Download citation
Download citation
link to html
In the crystal structure of the title compound, C8H6O4·C6H9N3, the two molecules inter­act via N—H...O and O—H...N hydrogen bonds, resulting in centrosymmetric clusters.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019265/hb2370sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019265/hb2370Isup2.hkl
Contains datablock I

CCDC reference: 647688

Key indicators

  • Single-crystal X-ray study
  • T = 294 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.047
  • wR factor = 0.135
  • Data-to-parameter ratio = 13.9

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT066_ALERT_1_C Predicted and Reported Transmissions Identical . ? PLAT380_ALERT_4_C Check Incorrectly? Oriented X(sp2)-Methyl Moiety C14
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 2 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

In this paper, the structure of the title compound, (I), a 1:1 adduct of phthalic acid and 4,6-dimethylpyrimidin-2-amine is reported. (Fig. 1). The geometrical parameters of 4,6-dimethylpyrimidin-2-amine molecule in (I) are similar to those in methyl N-[4-(4,6-dimethylpyrimidin-2-ylamino)thiocarbonyl]carbamate (Ren et al., 2005). The heterocycle is essentially planar, within 0.014 (4) Å, and the dihedral angle between this plane and the benzene ring of the phthalic acid molecule is 21.3 (2) °. The crystal structure is stabilized by N—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1) to result in tetrameric associations of molecules, generated by inversion.

Related literature top

For related literature, see: Ren et al. (2005).

Experimental top

A mixture of phthalic acid (0.01 mol) and 4,6-dimethylpyrimidin-2-amine (0.01 mol) in ethanol (20 ml) was refluxed for 0.5 h, and cooled. The solution was kept at room temperature for 12 d. Natural evaporation gave yellow blocks of (I) suitable for X-ray analysis.

Refinement top

The N-bound H atoms were located in a difference map and their positions and Uiso values were freely refined.

The other H atoms were positioned geometrically (C—H = 0.93 Å, O—H = 0.82 Å) and refined as riding with Uiso(H) = 1.2Ueq(C, O).

Structure description top

In this paper, the structure of the title compound, (I), a 1:1 adduct of phthalic acid and 4,6-dimethylpyrimidin-2-amine is reported. (Fig. 1). The geometrical parameters of 4,6-dimethylpyrimidin-2-amine molecule in (I) are similar to those in methyl N-[4-(4,6-dimethylpyrimidin-2-ylamino)thiocarbonyl]carbamate (Ren et al., 2005). The heterocycle is essentially planar, within 0.014 (4) Å, and the dihedral angle between this plane and the benzene ring of the phthalic acid molecule is 21.3 (2) °. The crystal structure is stabilized by N—H···O and O—H···N hydrogen bonds (Fig. 2 and Table 1) to result in tetrameric associations of molecules, generated by inversion.

For related literature, see: Ren et al. (2005).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A tetrameric cluster in (I), drawn with 30% probability ellipsoids (arbitrary spheres for the H atoms; C-bound H atoms omitted for clarity). Hydrogen bonds are indicated by dashed lines. Symmetry code: (i) -x, -y, 1 - z.
Phthalic acid–4,6-dimethylpyrimidin-2-amine (1/1) top
Crystal data top
C8H6O4·C6H9N3F(000) = 608
Mr = 289.29Dx = 1.389 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 1525 reflections
a = 14.472 (7) Åθ = 2.5–24.9°
b = 7.083 (4) ŵ = 0.10 mm1
c = 14.563 (8) ÅT = 294 K
β = 112.108 (8)°Block, yellow
V = 1383.1 (12) Å30.24 × 0.22 × 0.18 mm
Z = 4
Data collection top
Bruker SMART CCD
diffractometer
2801 independent reflections
Radiation source: fine-focus sealed tube1550 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
ω scansθmax = 26.4°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
h = 1817
Tmin = 0.976, Tmax = 0.982k = 78
7676 measured reflectionsl = 1815
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.047Hydrogen site location: difmap and geom
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0663P)2]
where P = (Fo2 + 2Fc2)/3
2801 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.19 e Å3
3 restraintsΔρmin = 0.22 e Å3
Crystal data top
C8H6O4·C6H9N3V = 1383.1 (12) Å3
Mr = 289.29Z = 4
Monoclinic, P21/nMo Kα radiation
a = 14.472 (7) ŵ = 0.10 mm1
b = 7.083 (4) ÅT = 294 K
c = 14.563 (8) Å0.24 × 0.22 × 0.18 mm
β = 112.108 (8)°
Data collection top
Bruker SMART CCD
diffractometer
2801 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 1997)
1550 reflections with I > 2σ(I)
Tmin = 0.976, Tmax = 0.982Rint = 0.047
7676 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0473 restraints
wR(F2) = 0.135H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.19 e Å3
2801 reflectionsΔρmin = 0.22 e Å3
202 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.32059 (11)0.0730 (2)0.57966 (11)0.0495 (5)
H10.29750.10140.62130.074*
O20.17859 (12)0.1937 (2)0.47642 (12)0.0536 (5)
O30.10073 (11)0.1554 (3)0.37463 (12)0.0545 (5)
O40.04800 (11)0.0115 (2)0.22987 (12)0.0491 (5)
H40.00640.04950.22750.074*
N10.26384 (13)0.1281 (3)0.72801 (14)0.0374 (5)
N20.13632 (13)0.1101 (2)0.79262 (13)0.0382 (5)
N30.09888 (15)0.1281 (3)0.62636 (15)0.0518 (6)
C10.25648 (17)0.1130 (3)0.49214 (17)0.0380 (5)
C20.28825 (15)0.0563 (3)0.41096 (16)0.0343 (5)
C30.38602 (16)0.0813 (3)0.42031 (17)0.0408 (6)
H30.43290.12560.47970.049*
C40.41430 (17)0.0416 (3)0.34297 (18)0.0448 (6)
H4A0.48040.05800.35010.054*
C50.34617 (17)0.0222 (3)0.25536 (19)0.0452 (6)
H50.36580.04890.20290.054*
C60.24853 (17)0.0469 (3)0.24448 (18)0.0408 (6)
H60.20200.08790.18410.049*
C70.21890 (15)0.0116 (3)0.32215 (16)0.0344 (5)
C80.11693 (16)0.0646 (3)0.31263 (17)0.0377 (5)
C90.16713 (16)0.1230 (3)0.71695 (17)0.0370 (5)
C100.20528 (16)0.1091 (3)0.88369 (16)0.0377 (5)
C110.30461 (17)0.1199 (3)0.89960 (17)0.0444 (6)
H110.35250.12310.96370.053*
C120.33204 (16)0.1260 (3)0.81947 (17)0.0393 (6)
C130.43803 (16)0.1279 (4)0.8298 (2)0.0547 (7)
H13A0.45790.00260.82000.082*
H13B0.47900.17100.89500.082*
H13C0.44580.21120.78120.082*
C140.16923 (18)0.0961 (4)0.96640 (17)0.0509 (7)
H14A0.12670.20170.96360.076*
H14B0.22520.09731.02840.076*
H14C0.13250.01910.96060.076*
H3A0.0349 (8)0.138 (3)0.6152 (15)0.050 (7)*
H3B0.1167 (14)0.147 (3)0.5749 (12)0.051 (7)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0374 (10)0.0815 (13)0.0298 (10)0.0072 (8)0.0131 (8)0.0016 (8)
O20.0453 (10)0.0756 (12)0.0422 (11)0.0223 (9)0.0192 (9)0.0043 (8)
O30.0366 (10)0.0792 (13)0.0503 (12)0.0038 (8)0.0192 (9)0.0189 (9)
O40.0318 (9)0.0744 (12)0.0411 (10)0.0030 (8)0.0139 (9)0.0074 (8)
N10.0288 (10)0.0498 (12)0.0334 (11)0.0021 (8)0.0114 (9)0.0012 (8)
N20.0342 (11)0.0511 (12)0.0306 (11)0.0025 (9)0.0135 (9)0.0026 (8)
N30.0286 (12)0.0970 (17)0.0292 (12)0.0010 (11)0.0104 (10)0.0023 (11)
C10.0330 (13)0.0462 (14)0.0366 (14)0.0003 (11)0.0153 (12)0.0009 (11)
C20.0329 (12)0.0393 (13)0.0318 (13)0.0028 (10)0.0133 (11)0.0045 (9)
C30.0279 (12)0.0564 (16)0.0369 (14)0.0034 (11)0.0110 (11)0.0051 (11)
C40.0301 (13)0.0609 (16)0.0474 (16)0.0045 (11)0.0192 (13)0.0072 (12)
C50.0435 (14)0.0560 (16)0.0457 (16)0.0021 (12)0.0279 (13)0.0014 (12)
C60.0398 (14)0.0502 (15)0.0342 (13)0.0019 (11)0.0161 (11)0.0051 (10)
C70.0314 (12)0.0396 (13)0.0352 (13)0.0012 (9)0.0159 (11)0.0026 (10)
C80.0328 (13)0.0463 (14)0.0347 (14)0.0008 (10)0.0135 (12)0.0020 (11)
C90.0331 (13)0.0443 (14)0.0339 (14)0.0036 (10)0.0127 (12)0.0035 (10)
C100.0403 (14)0.0416 (14)0.0312 (13)0.0020 (10)0.0132 (12)0.0024 (10)
C110.0368 (14)0.0584 (16)0.0314 (14)0.0009 (11)0.0053 (11)0.0030 (11)
C120.0324 (12)0.0424 (14)0.0401 (15)0.0038 (10)0.0104 (12)0.0051 (10)
C130.0347 (14)0.0735 (19)0.0535 (18)0.0026 (12)0.0139 (13)0.0005 (13)
C140.0509 (16)0.0693 (18)0.0356 (15)0.0022 (13)0.0196 (13)0.0005 (12)
Geometric parameters (Å, º) top
O1—C11.294 (3)C4—C51.363 (3)
O1—H10.8200C4—H4A0.9300
O2—C11.206 (2)C5—C61.373 (3)
O3—C81.201 (3)C5—H50.9300
O4—C81.298 (3)C6—C71.375 (3)
O4—H40.8200C6—H60.9300
N1—C121.326 (3)C7—C81.478 (3)
N1—C91.348 (3)C10—C111.369 (3)
N2—C101.326 (3)C10—C141.485 (3)
N2—C91.338 (3)C11—C121.367 (3)
N3—C91.318 (3)C11—H110.9300
N3—H3A0.881 (9)C12—C131.484 (3)
N3—H3B0.890 (19)C13—H13A0.9600
C1—C21.476 (3)C13—H13B0.9600
C2—C31.381 (3)C13—H13C0.9600
C2—C71.391 (3)C14—H14A0.9600
C3—C41.365 (3)C14—H14B0.9600
C3—H30.9300C14—H14C0.9600
C1—O1—H1109.5O3—C8—O4123.6 (2)
C8—O4—H4109.5O3—C8—C7122.4 (2)
C12—N1—C9117.81 (19)O4—C8—C7113.88 (19)
C10—N2—C9117.72 (19)N3—C9—N2118.0 (2)
C9—N3—H3A121.8 (13)N3—C9—N1118.2 (2)
C9—N3—H3B120.1 (13)N2—C9—N1123.8 (2)
H3A—N3—H3B116.8 (15)N2—C10—C11121.1 (2)
O2—C1—O1124.3 (2)N2—C10—C14116.7 (2)
O2—C1—C2121.8 (2)C11—C10—C14122.2 (2)
O1—C1—C2113.89 (19)C12—C11—C10118.7 (2)
C3—C2—C7119.3 (2)C12—C11—H11120.6
C3—C2—C1120.2 (2)C10—C11—H11120.6
C7—C2—C1120.37 (19)N1—C12—C11120.8 (2)
C4—C3—C2120.4 (2)N1—C12—C13116.9 (2)
C4—C3—H3119.8C11—C12—C13122.3 (2)
C2—C3—H3119.8C12—C13—H13A109.5
C5—C4—C3120.3 (2)C12—C13—H13B109.5
C5—C4—H4A119.8H13A—C13—H13B109.5
C3—C4—H4A119.8C12—C13—H13C109.5
C4—C5—C6120.1 (2)H13A—C13—H13C109.5
C4—C5—H5120.0H13B—C13—H13C109.5
C6—C5—H5120.0C10—C14—H14A109.5
C5—C6—C7120.5 (2)C10—C14—H14B109.5
C5—C6—H6119.7H14A—C14—H14B109.5
C7—C6—H6119.7C10—C14—H14C109.5
C6—C7—C2119.2 (2)H14A—C14—H14C109.5
C6—C7—C8119.1 (2)H14B—C14—H14C109.5
C2—C7—C8121.39 (19)
O2—C1—C2—C3137.6 (2)C2—C7—C8—O344.3 (3)
O1—C1—C2—C340.5 (3)C6—C7—C8—O447.6 (3)
O2—C1—C2—C738.4 (3)C2—C7—C8—O4138.6 (2)
O1—C1—C2—C7143.5 (2)C10—N2—C9—N3178.6 (2)
C7—C2—C3—C40.6 (3)C10—N2—C9—N12.5 (3)
C1—C2—C3—C4175.4 (2)C12—N1—C9—N3178.9 (2)
C2—C3—C4—C50.4 (4)C12—N1—C9—N22.1 (3)
C3—C4—C5—C60.1 (4)C9—N2—C10—C110.3 (3)
C4—C5—C6—C71.3 (3)C9—N2—C10—C14179.6 (2)
C5—C6—C7—C22.4 (3)N2—C10—C11—C122.0 (3)
C5—C6—C7—C8171.6 (2)C14—C10—C11—C12178.1 (2)
C3—C2—C7—C62.0 (3)C9—N1—C12—C110.4 (3)
C1—C2—C7—C6174.0 (2)C9—N1—C12—C13178.8 (2)
C3—C2—C7—C8171.8 (2)C10—C11—C12—N12.3 (3)
C1—C2—C7—C812.2 (3)C10—C11—C12—C13176.8 (2)
C6—C7—C8—O3129.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.812.613 (3)168
O4—H4···N2i0.821.842.656 (3)172
N3—H3A···O3i0.88 (1)2.03 (1)2.890 (3)166 (2)
N3—H3B···O20.89 (2)1.98 (2)2.865 (3)171 (2)
Symmetry code: (i) x, y, z+1.

Experimental details

Crystal data
Chemical formulaC8H6O4·C6H9N3
Mr289.29
Crystal system, space groupMonoclinic, P21/n
Temperature (K)294
a, b, c (Å)14.472 (7), 7.083 (4), 14.563 (8)
β (°) 112.108 (8)
V3)1383.1 (12)
Z4
Radiation typeMo Kα
µ (mm1)0.10
Crystal size (mm)0.24 × 0.22 × 0.18
Data collection
DiffractometerBruker SMART CCD
Absorption correctionMulti-scan
(SADABS; Bruker, 1997)
Tmin, Tmax0.976, 0.982
No. of measured, independent and
observed [I > 2σ(I)] reflections
7676, 2801, 1550
Rint0.047
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.047, 0.135, 1.01
No. of reflections2801
No. of parameters202
No. of restraints3
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.19, 0.22

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997, SHELXTL.

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.821.812.613 (3)168
O4—H4···N2i0.821.842.656 (3)172
N3—H3A···O3i0.881 (9)2.027 (9)2.890 (3)166.2 (18)
N3—H3B···O20.890 (19)1.984 (19)2.865 (3)170.7 (19)
Symmetry code: (i) x, y, z+1.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds