in an open atmosphere. After one week, green crystals of (I) were obtained. The crystals were separated, washed with cold methanol and dried (yield: 65%, based on Cu(NO3)2 3H2O); Anal. Calc. for C30H30Cu2N4O13: C, 46.10; H, 3.87; N, 7.17%. Found: C, 46.06; H, 3.85; N, 7.19%.

Refinement top

The O-bound H atoms were located in a difference map and refined as riding in their as found relative positions with a fixed Uiso of 0.062 Å2. The C-bound H atoms were placed geometrically (C—H = 0.950.99 Å) and refined as riding with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), consists of a mononuclear Cu(II) complex with two neutral molecules in the asymmetric unit (Fig. 1). The Cu(II) ion displays a five coordinated-geometry where the Cu atom is coordinated by two nitrogen atoms of one 1,10-phenanthroline ligand, two oxygen atoms of one non-bridging dicarboxylate group and one oxygen atom of a water molecule (Table 1). Furthermore the largest angles around the Cu(II) centers (β:N1—Cu2—O7=168.67 (8)° and β: N4—Cu1—O2=172.50 (8)°) are slightly larger than the second-largest ones (α: N2—Cu2—O3=164.80 (8)° and α: N3—Cu1—O1=164.14 (9)°). Since the distortion value of the coordination polyhedron, τ=(β-α)/60 is evaluated by the two largest angles in the five coordinated geometry (Addison et al. 1984), the values of τ=0.14 for Cu1 and τ=0.06 for Cu2 which can be compared with the ideal values of 1 for a trigonal-bipyramidal and 0 for a square-pyramidal seem to indicate a distorted square pyramidal geometry around the two Cu centers. Atoms [O1, O2, N4 and N3] and [O3, O7, N1 and N2] consist of a square planar geometry with some deviation from perfect square plane. The apical positions are occupied by O6 and O10 respectively. The malonate ligand afforded two deprotonated carboxylate groups leading to a dinegative charge on the ligand. The structure of (I) is stablisied by O—H···O hydrogen bonds (Table 2).

This structure is comparable to that of [Cu(L-glu)(phen)(H2O)] (Anitolini et al. 1985) in which the Cu ions also have distorted square-pyramidal coordination geometry comprised of a bidentate phenanthroline ligand and an O,N-bidentate glutamate dianion and an apical coordination water O atom. The Cu—Owater lengths are 2.303 (2) and 2.268 (2) Å in the two molecules, slighly shorter than the value of 2.332 (4) Å observed for Cu—Owater Å in the complex [Cu(Hdapsox)(H2O)](ClO4) where H2dapsox is 2',2'''-(2,6-pyridindiyldiethylidene) dioxamohydrazide (Ivanovic-Burmazovic et al. 1998) but similar to that observed in the complex [Cu2(mal)2(IX)(H2O)6]n (Chawla et al. 2004) where IX is 1,4-bis(imidazole-1-yl-methylene)benzene) (2.277 Å).

For related structures: see Anitolini et al. (1985); Ivanovic-Burmazovic et al. (1998); Chawla et al., (2004). For related literature, see: Addison et al. (1984); Farrugia (1997).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: DENZO (Nonius, 1998); data reduction: DENZO; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. View of the asymmetric unit of (I) with displacement ellipsoids plotted at the 50% probability level (arbitrary spheres for the H atoms).
Aquamalonato(1,10-phenanthroline)copper(II) sesquihydrate top
Crystal data top
[Cu(C3H4O4)(C12H8N2)(H2O)]·1.5H2OZ = 4
Mr = 390.84F(000) = 800
Triclinic, P1Dx = 1.696 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 11.5591 (2) ÅCell parameters from 12012 reflections
b = 11.7450 (2) Åθ = 1.0–30.0°
c = 12.5081 (2) ŵ = 1.47 mm1
α = 92.177 (1)°T = 173 K
β = 105.457 (1)°Prism, green
γ = 109.1821 (8)°0.10 × 0.10 × 0.05 mm
V = 1531.06 (5) Å3
Data collection top
Nonius Kappa CCD
diffractometer
6592 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.044
Graphite monochromatorθmax = 30.0°, θmin = 1.7°
ω and φ scansh = 1616
21966 measured reflectionsk = 1615
8939 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.046Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.124H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0621P)2 + 0.2273P]
where P = (Fo2 + 2Fc2)/3
8939 reflections(Δ/σ)max = 0.001
442 parametersΔρmax = 0.58 e Å3
0 restraintsΔρmin = 0.74 e Å3
Crystal data top
[Cu(C3H4O4)(C12H8N2)(H2O)]·1.5H2Oγ = 109.1821 (8)°
Mr = 390.84V = 1531.06 (5) Å3
Triclinic, P1Z = 4
a = 11.5591 (2) ÅMo Kα radiation
b = 11.7450 (2) ŵ = 1.47 mm1
c = 12.5081 (2) ÅT = 173 K
α = 92.177 (1)°0.10 × 0.10 × 0.05 mm
β = 105.457 (1)°
Data collection top
Nonius Kappa CCD
diffractometer
6592 reflections with I > 2σ(I)
21966 measured reflectionsRint = 0.044
8939 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0460 restraints
wR(F2) = 0.124H-atom parameters constrained
S = 1.07Δρmax = 0.58 e Å3
8939 reflectionsΔρmin = 0.74 e Å3
442 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.83061 (3)0.35565 (3)0.64500 (2)0.03168 (9)
Cu20.71496 (3)0.06782 (3)0.97437 (2)0.02830 (9)
O10.86279 (19)0.36223 (17)0.80482 (13)0.0398 (4)
O20.7194 (2)0.4471 (2)0.62900 (14)0.0491 (5)
O30.71195 (19)0.03964 (18)0.82197 (13)0.0404 (4)
O40.7521 (2)0.03321 (19)0.67820 (14)0.0474 (5)
O50.84700 (18)0.42129 (17)0.96762 (13)0.0387 (4)
O60.6375 (2)0.5720 (2)0.68385 (17)0.0643 (7)
O70.78901 (17)0.05295 (16)1.02331 (13)0.0362 (4)
O80.88860 (19)0.18133 (18)1.01234 (15)0.0441 (5)
O90.67258 (18)0.16762 (18)0.58759 (15)0.0442 (5)
O100.90425 (16)0.22466 (16)1.03827 (13)0.0348 (4)
O110.7673 (2)0.5795 (2)1.08301 (16)0.0530 (5)
O120.4202 (2)0.1567 (2)0.52647 (18)0.0660 (6)
O130.6054 (2)0.6153 (2)0.45161 (19)0.0718 (7)
N10.60609 (19)0.17145 (19)0.92857 (15)0.0289 (4)
N20.66727 (19)0.08302 (19)1.11745 (15)0.0300 (4)
N30.8475 (2)0.38116 (18)0.48948 (15)0.0307 (4)
N40.95203 (19)0.26891 (19)0.64407 (15)0.0302 (4)
C10.5672 (2)0.2071 (2)1.01363 (18)0.0281 (5)
C21.0673 (3)0.1905 (3)0.4113 (2)0.0458 (7)
H11.11700.14600.39410.055*
C30.4628 (3)0.3173 (3)1.0999 (2)0.0411 (6)
H20.41830.37291.09560.049*
C40.8381 (2)0.4326 (2)0.86825 (18)0.0294 (5)
C50.8384 (2)0.1090 (2)0.97004 (19)0.0303 (5)
C60.7621 (2)0.0238 (2)0.77940 (18)0.0310 (5)
C71.0521 (3)0.1971 (2)0.5215 (2)0.0374 (6)
C80.5733 (2)0.2109 (2)0.8310 (2)0.0361 (6)
H30.59920.18610.77080.043*
C90.4924 (3)0.2704 (3)1.1961 (2)0.0411 (6)
H40.46710.29261.25770.049*
C100.4974 (2)0.2848 (2)1.0038 (2)0.0347 (5)
C110.7124 (3)0.5173 (2)0.7043 (2)0.0367 (6)
C120.4645 (3)0.3256 (3)0.8995 (2)0.0433 (6)
H50.41700.37880.88880.052*
C131.0119 (3)0.2465 (3)0.3323 (2)0.0444 (7)
H61.02190.23930.25960.053*
C140.7998 (3)0.5366 (2)0.82237 (19)0.0387 (6)
H70.75800.56320.87310.046*
H80.87950.60530.82760.046*
C150.5996 (2)0.1581 (2)1.11580 (18)0.0277 (5)
C160.7976 (3)0.4437 (2)0.41560 (19)0.0360 (6)
H90.74850.48720.43550.043*
C170.5615 (2)0.1877 (2)1.20699 (19)0.0332 (5)
C180.9751 (2)0.2590 (2)0.54358 (18)0.0296 (5)
C190.6969 (3)0.0339 (3)1.2106 (2)0.0376 (6)
H100.74400.01921.21300.045*
C200.5945 (3)0.1345 (3)1.3033 (2)0.0404 (6)
H110.57060.15191.36740.048*
C211.1090 (3)0.1438 (3)0.6107 (2)0.0528 (8)
H121.16340.10130.60060.063*
C220.8396 (3)0.0902 (3)0.8508 (2)0.0403 (6)
H130.93020.04740.85420.048*
H140.81340.17210.80860.048*
C231.0055 (3)0.2159 (3)0.72536 (19)0.0384 (6)
H150.98860.22080.79530.046*
C240.9179 (2)0.3201 (2)0.45969 (18)0.0293 (5)
C250.9382 (2)0.3168 (2)0.35420 (19)0.0341 (5)
C260.8837 (3)0.3834 (3)0.27801 (19)0.0396 (6)
H160.89430.38410.20520.048*
C270.8157 (3)0.4470 (3)0.3094 (2)0.0407 (6)
H170.78040.49380.25890.049*
C280.6612 (3)0.0576 (3)1.3048 (2)0.0434 (7)
H180.68320.02041.36960.052*
C290.5015 (3)0.2878 (3)0.8138 (2)0.0430 (6)
H190.47880.31370.74260.052*
C301.0856 (3)0.1536 (3)0.7115 (2)0.0517 (8)
H201.12360.11810.77180.062*
H210.61330.59930.52720.062*
H220.53570.54150.42280.062*
H230.39960.22830.53230.062*
H240.36400.12620.45840.062*
H250.81370.65891.06260.062*
H260.78330.52241.05220.062*
H270.90930.29351.01320.062*
H280.96740.21141.01530.062*
H290.68250.10330.62300.062*
H300.58090.14320.57010.062*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.04086 (18)0.04053 (19)0.02340 (14)0.02651 (15)0.00992 (12)0.00430 (12)
Cu20.03470 (17)0.03519 (18)0.02483 (14)0.02200 (14)0.01212 (12)0.00651 (11)
O10.0572 (12)0.0509 (12)0.0259 (8)0.0380 (10)0.0119 (8)0.0046 (7)
O20.0648 (13)0.0685 (14)0.0297 (9)0.0510 (12)0.0057 (8)0.0006 (8)
O30.0582 (12)0.0535 (12)0.0259 (8)0.0391 (10)0.0142 (8)0.0092 (8)
O40.0661 (13)0.0620 (14)0.0255 (8)0.0366 (11)0.0141 (8)0.0055 (8)
O50.0548 (11)0.0444 (11)0.0273 (8)0.0286 (9)0.0146 (8)0.0074 (7)
O60.0869 (17)0.0887 (18)0.0454 (11)0.0738 (15)0.0117 (11)0.0028 (11)
O70.0535 (11)0.0428 (11)0.0302 (8)0.0336 (9)0.0194 (8)0.0108 (7)
O80.0596 (12)0.0521 (12)0.0445 (10)0.0422 (10)0.0240 (9)0.0190 (9)
O90.0456 (11)0.0453 (12)0.0398 (9)0.0166 (9)0.0079 (8)0.0119 (8)
O100.0359 (9)0.0394 (10)0.0352 (8)0.0191 (8)0.0124 (7)0.0093 (7)
O110.0723 (14)0.0597 (14)0.0483 (11)0.0393 (12)0.0308 (10)0.0139 (10)
O120.0638 (15)0.0736 (16)0.0508 (12)0.0323 (13)0.0077 (10)0.0003 (11)
O130.0708 (16)0.0746 (18)0.0614 (14)0.0227 (14)0.0070 (12)0.0268 (12)
N10.0306 (10)0.0342 (11)0.0268 (9)0.0164 (9)0.0098 (8)0.0056 (8)
N20.0332 (10)0.0361 (11)0.0286 (9)0.0183 (9)0.0138 (8)0.0070 (8)
N30.0363 (11)0.0318 (11)0.0268 (9)0.0160 (9)0.0085 (8)0.0055 (8)
N40.0347 (11)0.0371 (12)0.0251 (9)0.0193 (9)0.0104 (8)0.0059 (8)
C10.0257 (11)0.0308 (13)0.0301 (11)0.0123 (10)0.0094 (9)0.0030 (9)
C20.0519 (17)0.0580 (19)0.0436 (14)0.0297 (15)0.0270 (13)0.0059 (13)
C30.0392 (14)0.0419 (16)0.0520 (15)0.0245 (13)0.0170 (12)0.0007 (12)
C40.0324 (12)0.0333 (13)0.0254 (10)0.0152 (11)0.0084 (9)0.0033 (9)
C50.0332 (12)0.0314 (13)0.0314 (11)0.0172 (11)0.0104 (10)0.0045 (9)
C60.0352 (13)0.0354 (14)0.0255 (10)0.0151 (11)0.0106 (9)0.0030 (9)
C70.0396 (14)0.0447 (16)0.0376 (12)0.0224 (12)0.0174 (11)0.0051 (11)
C80.0380 (14)0.0429 (16)0.0326 (12)0.0196 (12)0.0112 (10)0.0095 (10)
C90.0387 (14)0.0477 (17)0.0447 (14)0.0216 (13)0.0184 (11)0.0056 (12)
C100.0323 (13)0.0347 (14)0.0424 (13)0.0175 (11)0.0125 (10)0.0041 (10)
C110.0455 (15)0.0423 (15)0.0332 (12)0.0267 (13)0.0145 (11)0.0088 (11)
C120.0421 (15)0.0402 (16)0.0566 (16)0.0257 (13)0.0145 (13)0.0131 (12)
C130.0512 (17)0.0552 (18)0.0359 (13)0.0210 (14)0.0248 (12)0.0052 (12)
C140.0581 (17)0.0343 (14)0.0293 (11)0.0244 (13)0.0114 (11)0.0045 (10)
C150.0268 (11)0.0265 (12)0.0307 (11)0.0099 (10)0.0097 (9)0.0015 (9)
C160.0438 (15)0.0357 (14)0.0313 (11)0.0193 (12)0.0085 (10)0.0069 (10)
C170.0308 (12)0.0386 (14)0.0313 (11)0.0117 (11)0.0127 (10)0.0009 (10)
C180.0310 (12)0.0304 (13)0.0287 (11)0.0117 (10)0.0102 (9)0.0030 (9)
C190.0392 (14)0.0465 (16)0.0356 (12)0.0238 (12)0.0130 (11)0.0120 (11)
C200.0413 (14)0.0526 (17)0.0312 (12)0.0175 (13)0.0167 (11)0.0019 (11)
C210.0603 (19)0.074 (2)0.0484 (15)0.0495 (18)0.0222 (14)0.0155 (15)
C220.0518 (16)0.0550 (17)0.0331 (12)0.0365 (14)0.0200 (11)0.0131 (11)
C230.0467 (15)0.0491 (16)0.0290 (11)0.0278 (13)0.0123 (11)0.0101 (11)
C240.0323 (12)0.0289 (12)0.0260 (10)0.0098 (10)0.0089 (9)0.0022 (9)
C250.0360 (13)0.0369 (14)0.0271 (11)0.0084 (11)0.0114 (10)0.0019 (10)
C260.0432 (15)0.0462 (16)0.0261 (11)0.0096 (13)0.0119 (10)0.0084 (10)
C270.0456 (15)0.0421 (16)0.0314 (12)0.0149 (13)0.0060 (11)0.0141 (11)
C280.0482 (16)0.0593 (19)0.0282 (12)0.0228 (14)0.0139 (11)0.0153 (11)
C290.0451 (15)0.0505 (17)0.0422 (14)0.0262 (14)0.0132 (12)0.0196 (12)
C300.064 (2)0.069 (2)0.0434 (15)0.0492 (18)0.0163 (14)0.0184 (14)
Geometric parameters (Å, º) top
Cu1—O21.9061 (18)C3—C101.440 (3)
Cu1—O11.9270 (16)C3—H20.9500
Cu1—N41.989 (2)C4—C141.513 (3)
Cu1—N32.0298 (19)C5—C221.519 (3)
Cu1—O92.293 (2)C6—C221.514 (3)
Cu2—O31.9114 (16)C7—C181.392 (3)
Cu2—O71.9246 (16)C7—C211.415 (4)
Cu2—N12.017 (2)C8—C291.401 (4)
Cu2—N22.0260 (18)C8—H30.9500
Cu2—O102.2643 (18)C9—C171.436 (4)
O1—C41.273 (3)C9—H40.9500
O5—C41.235 (3)C10—C121.408 (4)
O2—C111.264 (3)C11—C141.511 (3)
O6—C111.219 (3)C12—C291.364 (4)
O7—C51.272 (3)C12—H50.9500
O8—C51.238 (3)C13—C251.432 (4)
O3—C61.263 (3)C13—H60.9500
O4—C61.237 (3)C14—H70.9900
O9—H290.914C14—H80.9900
O9—H300.962C15—C171.398 (3)
O10—H270.868C16—C271.399 (3)
O10—H280.907C16—H90.9500
O11—H250.993C17—C201.398 (4)
O11—H260.856C18—C241.432 (3)
O12—H230.952C19—C281.394 (4)
O12—H240.897C19—H100.9500
O13—H210.957C20—C281.365 (4)
O13—H220.944C20—H110.9500
N1—C81.326 (3)C21—C301.367 (4)
N1—C11.362 (3)C21—H120.9500
N2—C191.333 (3)C22—H130.9900
N2—C151.355 (3)C22—H140.9900
N3—C161.331 (3)C23—C301.394 (4)
N3—C241.357 (3)C23—H150.9500
N4—C231.330 (3)C24—C251.402 (3)
N4—C181.361 (3)C25—C261.406 (4)
C1—C101.391 (3)C26—C271.364 (4)
C1—C151.431 (3)C26—H160.9500
C2—C131.346 (4)C27—H170.9500
C2—C71.438 (3)C28—H180.9500
C2—H10.9500C29—H190.9500
C3—C91.350 (4)C30—H200.9500
O2—Cu1—O194.22 (7)C17—C9—H4119.4
O2—Cu1—N4172.50 (8)C1—C10—C12117.3 (2)
O1—Cu1—N492.40 (7)C1—C10—C3118.3 (2)
O2—Cu1—N390.83 (8)C12—C10—C3124.3 (2)
O1—Cu1—N3164.15 (9)O6—C11—O2121.6 (2)
N4—Cu1—N381.87 (8)O6—C11—C14118.5 (2)
O2—Cu1—O996.55 (8)O2—C11—C14119.9 (2)
O1—Cu1—O999.84 (8)C29—C12—C10119.2 (2)
N4—Cu1—O985.78 (8)C29—C12—H5120.4
N3—Cu1—O994.49 (7)C10—C12—H5120.4
O3—Cu2—O794.75 (7)C2—C13—C25122.0 (2)
O3—Cu2—N189.31 (7)C2—C13—H6119.0
O7—Cu2—N1168.67 (8)C25—C13—H6119.0
O3—Cu2—N2164.81 (8)C11—C14—C4119.5 (2)
O7—Cu2—N292.39 (7)C11—C14—H7107.4
N1—Cu2—N281.31 (8)C4—C14—H7107.4
O3—Cu2—O1099.15 (7)C11—C14—H8107.4
O7—Cu2—O1093.79 (7)C4—C14—H8107.4
N1—Cu2—O1096.00 (7)H7—C14—H8107.0
N2—Cu2—O1093.73 (7)N2—C15—C17123.3 (2)
C4—O1—Cu1126.47 (15)N2—C15—C1116.27 (19)
C11—O2—Cu1127.43 (16)C17—C15—C1120.4 (2)
C6—O3—Cu2129.19 (15)N3—C16—C27121.8 (2)
C5—O7—Cu2127.87 (15)N3—C16—H9119.1
Cu1—O9—H29119.3C27—C16—H9119.1
Cu1—O9—H30131.1C15—C17—C20117.2 (2)
Cu2—O10—H27117.8C15—C17—C9118.3 (2)
Cu2—O10—H28112.6C20—C17—C9124.6 (2)
H29—O9—H3098.1N4—C18—C7123.6 (2)
H27—O10—H2898.2N4—C18—C24116.0 (2)
H25—O11—H26110.1C7—C18—C24120.4 (2)
H23—O12—H2494.7N2—C19—C28122.4 (2)
H21—O13—H2292.2N2—C19—H10118.8
C8—N1—C1118.1 (2)C28—C19—H10118.8
C8—N1—Cu2128.98 (16)C28—C20—C17119.6 (2)
C1—N1—Cu2112.87 (15)C28—C20—H11120.2
C19—N2—C15117.8 (2)C17—C20—H11120.2
C19—N2—Cu2129.25 (17)C30—C21—C7119.7 (3)
C15—N2—Cu2112.89 (15)C30—C21—H12120.1
C16—N3—C24118.3 (2)C7—C21—H12120.1
C16—N3—Cu1129.80 (17)C6—C22—C5123.0 (2)
C24—N3—Cu1111.89 (15)C6—C22—H13106.6
C23—N4—C18118.1 (2)C5—C22—H13106.6
C23—N4—Cu1128.45 (16)C6—C22—H14106.6
C18—N4—Cu1113.33 (15)C5—C22—H14106.6
N1—C1—C10123.3 (2)H13—C22—H14106.5
N1—C1—C15116.3 (2)N4—C23—C30122.3 (2)
C10—C1—C15120.4 (2)N4—C23—H15118.8
C13—C2—C7120.7 (2)C30—C23—H15118.8
C13—C2—H1119.7N3—C24—C25123.5 (2)
C7—C2—H1119.7N3—C24—C18116.46 (19)
C9—C3—C10121.3 (2)C25—C24—C18120.1 (2)
C9—C3—H2119.4C24—C25—C26116.8 (2)
C10—C3—H2119.4C24—C25—C13118.0 (2)
O5—C4—O1122.5 (2)C26—C25—C13125.2 (2)
O5—C4—C14118.1 (2)C27—C26—C25119.5 (2)
O1—C4—C14119.4 (2)C27—C26—H16120.2
O8—C5—O7122.1 (2)C25—C26—H16120.2
O8—C5—C22116.2 (2)C26—C27—C16120.2 (2)
O7—C5—C22121.7 (2)C26—C27—H17119.9
O4—C6—O3121.8 (2)C16—C27—H17119.9
O4—C6—C22117.0 (2)C20—C28—C19119.6 (2)
O3—C6—C22121.23 (19)C20—C28—H18120.2
C18—C7—C21116.6 (2)C19—C28—H18120.2
C18—C7—C2118.7 (2)C12—C29—C8119.9 (2)
C21—C7—C2124.7 (2)C12—C29—H19120.1
N1—C8—C29122.2 (2)C8—C29—H19120.1
N1—C8—H3118.9C21—C30—C23119.6 (3)
C29—C8—H3118.9C21—C30—H20120.2
C3—C9—C17121.3 (2)C23—C30—H20120.2
C3—C9—H4119.4
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H29···O40.912.082.961 (3)161
O9—H30···O120.961.852.769 (3)158
O10—H27···O50.871.912.720 (3)154
O10—H28···O8i0.911.922.824 (3)172
O11—H25···O8ii0.991.992.983 (3)174
O11—H26···O50.861.992.831 (3)167
O12—H23···O13iii0.951.862.800 (3)168
O12—H24···O4iv0.901.892.780 (3)169
O13—H21···O60.961.962.915 (3)177
O13—H22···O6iii0.942.062.952 (3)156
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.

Experimental details

Crystal data
Chemical formula[Cu(C3H4O4)(C12H8N2)(H2O)]·1.5H2O
Mr390.84
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)11.5591 (2), 11.7450 (2), 12.5081 (2)
α, β, γ (°)92.177 (1), 105.457 (1), 109.1821 (8)
V3)1531.06 (5)
Z4
Radiation typeMo Kα
µ (mm1)1.47
Crystal size (mm)0.10 × 0.10 × 0.05
Data collection
DiffractometerNonius Kappa CCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
21966, 8939, 6592
Rint0.044
(sin θ/λ)max1)0.704
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.046, 0.124, 1.07
No. of reflections8939
No. of parameters442
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.58, 0.74

Computer programs: COLLECT (Nonius, 1998), DENZO (Nonius, 1998), DENZO, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003) and ORTEP-3 (Farrugia, 1997), SHELXL97.

Selected bond lengths (Å) top
Cu1—O21.9061 (18)Cu2—O31.9114 (16)
Cu1—O11.9270 (16)Cu2—O71.9246 (16)
Cu1—N41.989 (2)Cu2—N12.017 (2)
Cu1—N32.0298 (19)Cu2—N22.0260 (18)
Cu1—O92.293 (2)Cu2—O102.2643 (18)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O9—H29···O40.912.082.961 (3)161
O9—H30···O120.961.852.769 (3)158
O10—H27···O50.871.912.720 (3)154
O10—H28···O8i0.911.922.824 (3)172
O11—H25···O8ii0.991.992.983 (3)174
O11—H26···O50.861.992.831 (3)167
O12—H23···O13iii0.951.862.800 (3)168
O12—H24···O4iv0.901.892.780 (3)169
O13—H21···O60.961.962.915 (3)177
O13—H22···O6iii0.942.062.952 (3)156
Symmetry codes: (i) x+2, y, z+2; (ii) x, y+1, z; (iii) x+1, y+1, z+1; (iv) x+1, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds