Download citation
Download citation
link to html
In the crystal structure of the title compound, C16H16N4O2S, there are two independent mol­ecules with different conformations in the asymmetric unit; these are linked into chains by O—H...N hydrogen bonds. Further stability may be provided by offset π–π stacking inter­actions involving inversion-related pyrimidine rings [centroid–centroid distance = 3.84 (1) Å] and benzene rings [centroid–centroid distance = 3.45 (1) Å].

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019538/hb2373sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019538/hb2373Isup2.hkl
Contains datablock I

CCDC reference: 647690

Key indicators

  • Single-crystal X-ray study
  • T = 299 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.058
  • wR factor = 0.154
  • Data-to-parameter ratio = 16.6

checkCIF/PLATON results

No syntax errors found



Alert level C CRYSC01_ALERT_1_C The word below has not been recognised as a standard identifier. golden PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT154_ALERT_1_C The su's on the Cell Angles are Equal (x 10000) 100 Deg. PLAT180_ALERT_3_C Check Cell Rounding: # of Values Ending with 0 = 3
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 4 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 3 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 1 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Triazolopyrimidine derivatives have broad biological properties: in particular triazolopyrimidine sulfonamide is a highly effective herbicide with acetohydroxyacid synthase (AHAS) as target (Kleschich et al., 1990). We herein report the crystal structure of one such triazolopyrimidine derivative, the title compound, (I).

The crystal structure of the the title compound contains two independent molecules (A and B) in the asymmetric unit (Fig. 1) with bond lengths and angles are within normal ranges (Allen et al., 1987). In molecule A, the triazolopyrimidine fused rings (N1—N4/C9—C13) are close to planarity with a maximum deviation of 0.028 (2)Å for C13. The dihedral angle between triazolopyrimidine and benzene rings is 70.56 (3)°.

In molecule B, the triazolopyrimidine fused rings (N5—N8/C25—C29) are almost planar with a maximum deviation of 0.031 (2)Å for C25. The dihedral angle between triazolopyrimidine and benzene rings is 54.83 (3)°.

In the crystal of (I), intermolecular O—H···N hydrogen bonds (Table 2) lead to chains of molecules (Fig. 2). Further stability is provided by offset π-π stacking interactions (Janiak, 2000). The adjacent pyrimidine rings (N6/N8/C26—C29) have a centroid-centroid distance of 3.84 (1) %A [symmetry code: - x, 1 - y, 1 - z], while the adjacent benzene rings (C1—C6) have a centroid-centroid distance of 3.45 (1) %A [symmetry

code: 1 - x, 2 - y, - z].

Related literature top

For related structures, see: Chen, Li et al. (2005); Chen, Wu et al. (2005); Teng et al. (2005).

For related literature, see: Allen et al. (1987); Janiak (2000); Kleschich et al. (1990).

Experimental top

Sodium hydroxide (0.08 g, 2 mmol) was dissolved in ethanol (5 ml), and then 5-amino-1H-1,2,4-triazole-3-thiol (0.23 g, 2 mmol) was added. Then, methyl 2-(chloromethyl)benzoate (0.37 g, 2 mmol) was added dropwise until the solid dissolved completely. After stirring for 2 h at room temperature, the precipitate was filtered off, washed with water and dried to give methyl 2-((5-amino-1H-1,2,4-triazol-3-ylthio)methyl)benzoate (0.38 g, yield 72%). This ester (1.06 g, 4 mmol) in 4 ml glacial acetic acid with 3-methylpentane-2,4-dione (0.46 g, 4 mmol) was refluxed for 6 h. The solution was poured into 50 ml ice and water and stirred overnight. The solid which separated from water was dried to obtain methyl 2-((5,6,7-trimethyl-[1,2,4]triazolo[1,5-a]pyrimidin-2-ylthio)methyl) benzoate (1.24 g, yield 91%). Then it (0.6 g, 1.75 mmol) was added into the solution of NaOH (0.14 g, 3.5 mmol) in ethanol (5 ml) and water (5 ml) and the mixture was refluxed for 30 minutes. The solution was quenched with 20 ml water and then treated with diluted hydrochloric acid until pH = 1 was reached. The precipitate was collected by filtration and recrystallized from ethanol to obtain golden yellow crystals of the title compound (0.40 g, yield 67%). Crystals of (I) suitable for X-ray analysis were grown from acetone at 277 K.

Refinement top

O-bound H atoms were located in a difference Fourier map and freely refined with fixed isotropic displacement parameters. All other H atoms were positioned geometrically, with C—H = 0.93, 0.97 and 0.96 Å for aromatic, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C).

Structure description top

Triazolopyrimidine derivatives have broad biological properties: in particular triazolopyrimidine sulfonamide is a highly effective herbicide with acetohydroxyacid synthase (AHAS) as target (Kleschich et al., 1990). We herein report the crystal structure of one such triazolopyrimidine derivative, the title compound, (I).

The crystal structure of the the title compound contains two independent molecules (A and B) in the asymmetric unit (Fig. 1) with bond lengths and angles are within normal ranges (Allen et al., 1987). In molecule A, the triazolopyrimidine fused rings (N1—N4/C9—C13) are close to planarity with a maximum deviation of 0.028 (2)Å for C13. The dihedral angle between triazolopyrimidine and benzene rings is 70.56 (3)°.

In molecule B, the triazolopyrimidine fused rings (N5—N8/C25—C29) are almost planar with a maximum deviation of 0.031 (2)Å for C25. The dihedral angle between triazolopyrimidine and benzene rings is 54.83 (3)°.

In the crystal of (I), intermolecular O—H···N hydrogen bonds (Table 2) lead to chains of molecules (Fig. 2). Further stability is provided by offset π-π stacking interactions (Janiak, 2000). The adjacent pyrimidine rings (N6/N8/C26—C29) have a centroid-centroid distance of 3.84 (1) %A [symmetry code: - x, 1 - y, 1 - z], while the adjacent benzene rings (C1—C6) have a centroid-centroid distance of 3.45 (1) %A [symmetry

code: 1 - x, 2 - y, - z].

For related structures, see: Chen, Li et al. (2005); Chen, Wu et al. (2005); Teng et al. (2005).

For related literature, see: Allen et al. (1987); Janiak (2000); Kleschich et al. (1990).

Computing details top

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXTL (Bruker, 2001).

Figures top
[Figure 1] Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.
2-[(5,6,7-Trimethyl[1,2,4]triazolo[1,5-a]pyrimidin-2-ylsulfanyl)methyl]benzoic acid top
Crystal data top
C16H16N4O2SZ = 4
Mr = 328.39F(000) = 688
Triclinic, P1Dx = 1.393 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.9704 (5) ÅCell parameters from 2157 reflections
b = 13.3058 (8) Åθ = 2.2–24.5°
c = 15.9084 (9) ŵ = 0.22 mm1
α = 110.257 (1)°T = 299 K
β = 96.446 (1)°Block, golden yellow
γ = 92.620 (1)°0.30 × 0.20 × 0.10 mm
V = 1566.28 (16) Å3
Data collection top
Bruker SMART 4K CCD
diffractometer
7079 independent reflections
Radiation source: fine-focus sealed tube5206 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ω scansθmax = 27.5°, θmin = 1.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 1010
Tmin = 0.936, Tmax = 0.978k = 1717
17990 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.058Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04 w = 1/[σ2(Fo2) + (0.0843P)2 + 0.1225P]
where P = (Fo2 + 2Fc2)/3
7079 reflections(Δ/σ)max = 0.001
427 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.25 e Å3
Crystal data top
C16H16N4O2Sγ = 92.620 (1)°
Mr = 328.39V = 1566.28 (16) Å3
Triclinic, P1Z = 4
a = 7.9704 (5) ÅMo Kα radiation
b = 13.3058 (8) ŵ = 0.22 mm1
c = 15.9084 (9) ÅT = 299 K
α = 110.257 (1)°0.30 × 0.20 × 0.10 mm
β = 96.446 (1)°
Data collection top
Bruker SMART 4K CCD
diffractometer
7079 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5206 reflections with I > 2σ(I)
Tmin = 0.936, Tmax = 0.978Rint = 0.031
17990 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0580 restraints
wR(F2) = 0.154H atoms treated by a mixture of independent and constrained refinement
S = 1.04Δρmax = 0.36 e Å3
7079 reflectionsΔρmin = 0.25 e Å3
427 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0916 (3)0.66968 (18)0.02579 (15)0.0404 (5)
C20.1370 (3)0.5831 (2)0.04390 (17)0.0525 (6)
H20.09300.57240.10330.063*
C30.2454 (3)0.5129 (2)0.0268 (2)0.0621 (7)
H30.27430.45540.07440.075*
C40.3110 (3)0.5280 (2)0.0610 (2)0.0585 (7)
H40.38610.48160.07290.070*
C50.2649 (3)0.6122 (2)0.13099 (18)0.0498 (6)
H50.30780.62100.19020.060*
C60.1559 (3)0.68464 (17)0.11557 (15)0.0378 (5)
C70.0240 (3)0.7404 (2)0.00253 (16)0.0468 (6)
C80.1109 (3)0.77229 (18)0.19690 (15)0.0422 (5)
H8A0.13850.84100.19080.051*
H8B0.18180.77090.25010.051*
C90.1156 (3)0.66328 (17)0.26135 (13)0.0378 (5)
C100.2154 (3)0.55875 (18)0.32078 (14)0.0423 (5)
C110.2305 (4)0.4334 (2)0.38613 (17)0.0561 (7)
C120.0607 (4)0.4109 (2)0.37478 (17)0.0553 (7)
C130.0312 (3)0.46493 (19)0.33293 (16)0.0504 (6)
C140.3379 (5)0.3743 (3)0.4296 (2)0.0879 (10)
H14A0.44400.40540.43740.132*
H14B0.27960.38010.48750.132*
H14C0.35840.29990.39160.132*
C150.0175 (5)0.3289 (3)0.4084 (2)0.0859 (10)
H15A0.13100.32180.39370.129*
H15B0.04860.26080.38010.129*
H15C0.02000.35170.47280.129*
C160.2060 (4)0.4496 (3)0.3089 (2)0.0736 (9)
H16A0.20210.42680.24440.110*
H16B0.25250.39590.32990.110*
H16C0.27590.51630.33690.110*
C170.6049 (2)1.14480 (16)0.50037 (13)0.0326 (4)
C180.7736 (3)1.17560 (18)0.53904 (15)0.0389 (5)
H180.79891.23050.59510.047*
C190.9034 (3)1.1257 (2)0.49523 (17)0.0497 (6)
H191.01561.14750.52120.060*
C200.8663 (3)1.0437 (2)0.41324 (18)0.0547 (7)
H200.95341.00950.38360.066*
C210.7000 (3)1.01192 (19)0.37471 (16)0.0465 (6)
H210.67660.95550.31940.056*
C220.5665 (3)1.06159 (17)0.41607 (13)0.0349 (5)
C230.4685 (3)1.20209 (17)0.54894 (14)0.0374 (5)
C240.3889 (3)1.02269 (18)0.36945 (15)0.0415 (5)
H24A0.31841.01560.41330.050*
H24B0.38940.95200.32380.050*
C250.3128 (3)1.04492 (17)0.20231 (14)0.0373 (5)
C260.2631 (3)1.01239 (17)0.06348 (14)0.0361 (5)
C270.2523 (3)0.9258 (2)0.08829 (15)0.0443 (5)
C280.3533 (3)0.8463 (2)0.07553 (16)0.0464 (6)
C290.4127 (3)0.85393 (18)0.01195 (16)0.0404 (5)
C300.1838 (4)0.9204 (3)0.18193 (17)0.0663 (8)
H30A0.09500.86290.20760.099*
H30B0.27320.90750.21910.099*
H30C0.13940.98730.17890.099*
C310.3967 (4)0.7532 (2)0.15416 (19)0.0719 (8)
H31A0.49120.72110.13400.108*
H31B0.42590.77880.20060.108*
H31C0.30070.70060.17780.108*
C320.5236 (3)0.7820 (2)0.04002 (18)0.0527 (6)
H32A0.59690.82300.09460.079*
H32B0.59080.74880.00690.079*
H32C0.45530.72740.05060.079*
N10.2602 (2)0.63664 (15)0.28941 (12)0.0436 (5)
N20.0514 (2)0.54084 (14)0.30882 (12)0.0411 (4)
N30.0152 (2)0.60808 (15)0.26981 (12)0.0417 (4)
N40.3095 (3)0.50543 (17)0.35896 (14)0.0550 (5)
N50.2299 (2)1.08180 (14)0.14094 (12)0.0407 (4)
N60.3622 (2)0.93763 (14)0.07882 (11)0.0353 (4)
N70.3971 (2)0.95893 (14)0.17080 (12)0.0380 (4)
N80.2086 (2)1.00780 (15)0.02147 (12)0.0421 (4)
O10.0147 (2)0.83985 (14)0.05479 (11)0.0506 (4)
H10.084 (4)0.889 (2)0.0340 (19)0.076*
O20.1170 (3)0.70967 (18)0.07322 (14)0.0903 (7)
O30.3282 (2)1.20440 (16)0.51303 (11)0.0607 (5)
O40.5167 (2)1.25087 (15)0.63675 (11)0.0541 (5)
H4A0.444 (4)1.287 (2)0.661 (2)0.081*
S10.10910 (8)0.76491 (5)0.21583 (4)0.04530 (17)
S20.29647 (8)1.11214 (5)0.31609 (4)0.04801 (18)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0380 (11)0.0426 (12)0.0398 (12)0.0046 (9)0.0061 (9)0.0142 (10)
C20.0513 (14)0.0559 (15)0.0410 (13)0.0019 (12)0.0086 (11)0.0058 (11)
C30.0586 (16)0.0462 (15)0.0687 (19)0.0025 (12)0.0208 (14)0.0008 (13)
C40.0485 (14)0.0522 (15)0.080 (2)0.0142 (12)0.0184 (14)0.0263 (14)
C50.0419 (13)0.0565 (15)0.0550 (15)0.0050 (11)0.0063 (11)0.0248 (12)
C60.0336 (11)0.0398 (12)0.0402 (12)0.0020 (9)0.0062 (9)0.0150 (10)
C70.0468 (13)0.0542 (15)0.0403 (13)0.0032 (11)0.0007 (10)0.0206 (11)
C80.0469 (13)0.0416 (12)0.0363 (12)0.0042 (10)0.0002 (9)0.0145 (10)
C90.0453 (12)0.0382 (11)0.0278 (10)0.0086 (10)0.0076 (9)0.0079 (9)
C100.0473 (13)0.0428 (13)0.0349 (12)0.0071 (10)0.0073 (10)0.0105 (10)
C110.0758 (18)0.0456 (14)0.0461 (14)0.0007 (13)0.0053 (13)0.0171 (12)
C120.0789 (19)0.0411 (13)0.0440 (14)0.0094 (13)0.0019 (13)0.0142 (11)
C130.0621 (16)0.0446 (13)0.0428 (13)0.0136 (12)0.0016 (11)0.0139 (11)
C140.108 (3)0.082 (2)0.091 (2)0.0063 (19)0.019 (2)0.053 (2)
C150.118 (3)0.065 (2)0.086 (2)0.0262 (19)0.008 (2)0.0412 (18)
C160.0677 (19)0.084 (2)0.080 (2)0.0341 (16)0.0126 (16)0.0382 (18)
C170.0325 (10)0.0382 (11)0.0320 (10)0.0051 (8)0.0059 (8)0.0179 (9)
C180.0348 (11)0.0474 (13)0.0371 (12)0.0000 (9)0.0019 (9)0.0197 (10)
C190.0316 (11)0.0684 (17)0.0593 (16)0.0095 (11)0.0064 (11)0.0345 (14)
C200.0483 (14)0.0714 (18)0.0568 (16)0.0264 (13)0.0229 (12)0.0309 (14)
C210.0581 (15)0.0474 (13)0.0377 (12)0.0158 (11)0.0124 (11)0.0164 (10)
C220.0411 (11)0.0382 (11)0.0307 (11)0.0050 (9)0.0052 (9)0.0185 (9)
C230.0337 (11)0.0444 (12)0.0334 (11)0.0036 (9)0.0037 (9)0.0132 (9)
C240.0466 (13)0.0418 (12)0.0356 (12)0.0024 (10)0.0024 (9)0.0161 (10)
C250.0341 (11)0.0393 (12)0.0372 (11)0.0017 (9)0.0036 (9)0.0152 (9)
C260.0332 (10)0.0383 (11)0.0394 (12)0.0022 (9)0.0003 (9)0.0193 (10)
C270.0378 (12)0.0587 (15)0.0366 (12)0.0080 (11)0.0030 (9)0.0194 (11)
C280.0412 (12)0.0529 (14)0.0401 (13)0.0066 (11)0.0091 (10)0.0103 (11)
C290.0314 (11)0.0416 (12)0.0489 (13)0.0026 (9)0.0090 (9)0.0164 (10)
C300.0600 (16)0.098 (2)0.0409 (15)0.0016 (15)0.0020 (12)0.0274 (15)
C310.079 (2)0.0725 (19)0.0550 (17)0.0015 (16)0.0204 (15)0.0087 (14)
C320.0441 (13)0.0485 (14)0.0663 (17)0.0083 (11)0.0126 (12)0.0194 (13)
N10.0460 (11)0.0474 (11)0.0413 (11)0.0119 (9)0.0140 (8)0.0171 (9)
N20.0477 (11)0.0398 (10)0.0360 (10)0.0096 (8)0.0061 (8)0.0128 (8)
N30.0432 (10)0.0424 (10)0.0417 (10)0.0077 (8)0.0069 (8)0.0170 (8)
N40.0614 (13)0.0547 (13)0.0538 (13)0.0023 (10)0.0146 (10)0.0237 (11)
N50.0425 (10)0.0419 (10)0.0389 (10)0.0046 (8)0.0014 (8)0.0178 (8)
N60.0319 (9)0.0394 (10)0.0348 (9)0.0007 (7)0.0016 (7)0.0149 (8)
N70.0374 (9)0.0414 (10)0.0342 (10)0.0010 (8)0.0019 (7)0.0145 (8)
N80.0410 (10)0.0507 (11)0.0380 (10)0.0021 (8)0.0003 (8)0.0225 (9)
O10.0548 (10)0.0472 (10)0.0511 (10)0.0056 (8)0.0034 (8)0.0222 (8)
O20.1126 (18)0.0799 (15)0.0601 (13)0.0129 (13)0.0336 (12)0.0152 (11)
O30.0384 (9)0.0916 (14)0.0435 (10)0.0207 (9)0.0016 (7)0.0124 (9)
O40.0445 (9)0.0730 (12)0.0340 (9)0.0208 (8)0.0044 (7)0.0037 (8)
S10.0544 (4)0.0425 (3)0.0446 (3)0.0164 (3)0.0148 (3)0.0185 (3)
S20.0550 (4)0.0494 (4)0.0350 (3)0.0131 (3)0.0044 (3)0.0113 (3)
Geometric parameters (Å, º) top
C1—C21.389 (3)C17—C231.489 (3)
C1—C61.404 (3)C18—C191.379 (3)
C1—C71.489 (3)C18—H180.9300
C2—C31.375 (4)C19—C201.370 (4)
C2—H20.9300C19—H190.9300
C3—C41.377 (4)C20—C211.378 (3)
C3—H30.9300C20—H200.9300
C4—C51.377 (3)C21—C221.386 (3)
C4—H40.9300C21—H210.9300
C5—C61.391 (3)C22—C241.501 (3)
C5—H50.9300C23—O31.204 (2)
C6—C81.503 (3)C23—O41.322 (3)
C7—O21.203 (3)C24—S21.822 (2)
C7—O11.315 (3)C24—H24A0.9700
C8—S11.816 (2)C24—H24B0.9700
C8—H8A0.9700C25—N71.327 (3)
C8—H8B0.9700C25—N51.359 (3)
C9—N31.323 (3)C25—S21.742 (2)
C9—N11.357 (3)C26—N51.322 (3)
C9—S11.742 (2)C26—N81.352 (3)
C10—N41.337 (3)C26—N61.368 (3)
C10—N11.343 (3)C27—N81.325 (3)
C10—N21.362 (3)C27—C281.414 (3)
C11—N41.335 (3)C27—C301.504 (3)
C11—C121.417 (4)C28—C291.386 (3)
C11—C141.509 (4)C28—C311.511 (4)
C12—C131.374 (4)C29—N61.360 (3)
C12—C151.502 (4)C29—C321.477 (3)
C13—N21.369 (3)C30—H30A0.9600
C13—C161.490 (4)C30—H30B0.9600
C14—H14A0.9600C30—H30C0.9600
C14—H14B0.9600C31—H31A0.9600
C14—H14C0.9600C31—H31B0.9600
C15—H15A0.9600C31—H31C0.9600
C15—H15B0.9600C32—H32A0.9600
C15—H15C0.9600C32—H32B0.9600
C16—H16A0.9600C32—H32C0.9600
C16—H16B0.9600N2—N31.372 (3)
C16—H16C0.9600N6—N71.383 (2)
C17—C181.394 (3)O1—H10.99 (3)
C17—C221.402 (3)O4—H4A0.82 (3)
C2—C1—C6119.2 (2)C18—C19—H19120.2
C2—C1—C7115.7 (2)C19—C20—C21120.0 (2)
C6—C1—C7125.1 (2)C19—C20—H20120.0
C3—C2—C1121.4 (2)C21—C20—H20120.0
C3—C2—H2119.3C20—C21—C22121.9 (2)
C1—C2—H2119.3C20—C21—H21119.1
C2—C3—C4119.8 (2)C22—C21—H21119.1
C2—C3—H3120.1C21—C22—C17118.0 (2)
C4—C3—H3120.1C21—C22—C24118.6 (2)
C5—C4—C3119.6 (2)C17—C22—C24123.40 (19)
C5—C4—H4120.2O3—C23—O4122.8 (2)
C3—C4—H4120.2O3—C23—C17124.2 (2)
C4—C5—C6121.8 (2)O4—C23—C17113.04 (17)
C4—C5—H5119.1C22—C24—S2113.11 (15)
C6—C5—H5119.1C22—C24—H24A109.0
C5—C6—C1118.2 (2)S2—C24—H24A109.0
C5—C6—C8117.4 (2)C22—C24—H24B109.0
C1—C6—C8124.3 (2)S2—C24—H24B109.0
O2—C7—O1122.3 (2)H24A—C24—H24B107.8
O2—C7—C1122.7 (2)N7—C25—N5117.43 (19)
O1—C7—C1114.94 (19)N7—C25—S2124.95 (16)
C6—C8—S1115.71 (15)N5—C25—S2117.61 (16)
C6—C8—H8A108.4N5—C26—N8128.4 (2)
S1—C8—H8A108.4N5—C26—N6110.32 (18)
C6—C8—H8B108.4N8—C26—N6121.2 (2)
S1—C8—H8B108.4N8—C27—C28124.1 (2)
H8A—C8—H8B107.4N8—C27—C30115.2 (2)
N3—C9—N1116.7 (2)C28—C27—C30120.6 (2)
N3—C9—S1123.20 (17)C29—C28—C27118.7 (2)
N1—C9—S1120.07 (16)C29—C28—C31119.3 (2)
N4—C10—N1128.0 (2)C27—C28—C31122.0 (2)
N4—C10—N2123.1 (2)N6—C29—C28115.6 (2)
N1—C10—N2108.87 (19)N6—C29—C32117.1 (2)
N4—C11—C12124.1 (2)C28—C29—C32127.4 (2)
N4—C11—C14114.6 (3)C27—C30—H30A109.5
C12—C11—C14121.3 (3)C27—C30—H30B109.5
C13—C12—C11119.3 (2)H30A—C30—H30B109.5
C13—C12—C15120.6 (3)C27—C30—H30C109.5
C11—C12—C15120.1 (3)H30A—C30—H30C109.5
N2—C13—C12115.1 (2)H30B—C30—H30C109.5
N2—C13—C16116.4 (2)C28—C31—H31A109.5
C12—C13—C16128.4 (2)C28—C31—H31B109.5
C11—C14—H14A109.5H31A—C31—H31B109.5
C11—C14—H14B109.5C28—C31—H31C109.5
H14A—C14—H14B109.5H31A—C31—H31C109.5
C11—C14—H14C109.5H31B—C31—H31C109.5
H14A—C14—H14C109.5C29—C32—H32A109.5
H14B—C14—H14C109.5C29—C32—H32B109.5
C12—C15—H15A109.5H32A—C32—H32B109.5
C12—C15—H15B109.5C29—C32—H32C109.5
H15A—C15—H15B109.5H32A—C32—H32C109.5
C12—C15—H15C109.5H32B—C32—H32C109.5
H15A—C15—H15C109.5C10—N1—C9102.63 (18)
H15B—C15—H15C109.5C10—N2—C13123.1 (2)
C13—C16—H16A109.5C10—N2—N3110.72 (17)
C13—C16—H16B109.5C13—N2—N3126.16 (19)
H16A—C16—H16B109.5C9—N3—N2101.02 (17)
C13—C16—H16C109.5C11—N4—C10115.2 (2)
H16A—C16—H16C109.5C26—N5—C25102.08 (18)
H16B—C16—H16C109.5C29—N6—C26123.83 (18)
C18—C17—C22119.63 (19)C29—N6—N7126.37 (18)
C18—C17—C23119.25 (19)C26—N6—N7109.76 (17)
C22—C17—C23121.12 (18)C25—N7—N6100.40 (16)
C19—C18—C17120.9 (2)C27—N8—C26116.5 (2)
C19—C18—H18119.6C7—O1—H1115.3 (16)
C17—C18—H18119.6C23—O4—H4A112 (2)
C20—C19—C18119.7 (2)C9—S1—C8101.72 (11)
C20—C19—H19120.2C25—S2—C24102.45 (10)
C6—C1—C2—C31.0 (3)C27—C28—C29—C32177.9 (2)
C7—C1—C2—C3178.9 (2)C31—C28—C29—C322.6 (3)
C1—C2—C3—C40.0 (4)N4—C10—N1—C9178.1 (2)
C2—C3—C4—C51.2 (4)N2—C10—N1—C91.2 (2)
C3—C4—C5—C61.4 (4)N3—C9—N1—C101.6 (2)
C4—C5—C6—C10.4 (3)S1—C9—N1—C10178.97 (15)
C4—C5—C6—C8178.8 (2)N4—C10—N2—C131.5 (3)
C2—C1—C6—C50.8 (3)N1—C10—N2—C13179.1 (2)
C7—C1—C6—C5179.1 (2)N4—C10—N2—N3178.8 (2)
C2—C1—C6—C8177.4 (2)N1—C10—N2—N30.6 (2)
C7—C1—C6—C82.7 (3)C12—C13—N2—C103.2 (3)
C2—C1—C7—O224.1 (3)C16—C13—N2—C10175.5 (2)
C6—C1—C7—O2156.0 (3)C12—C13—N2—N3177.1 (2)
C2—C1—C7—O1154.6 (2)C16—C13—N2—N34.2 (3)
C6—C1—C7—O125.3 (3)N1—C9—N3—N21.2 (2)
C5—C6—C8—S1113.2 (2)S1—C9—N3—N2179.36 (15)
C1—C6—C8—S165.0 (2)C10—N2—N3—C90.4 (2)
N4—C11—C12—C130.4 (4)C13—N2—N3—C9179.9 (2)
C14—C11—C12—C13178.5 (3)C12—C11—N4—C101.4 (4)
N4—C11—C12—C15179.5 (3)C14—C11—N4—C10179.6 (2)
C14—C11—C12—C151.6 (4)N1—C10—N4—C11178.4 (2)
C11—C12—C13—N22.6 (3)N2—C10—N4—C110.9 (3)
C15—C12—C13—N2177.3 (2)N8—C26—N5—C25178.0 (2)
C11—C12—C13—C16175.9 (3)N6—C26—N5—C250.2 (2)
C15—C12—C13—C164.2 (4)N7—C25—N5—C260.7 (2)
C22—C17—C18—C190.3 (3)S2—C25—N5—C26177.89 (15)
C23—C17—C18—C19178.8 (2)C28—C29—N6—C261.6 (3)
C17—C18—C19—C200.9 (3)C32—C29—N6—C26178.36 (19)
C18—C19—C20—C210.3 (4)C28—C29—N6—N7176.33 (18)
C19—C20—C21—C220.8 (4)C32—C29—N6—N73.7 (3)
C20—C21—C22—C171.4 (3)N5—C26—N6—C29177.89 (18)
C20—C21—C22—C24179.6 (2)N8—C26—N6—C290.4 (3)
C18—C17—C22—C210.8 (3)N5—C26—N6—N70.3 (2)
C23—C17—C22—C21179.92 (19)N8—C26—N6—N7178.66 (17)
C18—C17—C22—C24179.73 (19)N5—C25—N7—N60.8 (2)
C23—C17—C22—C241.1 (3)S2—C25—N7—N6177.61 (15)
C18—C17—C23—O3158.2 (2)C29—N6—N7—C25177.50 (19)
C22—C17—C23—O321.0 (3)C26—N6—N7—C250.7 (2)
C18—C17—C23—O422.0 (3)C28—C27—N8—C261.4 (3)
C22—C17—C23—O4158.90 (19)C30—C27—N8—C26177.56 (19)
C21—C22—C24—S2104.0 (2)N5—C26—N8—C27176.1 (2)
C17—C22—C24—S277.1 (2)N6—C26—N8—C271.9 (3)
N8—C27—C28—C290.6 (3)N3—C9—S1—C83.9 (2)
C30—C27—C28—C29179.5 (2)N1—C9—S1—C8176.71 (16)
N8—C27—C28—C31178.9 (2)C6—C8—S1—C976.95 (18)
C30—C27—C28—C310.0 (3)N7—C25—S2—C248.8 (2)
C27—C28—C29—N62.0 (3)N5—C25—S2—C24169.62 (16)
C31—C28—C29—N6177.5 (2)C22—C24—S2—C25102.64 (17)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N1i0.82 (3)1.90 (3)2.721 (2)175 (3)
O1—H1···N8ii0.99 (3)1.79 (3)2.762 (2)168 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.

Experimental details

Crystal data
Chemical formulaC16H16N4O2S
Mr328.39
Crystal system, space groupTriclinic, P1
Temperature (K)299
a, b, c (Å)7.9704 (5), 13.3058 (8), 15.9084 (9)
α, β, γ (°)110.257 (1), 96.446 (1), 92.620 (1)
V3)1566.28 (16)
Z4
Radiation typeMo Kα
µ (mm1)0.22
Crystal size (mm)0.30 × 0.20 × 0.10
Data collection
DiffractometerBruker SMART 4K CCD
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.936, 0.978
No. of measured, independent and
observed [I > 2σ(I)] reflections
17990, 7079, 5206
Rint0.031
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.058, 0.154, 1.04
No. of reflections7079
No. of parameters427
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.25

Computer programs: SMART (Bruker, 2001), SAINT (Bruker, 2001), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXTL (Bruker, 2001).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···N1i0.82 (3)1.90 (3)2.721 (2)175 (3)
O1—H1···N8ii0.99 (3)1.79 (3)2.762 (2)168 (3)
Symmetry codes: (i) x, y+2, z+1; (ii) x, y+2, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds