Download citation
Download citation
link to html
In the title compound, [Fe(C5H5)(C16H24BrO)], the η5-cyclo­penta­diene rings are essentially eclipsed, while the well ordered chain of the undeca­none substituent is bowed significantly towards the Fe atom. In the crystal structure, adjacent mol­ecules form inversion-related dimers through weak C—H...O and C—H...Br inter­actions. These dimers are further aggregated by inter­molecular C—H...π inter­actions between neighbouring cyclo­penta­diene rings, forming zigzag chains along the c axis.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807016510/hb2360sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807016510/hb2360Isup2.hkl
Contains datablock I

CCDC reference: 646608

Key indicators

  • Single-crystal X-ray study
  • T = 85 K
  • Mean [sigma](C-C) = 0.004 Å
  • R factor = 0.050
  • wR factor = 0.120
  • Data-to-parameter ratio = 33.0

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT480_ALERT_4_C Long H...A H-Bond Reported H17 .. BR1 .. 3.01 Ang.
Alert level G REFLT03_ALERT_1_G ALERT: Expected hkl max differ from CIF values From the CIF: _diffrn_reflns_theta_max 34.65 From the CIF: _reflns_number_total 7152 From the CIF: _diffrn_reflns_limit_ max hkl 8. 14. 53. From the CIF: _diffrn_reflns_limit_ min hkl -8. -15. -52. TEST1: Expected hkl limits for theta max Calculated maximum hkl 8. 15. 55. Calculated minimum hkl -8. -15. -55.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 1 ALERT level C = Check and explain 1 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

The title compound, (I), is a useful precursor for the preparation of amino ferrocenyl derivatives (McAdam et al., 2000) or redox active surfactant systems (Saji et al., 2000) and its structure is reported here (Fig. 1). The cyclopentadienyl rings of the ferrocene are approximately eclipsed, with a mean CmCg1—Cg2—Cn torsion angle of 4.2 (2)° (Cg1 and Cg2 are the centroids of the cyclopentadienyl rings, m = 12–16 and n = 17–21). The dihedral angle between the Cp ring mean planes is 4.68 (15)°. The ten-membered methylene chain of the undecanone substituent is nicely ordered and is bowed significantly towards the Fe atom. While the C11 atom lies 0.070 (3) Å above the C12···C16 ring plane, atom C1 is 0.735 (5) Å below that plane in the direction of the Fe1 atom.

In the crystal structure molecules of (I) link in a head-to-tail fashion through C17—H17···Br1 and C1···H1B···O11 hydrogen bonds to form inversion related dimers (Fig 2, Table 1). Then, C14—H14···Cg2 interactions link the dimers into an extended zigzag chain along the c axis (Fig. 3).

Related literature top

The title compound was prepared using the method of Saji et al. (1991). The longest methylene chain to have been examined crystallographically (Cambridge Structural Database, Version 5.28, 2007; Allen, 2002) for a similar ferrocenyl compound is 6-bromohexanoylferrocene (Hursthouse et al., 2003), while that in an organic compound is for 1-(4-tert-butylphenyl)-4-chlorobutan-1-one (Anilkumar et al., 2005). A 1,6-diferrocenylhexane-1,6-dione has also been reported (Pugh et al., 2004).

For related literature, see: McAdam et al. (2000).

Experimental top

The title compound was prepared using the method of Saji et al. (1991). Yellow rectangular plates were grown by slow evaporation from a CH2Cl2–toluene (1:1 v/v) solvent system.

Refinement top

All H atoms were positioned geometrically, with C—H = 0.95–0.99 Å, and refined as riding, with Uiso(H) = 1.2Ueq(C).

Structure description top

The title compound, (I), is a useful precursor for the preparation of amino ferrocenyl derivatives (McAdam et al., 2000) or redox active surfactant systems (Saji et al., 2000) and its structure is reported here (Fig. 1). The cyclopentadienyl rings of the ferrocene are approximately eclipsed, with a mean CmCg1—Cg2—Cn torsion angle of 4.2 (2)° (Cg1 and Cg2 are the centroids of the cyclopentadienyl rings, m = 12–16 and n = 17–21). The dihedral angle between the Cp ring mean planes is 4.68 (15)°. The ten-membered methylene chain of the undecanone substituent is nicely ordered and is bowed significantly towards the Fe atom. While the C11 atom lies 0.070 (3) Å above the C12···C16 ring plane, atom C1 is 0.735 (5) Å below that plane in the direction of the Fe1 atom.

In the crystal structure molecules of (I) link in a head-to-tail fashion through C17—H17···Br1 and C1···H1B···O11 hydrogen bonds to form inversion related dimers (Fig 2, Table 1). Then, C14—H14···Cg2 interactions link the dimers into an extended zigzag chain along the c axis (Fig. 3).

The title compound was prepared using the method of Saji et al. (1991). The longest methylene chain to have been examined crystallographically (Cambridge Structural Database, Version 5.28, 2007; Allen, 2002) for a similar ferrocenyl compound is 6-bromohexanoylferrocene (Hursthouse et al., 2003), while that in an organic compound is for 1-(4-tert-butylphenyl)-4-chlorobutan-1-one (Anilkumar et al., 2005). A 1,6-diferrocenylhexane-1,6-dione has also been reported (Pugh et al., 2004).

For related literature, see: McAdam et al. (2000).

Computing details top

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997) and TITAN2000; molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and PARST (Nardelli, 1995).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-labelling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. Formation of inversion related dimers of (I) with hydrogen bonds drawn as dashed lines.
[Figure 3] Fig. 3. Part of the packing of (I), with hydrogen bonds drawn as blue dashed lines and C—H···π interactions drawn as purple dashed lines. The red circles represent centroids of the C18···C21 rings.
11-Bromo-1-ferrocenylundecan-1-one top
Crystal data top
[Fe(C5H5)(C15H24BrO)]F(000) = 896
Mr = 433.20Dx = 1.486 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6638 reflections
a = 5.6027 (2) Åθ = 2.4–32.0°
b = 9.8858 (4) ŵ = 2.85 mm1
c = 35.0048 (15) ÅT = 85 K
β = 92.576 (2)°Rectangular plate, yellow
V = 1936.86 (13) Å30.53 × 0.12 × 0.03 mm
Z = 4
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7152 independent reflections
Radiation source: fine-focus sealed tube5902 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.041
φ and ω scansθmax = 34.7°, θmin = 1.2°
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
h = 88
Tmin = 0.700, Tmax = 0.918k = 1514
37380 measured reflectionsl = 5253
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 1.22 w = 1/[σ2(Fo2) + (0.0441P)2 + 2.8882P]
where P = (Fo2 + 2Fc2)/3
7152 reflections(Δ/σ)max = 0.001
217 parametersΔρmax = 0.97 e Å3
0 restraintsΔρmin = 2.43 e Å3
Crystal data top
[Fe(C5H5)(C15H24BrO)]V = 1936.86 (13) Å3
Mr = 433.20Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.6027 (2) ŵ = 2.85 mm1
b = 9.8858 (4) ÅT = 85 K
c = 35.0048 (15) Å0.53 × 0.12 × 0.03 mm
β = 92.576 (2)°
Data collection top
Bruker APEXII CCD area-detector
diffractometer
7152 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2004)
5902 reflections with I > 2σ(I)
Tmin = 0.700, Tmax = 0.918Rint = 0.041
37380 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 1.22Δρmax = 0.97 e Å3
7152 reflectionsΔρmin = 2.43 e Å3
217 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.44415 (5)0.29956 (3)0.174591 (8)0.02083 (8)
C10.6436 (5)0.2608 (3)0.13114 (7)0.0179 (5)
H1A0.80270.22910.14080.022*
H1B0.56910.18740.11550.022*
C20.6732 (5)0.3844 (2)0.10645 (7)0.0168 (5)
H2A0.78940.36300.08680.020*
H2B0.74250.45790.12260.020*
C30.4447 (5)0.4366 (3)0.08631 (8)0.0186 (5)
H3A0.32920.46100.10580.022*
H3B0.37290.36330.07030.022*
C40.4869 (5)0.5596 (3)0.06113 (8)0.0198 (5)
H4A0.54800.63470.07750.024*
H4B0.61190.53700.04310.024*
C50.2652 (5)0.6077 (3)0.03841 (8)0.0191 (5)
H5A0.14040.63120.05640.023*
H5B0.20330.53260.02210.023*
C60.3113 (5)0.7300 (3)0.01325 (8)0.0184 (5)
H6A0.36030.80720.02980.022*
H6B0.44580.70900.00320.022*
C70.0957 (5)0.7721 (3)0.01212 (7)0.0177 (5)
H7A0.03790.79500.00430.021*
H7B0.04460.69450.02840.021*
C80.1459 (5)0.8929 (3)0.03771 (7)0.0159 (4)
H8A0.28580.87180.05300.019*
H8B0.18790.97190.02140.019*
C90.0648 (5)0.9311 (3)0.06499 (7)0.0167 (5)
H9A0.10510.85330.08190.020*
H9B0.20600.95130.05000.020*
C100.0073 (4)1.0539 (2)0.08942 (7)0.0146 (4)
H10A0.04611.12870.07230.017*
H10B0.12741.03060.10560.017*
C110.2143 (4)1.1037 (2)0.11510 (7)0.0126 (4)
O110.4154 (3)1.0556 (2)0.11395 (6)0.0190 (4)
C120.1618 (4)1.2151 (2)0.14154 (7)0.0112 (4)
C130.3250 (4)1.2695 (2)0.17037 (7)0.0129 (4)
H130.48801.24480.17450.015*
C140.1994 (5)1.3668 (2)0.19158 (7)0.0151 (4)
H140.26451.41850.21240.018*
C150.0394 (5)1.3739 (2)0.17642 (7)0.0143 (4)
H150.16101.43130.18530.017*
C160.0661 (4)1.2797 (2)0.14536 (7)0.0131 (4)
H160.20781.26310.13010.016*
Fe10.03768 (6)1.18054 (3)0.194497 (9)0.00942 (8)
C170.0130 (4)0.9752 (2)0.20303 (8)0.0157 (4)
H170.05880.90630.18590.019*
C180.1625 (4)1.0354 (3)0.23260 (7)0.0159 (4)
H180.32481.01320.23860.019*
C190.0246 (4)1.1347 (3)0.25143 (7)0.0154 (4)
H190.07941.19040.27210.018*
C200.2096 (4)1.1356 (3)0.23371 (7)0.0146 (4)
H200.33821.19190.24060.018*
C210.2170 (4)1.0369 (2)0.20378 (7)0.0148 (4)
H210.35141.01600.18730.018*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.02858 (15)0.01801 (13)0.01621 (13)0.00177 (10)0.00468 (10)0.00173 (9)
C10.0245 (12)0.0152 (11)0.0143 (11)0.0046 (9)0.0026 (9)0.0018 (9)
C20.0224 (12)0.0128 (10)0.0153 (11)0.0012 (9)0.0002 (9)0.0025 (8)
C30.0226 (12)0.0162 (11)0.0166 (12)0.0005 (9)0.0028 (9)0.0043 (9)
C40.0249 (13)0.0178 (11)0.0163 (12)0.0011 (10)0.0037 (10)0.0047 (9)
C50.0236 (12)0.0161 (11)0.0172 (12)0.0001 (9)0.0022 (10)0.0044 (9)
C60.0248 (13)0.0139 (11)0.0163 (12)0.0016 (9)0.0022 (10)0.0035 (9)
C70.0234 (12)0.0158 (11)0.0140 (11)0.0022 (9)0.0005 (9)0.0046 (9)
C80.0192 (11)0.0149 (10)0.0134 (11)0.0027 (8)0.0010 (9)0.0027 (8)
C90.0202 (11)0.0148 (10)0.0155 (11)0.0002 (9)0.0034 (9)0.0044 (9)
C100.0160 (10)0.0153 (10)0.0124 (10)0.0008 (8)0.0007 (8)0.0028 (8)
C110.0149 (10)0.0125 (10)0.0106 (10)0.0014 (8)0.0028 (8)0.0004 (8)
O110.0142 (8)0.0210 (9)0.0218 (9)0.0029 (7)0.0019 (7)0.0068 (7)
C120.0134 (9)0.0099 (9)0.0103 (10)0.0005 (7)0.0013 (8)0.0002 (7)
C130.0137 (10)0.0116 (10)0.0133 (10)0.0033 (8)0.0008 (8)0.0001 (8)
C140.0216 (12)0.0098 (9)0.0138 (11)0.0039 (8)0.0006 (9)0.0013 (8)
C150.0202 (11)0.0104 (9)0.0126 (10)0.0026 (8)0.0031 (9)0.0013 (8)
C160.0169 (10)0.0113 (9)0.0108 (10)0.0019 (8)0.0003 (8)0.0011 (8)
Fe10.01107 (14)0.00823 (14)0.00895 (15)0.00050 (11)0.00024 (11)0.00029 (11)
C170.0162 (11)0.0104 (10)0.0207 (12)0.0016 (8)0.0010 (9)0.0034 (9)
C180.0130 (10)0.0162 (11)0.0184 (11)0.0012 (8)0.0009 (8)0.0072 (9)
C190.0171 (11)0.0186 (11)0.0105 (10)0.0029 (9)0.0004 (8)0.0022 (8)
C200.0149 (10)0.0155 (10)0.0137 (11)0.0013 (8)0.0037 (8)0.0019 (8)
C210.0145 (10)0.0133 (10)0.0168 (11)0.0032 (8)0.0022 (8)0.0012 (8)
Geometric parameters (Å, º) top
Br1—C11.965 (3)C11—O111.225 (3)
C1—C21.511 (3)C11—C121.477 (3)
C1—H1A0.9900C12—C131.436 (3)
C1—H1B0.9900C12—C161.439 (3)
C2—C31.523 (4)C12—Fe12.038 (2)
C2—H2A0.9900C13—C141.421 (3)
C2—H2B0.9900C13—Fe12.050 (2)
C3—C41.526 (4)C13—H130.9500
C3—H3A0.9900C14—C151.419 (4)
C3—H3B0.9900C14—Fe12.057 (2)
C4—C51.521 (4)C14—H140.9500
C4—H4A0.9900C15—C161.434 (3)
C4—H4B0.9900C15—Fe12.053 (2)
C5—C61.525 (4)C15—H150.9500
C5—H5A0.9900C16—Fe12.042 (2)
C5—H5B0.9900C16—H160.9500
C6—C71.525 (4)Fe1—C202.042 (2)
C6—H6A0.9900Fe1—C192.048 (2)
C6—H6B0.9900Fe1—C212.050 (2)
C7—C81.527 (3)Fe1—C172.057 (2)
C7—H7A0.9900Fe1—C182.060 (2)
C7—H7B0.9900C17—C211.427 (3)
C8—C91.532 (4)C17—C181.432 (4)
C8—H8A0.9900C17—H170.9500
C8—H8B0.9900C18—C191.428 (4)
C9—C101.528 (3)C18—H180.9500
C9—H9A0.9900C19—C201.426 (4)
C9—H9B0.9900C19—H190.9500
C10—C111.517 (3)C20—C211.431 (3)
C10—H10A0.9900C20—H200.9500
C10—H10B0.9900C21—H210.9500
C2—C1—Br1111.46 (17)C14—C15—H15125.8
C2—C1—H1A109.3C16—C15—H15125.8
Br1—C1—H1A109.3Fe1—C15—H15126.8
C2—C1—H1B109.3C15—C16—C12107.2 (2)
Br1—C1—H1B109.3C15—C16—Fe169.94 (14)
H1A—C1—H1B108.0C12—C16—Fe169.19 (13)
C1—C2—C3115.3 (2)C15—C16—H16126.4
C1—C2—H2A108.5C12—C16—H16126.4
C3—C2—H2A108.5Fe1—C16—H16126.0
C1—C2—H2B108.5C12—Fe1—C1641.32 (9)
C3—C2—H2B108.5C12—Fe1—C20156.54 (10)
H2A—C2—H2B107.5C16—Fe1—C20119.64 (10)
C2—C3—C4112.9 (2)C12—Fe1—C19161.95 (10)
C2—C3—H3A109.0C16—Fe1—C19154.77 (10)
C4—C3—H3A109.0C20—Fe1—C1940.80 (10)
C2—C3—H3B109.0C12—Fe1—C1341.13 (9)
C4—C3—H3B109.0C16—Fe1—C1369.27 (10)
H3A—C3—H3B107.8C20—Fe1—C13159.94 (10)
C5—C4—C3114.0 (2)C19—Fe1—C13123.98 (10)
C5—C4—H4A108.7C12—Fe1—C21121.93 (10)
C3—C4—H4A108.7C16—Fe1—C21107.01 (10)
C5—C4—H4B108.7C20—Fe1—C2140.95 (10)
C3—C4—H4B108.7C19—Fe1—C2168.70 (10)
H4A—C4—H4B107.6C13—Fe1—C21158.13 (10)
C4—C5—C6113.2 (2)C12—Fe1—C1568.85 (9)
C4—C5—H5A108.9C16—Fe1—C1541.00 (9)
C6—C5—H5A108.9C20—Fe1—C15105.66 (10)
C4—C5—H5B108.9C19—Fe1—C15119.31 (10)
C6—C5—H5B108.9C13—Fe1—C1568.40 (10)
H5A—C5—H5B107.7C21—Fe1—C15123.76 (10)
C7—C6—C5113.7 (2)C12—Fe1—C1468.63 (9)
C7—C6—H6A108.8C16—Fe1—C1468.75 (10)
C5—C6—H6A108.8C20—Fe1—C14122.80 (10)
C7—C6—H6B108.8C19—Fe1—C14106.35 (10)
C5—C6—H6B108.8C13—Fe1—C1440.49 (10)
H6A—C6—H6B107.7C21—Fe1—C14160.00 (10)
C6—C7—C8113.1 (2)C15—Fe1—C1440.38 (10)
C6—C7—H7A109.0C12—Fe1—C17108.99 (10)
C8—C7—H7A109.0C16—Fe1—C17125.29 (10)
C6—C7—H7B109.0C20—Fe1—C1768.64 (10)
C8—C7—H7B109.0C19—Fe1—C1768.59 (10)
H7A—C7—H7B107.8C13—Fe1—C17122.84 (10)
C7—C8—C9113.7 (2)C21—Fe1—C1740.65 (10)
C7—C8—H8A108.8C15—Fe1—C17161.56 (10)
C9—C8—H8A108.8C14—Fe1—C17157.40 (10)
C7—C8—H8B108.8C12—Fe1—C18125.88 (10)
C9—C8—H8B108.8C16—Fe1—C18162.88 (10)
H8A—C8—H8B107.7C20—Fe1—C1868.53 (10)
C10—C9—C8111.6 (2)C19—Fe1—C1840.69 (10)
C10—C9—H9A109.3C13—Fe1—C18108.40 (10)
C8—C9—H9A109.3C21—Fe1—C1868.47 (10)
C10—C9—H9B109.3C15—Fe1—C18155.31 (10)
C8—C9—H9B109.3C14—Fe1—C18121.22 (10)
H9A—C9—H9B108.0C17—Fe1—C1840.69 (10)
C11—C10—C9114.5 (2)C21—C17—C18108.0 (2)
C11—C10—H10A108.6C21—C17—Fe169.38 (14)
C9—C10—H10A108.6C18—C17—Fe169.75 (14)
C11—C10—H10B108.6C21—C17—H17126.0
C9—C10—H10B108.6C18—C17—H17126.0
H10A—C10—H10B107.6Fe1—C17—H17126.4
O11—C11—C12121.3 (2)C19—C18—C17108.0 (2)
O11—C11—C10122.3 (2)C19—C18—Fe169.22 (14)
C12—C11—C10116.4 (2)C17—C18—Fe169.56 (14)
C13—C12—C16108.0 (2)C19—C18—H18126.0
C13—C12—C11125.5 (2)C17—C18—H18126.0
C16—C12—C11126.3 (2)Fe1—C18—H18126.8
C13—C12—Fe169.88 (13)C20—C19—C18108.0 (2)
C16—C12—Fe169.49 (13)C20—C19—Fe169.38 (14)
C11—C12—Fe1122.06 (16)C18—C19—Fe170.09 (14)
C14—C13—C12107.8 (2)C20—C19—H19126.0
C14—C13—Fe170.03 (14)C18—C19—H19126.0
C12—C13—Fe168.99 (13)Fe1—C19—H19126.1
C14—C13—H13126.1C19—C20—C21108.1 (2)
C12—C13—H13126.1C19—C20—Fe169.83 (14)
Fe1—C13—H13126.5C21—C20—Fe169.80 (14)
C15—C14—C13108.6 (2)C19—C20—H20126.0
C15—C14—Fe169.68 (14)C21—C20—H20126.0
C13—C14—Fe169.48 (13)Fe1—C20—H20126.0
C15—C14—H14125.7C17—C21—C20108.0 (2)
C13—C14—H14125.7C17—C21—Fe169.97 (13)
Fe1—C14—H14126.7C20—C21—Fe169.26 (13)
C14—C15—C16108.4 (2)C17—C21—H21126.0
C14—C15—Fe169.94 (14)C20—C21—H21126.0
C16—C15—Fe169.06 (13)Fe1—C21—H21126.3
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Br1i0.953.013.797 (3)142
C1—H1B···O11i0.992.553.422 (3)147
C14—H14···Cg2ii0.952.943.647 (3)133
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formula[Fe(C5H5)(C15H24BrO)]
Mr433.20
Crystal system, space groupMonoclinic, P21/c
Temperature (K)85
a, b, c (Å)5.6027 (2), 9.8858 (4), 35.0048 (15)
β (°) 92.576 (2)
V3)1936.86 (13)
Z4
Radiation typeMo Kα
µ (mm1)2.85
Crystal size (mm)0.53 × 0.12 × 0.03
Data collection
DiffractometerBruker APEXII CCD area-detector
Absorption correctionMulti-scan
(SADABS; Bruker, 2004)
Tmin, Tmax0.700, 0.918
No. of measured, independent and
observed [I > 2σ(I)] reflections
37380, 7152, 5902
Rint0.041
(sin θ/λ)max1)0.800
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.120, 1.22
No. of reflections7152
No. of parameters217
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.97, 2.43

Computer programs: APEX2 (Bruker, 2004), SAINT (Bruker, 2004), SAINT, SHELXS97 (Sheldrick, 1997) and TITAN2000 (Hunter & Simpson, 1999), SHELXL97 (Sheldrick, 1997) and TITAN2000, ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006), SHELXL97, enCIFer (Allen et al., 2004), PLATON (Spek, 2003) and PARST (Nardelli, 1995).

Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C17—H17···Br1i0.953.013.797 (3)142
C1—H1B···O11i0.992.553.422 (3)147
C14—H14···Cg2ii0.952.943.647 (3)133
Symmetry codes: (i) x, y+1, z; (ii) x+2, y1/2, z+1/2.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds