metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[bis­­(O,O′-di­cyclo­hexyl di­thiophos­phato-κ2S,S′)nickel(II)]-μ-4,4′-bi­pyridine-κ2N:N′]

CROSSMARK_Color_square_no_text.svg

aDepartment of Chemistry, The University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249-0698, USA, bDepartment of Chemistry, University of Aberdeen, Old Aberdeen AB24 3UE, Scotland, and cComplexo Tecnológico de Medicamentos Farmanguinhos, Av. Comandante Guaranys 447, Jacarepaguá, Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: edward.tiekink@utsa.edu

(Received 7 February 2007; accepted 8 February 2007; online 14 February 2007)

The Ni atom in the linear polymeric title complex, [Ni{S2P(OC6H11)2}2(NC5H4C5H4N)]n or [Ni(C12H22O2PS2)2(C10H8N2)]n, is octa­hedrally coordinated within a trans-N2S4 donor set. The Ni atom and the N atoms of the 4,4′-bipyridine ligand are located on a twofold axis.

Comment

The title compound, (I)[link], was investigated as an extension of our inter­est in generating coordination polymers of metal dithio­phosphates (e.g. Lai et al. 2004[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.]; Lai & Tiekink, 2004[Lai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593-605.]; Chen et al., 2006[Chen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51-58.]). The asymmetric unit in (I)[link] comprises one Ni atom (site symmetry 2), half a 4,4-bipyridine ligand, and one dithio­phosphate ligand. The structure has crystallographic twofold symmetry in that the N⋯N axis of the 4,4′-bipyridine ligand as well as the Ni atom lie on a twofold axis. The dihedral angle between the mean planes of the N1 and N2 rings of the 4,4′-bipyridine mol­ecule is 37.9 (2)°.

[Scheme 1]

The coordination polyhedron for the Ni atom is an octa­hedron defined by a trans-N2S4 donor set, with the N atoms provided by bridging 4,4′-bipyridine ligands and S atoms from two symmetrically chelating dithio­phosphate ligands (Fig. 1[link] and Table 1[link]).

The polymer topology in (I)[link] is linear (Fig. 2[link]). While it is well known that Ni[S2P(OR)2]2 complexes can form six-coordinate adducts with bipyridine-type bases (e.g. Berdugo & Tiekink, 2006[Berdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218-m2220.]; Berdugo et al., 2006[Berdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m2693-m2694.]), the structure of (I)[link] represents the first example of a polymer being formed in such species. In the crystal structure, polymers are aligned along the b axis and pack in layers stacked along the a axis separated by hydro­phobic inter­actions (Fig. 3[link]). Within layers, the chains are offset so as to allow for the formation of weak C—H⋯S inter­actions between a phenyl H atom of the 4,4′-bipyridine bridge and the acceptor S2 atom in an adjacent chain (Table 2[link]).

[Figure 1]
Figure 1
Asymmetric unit of (I)[link] expanded to show the polymeric connectivity. Only the major component of the disorder is shown. Displacement ellipsoids are shown at the 50% probability level (arbitrary spheres for the H atoms). [Symmetry codes: (i) x, y − 1, z; (ii) −x, y, −z + [{1\over 2}].]
[Figure 2]
Figure 2
View of the linear polymer in (I)[link]. Colour code: Zn (brown), S (yellow), P (pale blue), O (red), N (dark blue), C (grey) & H (green). Only the major disorder component is shown.
[Figure 3]
Figure 3
View of the unit-cell contents of (I)[link] down the b axis, showing the weak C—H⋯S connections (dashed lines) between chains. Colour code as for Fig. 2[link]. Only the major disorder component is shown.

Experimental

The title compound was prepared by refluxing the parent nicke(II)l dithio­phosphate with 4,4′-bipyridine, following a literature procedure (Lai et al., 2004[Lai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221-226.]). Light-green crystals were isolated by the slow evaporation of an acetonitrile/CHCl3 (1:3) solution of the complex.

Crystal data
  • [Ni(C12H22O2PS2)2(C10H8N2)]

  • Mr = 801.67

  • Monoclinic, C 2/c

  • a = 30.709 (2) Å

  • b = 11.4278 (8) Å

  • c = 11.5210 (4) Å

  • β = 108.009 (3)°

  • V = 3845.1 (4) Å3

  • Z = 4

  • Mo Kα radiation

  • μ = 0.84 mm−1

  • T = 120 (2) K

  • 0.20 × 0.10 × 0.02 mm

Data collection
  • Bruker–Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (SADABS; Sheldrick, 2003[Sheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.747, Tmax = 1

  • 23861 measured reflections

  • 3393 independent reflections

  • 2047 reflections with I > 2σ(I)

  • Rint = 0.138

Refinement
  • R[F2 > 2σ(F2)] = 0.060

  • wR(F2) = 0.193

  • S = 1.10

  • 3393 reflections

  • 236 parameters

  • H-atom parameters constrained

  • Δρmax = 0.62 e Å−3

  • Δρmin = −0.84 e Å−3

Table 1
Selected bond lengths (Å)

Ni—S1 2.4721 (13)
Ni—S2 2.4865 (16)
Ni—N1 2.158 (7)
Ni—N2i 2.160 (6)
Symmetry code: (i) x, y-1, z.

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14⋯S2iii 0.95 2.86 3.604 (5) 136
Symmetry code: (iii) -x, -y-1, -z.

The relatively high value for Rint is ascribed to the poor quality of the crystals and the internal disorder in the structure. The H atoms were geometrically placed (C—H = 0.95–1.00Å) and refined as riding with Uiso(H) = 1.2Ueq(C) or 1.5Ueq(methyl C). Disorder was modelled for the O1 cyclo­hexyl group in that two positions were resolved for the C atoms [occupancy of the major component = 0.755 (11)]. The C atoms of the minor component were refined isotropically.

Data collection: COLLECT (Hooft, 1998[Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992[Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.]); molecular graphics: ORTEPII (Johnson, 1976[Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.]) and DIAMOND (Brandenburg, 2006[Brandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.]); software used to prepare material for publication: SHELXL97.

Supporting information


Computing details top

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: PATTY in DIRDIF92 (Beurskens et al., 1992); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: SHELXL97.

catena-Poly[[bis(O,O'-dicyclohexyl dithiophosphato-κ2S,S')nickel(II)]-µ-4,4'-bipyridine-κ2N:N'] top
Crystal data top
[Ni(C12H22O2PS2)2(C10H8N2)]F(000) = 1696
Mr = 801.67Dx = 1.385 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71069 Å
Hall symbol: -C 2ycCell parameters from 4564 reflections
a = 30.709 (2) Åθ = 1.0–27.5°
b = 11.4278 (8) ŵ = 0.84 mm1
c = 11.5210 (4) ÅT = 120 K
β = 108.009 (3)°Plate, light-green
V = 3845.1 (4) Å30.20 × 0.10 × 0.02 mm
Z = 4
Data collection top
Bruker–Nonius KappaCCD
diffractometer
3393 independent reflections
Radiation source: Bruker–Nonius FR591 rotating-anode2047 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.138
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 1.4°
φ and ω scansh = 3636
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1313
Tmin = 0.747, Tmax = 1l = 1313
23861 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.193H-atom parameters constrained
S = 1.10 w = 1/[σ2(Fo2) + (0.1034P)2]
where P = (Fo2 + 2Fc2)/3
3393 reflections(Δ/σ)max < 0.001
236 parametersΔρmax = 0.62 e Å3
24 restraintsΔρmin = 0.84 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Ni0.00000.68498 (8)0.25000.0284 (3)
S10.05769 (5)0.69028 (12)0.45448 (11)0.0323 (4)
S20.06899 (5)0.67863 (14)0.18054 (12)0.0369 (4)
P10.10119 (5)0.69928 (14)0.35736 (13)0.0370 (4)
O20.12774 (14)0.8203 (4)0.3758 (3)0.0423 (11)
N10.00000.4961 (6)0.25000.0376 (18)
N20.00000.1260 (6)0.25000.0279 (15)
O10.14322 (15)0.6130 (4)0.4082 (3)0.0529 (13)0.755 (11)
C10.1379 (3)0.4913 (6)0.4305 (6)0.075 (3)0.755 (11)
H10.11130.47430.46040.090*0.755 (11)
C20.1842 (4)0.4576 (8)0.5216 (8)0.064 (4)0.755 (11)
H2A0.18830.49820.60010.077*0.755 (11)
H2B0.20920.48260.48970.077*0.755 (11)
C30.1868 (3)0.3282 (7)0.5419 (6)0.059 (3)0.755 (11)
H3A0.21680.30780.60110.070*0.755 (11)
H3B0.16260.30380.57700.070*0.755 (11)
C40.1808 (3)0.2634 (7)0.4237 (6)0.048 (3)0.755 (11)
H4A0.18120.17800.43850.058*0.755 (11)
H4B0.20640.28250.39190.058*0.755 (11)
C50.1362 (3)0.2974 (7)0.3314 (8)0.074 (4)0.755 (11)
H5A0.11050.27550.36190.089*0.755 (11)
H5B0.13240.25480.25410.089*0.755 (11)
C60.1353 (4)0.4279 (7)0.3087 (6)0.076 (4)0.755 (11)
H6A0.16170.45080.28130.091*0.755 (11)
H6B0.10680.44980.24420.091*0.755 (11)
O210.14322 (15)0.6130 (4)0.4082 (3)0.0529 (13)0.245 (11)
C210.1379 (3)0.4913 (6)0.4305 (6)0.075 (3)0.245 (11)
H210.11390.49910.47230.090*0.245 (11)
C220.1759 (7)0.441 (2)0.5370 (12)0.09 (2)*0.245 (11)
H22A0.18790.50090.60050.105*0.245 (11)
H22B0.16420.37420.57390.105*0.245 (11)
C230.2131 (4)0.400 (2)0.4863 (18)0.056 (9)*0.245 (11)
H23A0.23790.36180.55200.068*0.245 (11)
H23B0.22640.46780.45620.068*0.245 (11)
C240.1947 (6)0.315 (2)0.3844 (19)0.055 (8)*0.245 (11)
H24A0.18740.24070.41870.066*0.245 (11)
H24B0.21900.29770.34680.066*0.245 (11)
C250.1531 (6)0.3556 (19)0.2870 (14)0.048 (8)*0.245 (11)
H25A0.16090.42320.24350.057*0.245 (11)
H25B0.14130.29210.22710.057*0.245 (11)
C260.1163 (5)0.3913 (16)0.3448 (17)0.045 (8)*0.245 (11)
H26A0.10860.32520.39040.054*0.245 (11)
H26B0.08810.41760.28160.054*0.245 (11)
C70.1497 (2)0.8618 (7)0.5007 (5)0.055 (2)
H70.14260.80510.55850.066*
C80.2010 (3)0.8640 (8)0.5250 (6)0.072 (2)
H8A0.21200.78430.51480.087*
H8B0.20850.91610.46520.087*
C90.2247 (3)0.9069 (11)0.6524 (7)0.098 (4)
H9A0.25810.91140.66540.118*
H9B0.21960.85050.71200.118*
C100.2075 (4)1.0245 (11)0.6737 (7)0.107 (4)
H10A0.22251.04840.75940.128*
H10B0.21551.08270.61990.128*
C110.1562 (4)1.0221 (9)0.6481 (8)0.106 (4)
H11A0.14870.97090.70850.128*
H11B0.14531.10200.65760.128*
C120.1307 (3)0.9768 (8)0.5171 (7)0.075 (3)
H12A0.13491.03270.45570.090*
H12B0.09760.96960.50590.090*
C130.0092 (2)0.4345 (5)0.1460 (5)0.0394 (16)
H130.01600.47610.07120.047*
C140.0093 (2)0.3145 (5)0.1424 (4)0.0349 (14)
H140.01580.27520.06620.042*
C150.00000.2499 (7)0.25000.0307 (19)
C160.00000.1210 (7)0.25000.0285 (18)
C170.0168 (2)0.0568 (5)0.1702 (4)0.0327 (14)
H170.02860.09610.11370.039*
C180.01619 (19)0.0637 (5)0.1732 (4)0.0301 (13)
H180.02790.10520.11790.036*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Ni0.0411 (6)0.0168 (6)0.0235 (5)0.0000.0042 (4)0.000
S10.0454 (9)0.0238 (8)0.0238 (7)0.0008 (7)0.0049 (6)0.0005 (6)
S20.0442 (9)0.0361 (10)0.0268 (7)0.0097 (8)0.0061 (6)0.0039 (6)
P10.0409 (10)0.0377 (10)0.0276 (8)0.0082 (8)0.0037 (6)0.0050 (7)
O20.045 (2)0.046 (3)0.035 (2)0.009 (2)0.0117 (18)0.0096 (19)
N10.061 (5)0.024 (4)0.024 (3)0.0000.006 (3)0.000
N20.032 (4)0.024 (4)0.025 (3)0.0000.004 (3)0.000
O10.049 (3)0.059 (3)0.039 (2)0.022 (2)0.004 (2)0.013 (2)
C10.074 (6)0.048 (5)0.073 (5)0.028 (4)0.021 (4)0.016 (4)
C20.071 (8)0.063 (8)0.034 (5)0.030 (6)0.019 (5)0.012 (5)
C30.061 (6)0.058 (7)0.053 (6)0.028 (5)0.012 (5)0.007 (5)
C40.035 (5)0.045 (6)0.060 (6)0.015 (4)0.009 (4)0.002 (5)
C50.066 (7)0.058 (8)0.079 (7)0.013 (6)0.005 (6)0.013 (6)
C60.109 (10)0.044 (7)0.042 (5)0.025 (7)0.024 (6)0.002 (5)
O210.049 (3)0.059 (3)0.039 (2)0.022 (2)0.004 (2)0.013 (2)
C210.074 (6)0.048 (5)0.073 (5)0.028 (4)0.021 (4)0.016 (4)
C70.053 (4)0.083 (6)0.030 (3)0.030 (4)0.017 (3)0.019 (3)
C80.055 (5)0.103 (7)0.049 (4)0.031 (5)0.000 (3)0.002 (4)
C90.079 (7)0.156 (11)0.044 (5)0.063 (7)0.003 (4)0.006 (5)
C100.117 (9)0.149 (11)0.054 (5)0.083 (8)0.026 (5)0.034 (6)
C110.127 (9)0.114 (9)0.091 (6)0.066 (7)0.054 (6)0.065 (6)
C120.071 (6)0.080 (6)0.082 (5)0.031 (5)0.037 (4)0.039 (5)
C130.066 (4)0.023 (3)0.024 (3)0.000 (3)0.005 (3)0.002 (2)
C140.058 (4)0.021 (3)0.021 (3)0.001 (3)0.005 (3)0.002 (2)
C150.044 (5)0.015 (4)0.028 (4)0.0000.004 (4)0.000
C160.041 (5)0.018 (4)0.021 (4)0.0000.002 (3)0.000
C170.051 (4)0.021 (3)0.025 (3)0.003 (3)0.011 (3)0.001 (2)
C180.042 (4)0.024 (3)0.026 (3)0.001 (3)0.013 (2)0.002 (2)
Geometric parameters (Å, º) top
Ni—S12.4721 (13)C22—H22B0.9900
Ni—S22.4865 (16)C23—C241.492 (10)
Ni—N12.158 (7)C23—H23A0.9900
Ni—N2i2.160 (6)C23—H23B0.9900
Ni—S1ii2.4721 (13)C24—C251.491 (10)
Ni—S2ii2.4865 (16)C24—H24A0.9900
S1—P11.993 (2)C24—H24B0.9900
S2—P11.9844 (19)C25—C261.534 (10)
P1—O21.586 (4)C25—H25A0.9900
P1—O211.585 (4)C25—H25B0.9900
P1—O11.585 (4)C26—H26A0.9900
O2—C71.466 (7)C26—H26B0.9900
N1—C131.342 (6)C7—C121.473 (11)
N1—C13ii1.342 (6)C7—C81.513 (9)
N2—C181.345 (6)C7—H71.0000
N2—C18ii1.345 (6)C8—C91.505 (9)
N2—Niiii2.160 (6)C8—H8A0.9900
O1—C11.433 (9)C8—H8B0.9900
C1—C21.533 (7)C9—C101.492 (14)
C1—C61.560 (7)C9—H9A0.9900
C1—H11.0000C9—H9B0.9900
C2—C31.495 (9)C10—C111.512 (14)
C2—H2A0.9900C10—H10A0.9900
C2—H2B0.9900C10—H10B0.9900
C3—C41.511 (7)C11—C121.557 (9)
C3—H3A0.9900C11—H11A0.9900
C3—H3B0.9900C11—H11B0.9900
C4—C51.503 (7)C12—H12A0.9900
C4—H4A0.9900C12—H12B0.9900
C4—H4B0.9900C13—C141.372 (8)
C5—C61.513 (8)C13—H130.9500
C5—H5A0.9900C14—C151.394 (6)
C5—H5B0.9900C14—H140.9500
C6—H6A0.9900C15—C14ii1.394 (6)
C6—H6B0.9900C15—C161.473 (11)
O21—C211.433 (9)C16—C171.394 (7)
C21—C261.522 (10)C16—C17ii1.394 (7)
C21—C221.522 (10)C17—C181.378 (8)
C21—H211.0000C17—H170.9500
C22—C231.510 (10)C18—H180.9500
C22—H22A0.9900
N1—Ni—N2i180H22A—C22—H22B108.6
S1—Ni—S282.91 (5)C24—C23—C22111.0 (9)
S1—Ni—N191.41 (4)C24—C23—H23A109.4
S1—Ni—S1ii177.19 (8)C22—C23—H23A109.4
S1—Ni—S2ii97.17 (5)C24—C23—H23B109.4
S1—Ni—N2i88.59 (4)C22—C23—H23B109.4
S2—Ni—N188.33 (4)H23A—C23—H23B108.0
S2—Ni—S2ii176.66 (8)C25—C24—C23114.6 (10)
S2—Ni—N2i91.67 (4)C25—C24—H24A108.6
N1—Ni—S1ii91.41 (4)C23—C24—H24A108.6
N2i—Ni—S1ii88.59 (4)C25—C24—H24B108.6
N2i—Ni—S2ii91.67 (4)C23—C24—H24B108.6
S1ii—Ni—S2ii82.91 (5)H24A—C24—H24B107.6
N1—Ni—S288.33 (4)C24—C25—C26109.4 (9)
S1ii—Ni—S297.17 (5)C24—C25—H25A109.8
Ni—S1—P182.73 (6)C26—C25—H25A109.8
Ni—S2—P182.52 (7)C24—C25—H25B109.8
O2—P1—O2199.6 (3)C26—C25—H25B109.8
O2—P1—O199.6 (3)H25A—C25—H25B108.2
O2—P1—S2108.27 (16)C21—C26—C25104.4 (8)
O1—P1—S2113.31 (17)C21—C26—H26A110.9
O2—P1—S1112.08 (17)C25—C26—H26A110.9
O1—P1—S1111.77 (19)C21—C26—H26B110.9
S2—P1—S1111.26 (10)C25—C26—H26B110.9
C7—O2—P1118.3 (4)H26A—C26—H26B108.9
C13—N1—C13ii116.7 (7)O2—C7—C12109.5 (6)
C13—N1—Ni121.6 (3)O2—C7—C8108.9 (5)
C13ii—N1—Ni121.6 (3)C12—C7—C8113.1 (7)
C18—N2—C18ii116.1 (7)O2—C7—H7108.4
C18—N2—Niiii121.9 (3)C12—C7—H7108.4
C18ii—N2—Niiii121.9 (3)C8—C7—H7108.4
C1—O1—P1123.0 (4)C7—C8—C9110.4 (7)
O1—C1—C2103.5 (6)C7—C8—H8A109.6
O1—C1—C6105.5 (6)C9—C8—H8A109.6
C2—C1—C6106.1 (6)C7—C8—H8B109.6
O1—C1—H1113.6C9—C8—H8B109.6
C2—C1—H1113.6H8A—C8—H8B108.1
C6—C1—H1113.6C10—C9—C8111.4 (8)
C3—C2—C1110.4 (7)C10—C9—H9A109.3
C3—C2—H2A109.6C8—C9—H9A109.3
C1—C2—H2A109.6C10—C9—H9B109.3
C3—C2—H2B109.6C8—C9—H9B109.3
C1—C2—H2B109.6H9A—C9—H9B108.0
H2A—C2—H2B108.1C9—C10—C11110.7 (8)
C2—C3—C4111.0 (6)C9—C10—H10A109.5
C2—C3—H3A109.4C11—C10—H10A109.5
C4—C3—H3A109.4C9—C10—H10B109.5
C2—C3—H3B109.4C11—C10—H10B109.5
C4—C3—H3B109.4H10A—C10—H10B108.1
H3A—C3—H3B108.0C10—C11—C12112.0 (7)
C5—C4—C3109.9 (6)C10—C11—H11A109.2
C5—C4—H4A109.7C12—C11—H11A109.2
C3—C4—H4A109.7C10—C11—H11B109.2
C5—C4—H4B109.7C12—C11—H11B109.2
C3—C4—H4B109.7H11A—C11—H11B107.9
H4A—C4—H4B108.2C7—C12—C11108.8 (7)
C6—C5—C4109.9 (6)C7—C12—H12A109.9
C6—C5—H5A109.7C11—C12—H12A109.9
C4—C5—H5A109.7C7—C12—H12B109.9
C6—C5—H5B109.7C11—C12—H12B109.9
C4—C5—H5B109.7H12A—C12—H12B108.3
H5A—C5—H5B108.2N1—C13—C14123.3 (5)
C5—C6—C1108.0 (6)N1—C13—H13118.3
C5—C6—H6A110.1C14—C13—H13118.3
C1—C6—H6A110.1C13—C14—C15120.2 (5)
C5—C6—H6B110.1C13—C14—H14119.9
C1—C6—H6B110.1C15—C14—H14119.9
H6A—C6—H6B108.4C14—C15—C14ii116.1 (7)
C21—O21—P1123.0 (4)C14—C15—C16121.9 (3)
O21—C21—C26131.5 (10)C14ii—C15—C16121.9 (3)
O21—C21—C22114.4 (12)C17—C16—C17ii116.4 (7)
C26—C21—C22108.0 (9)C17—C16—C15121.8 (4)
O21—C21—H2198.1C17ii—C16—C15121.8 (4)
C26—C21—H2198.1C18—C17—C16120.0 (5)
C22—C21—H2198.1C18—C17—H17120.0
C21—C22—C23106.8 (9)C16—C17—H17120.0
C21—C22—H22A110.4C17—C18—N2123.8 (5)
C23—C22—H22A110.4C17—C18—H18118.1
C21—C22—H22B110.4N2—C18—H18118.1
C23—C22—H22B110.4
N1—Ni—S1—P193.16 (6)O1—C1—C6—C5172.4 (8)
N2i—Ni—S1—P186.84 (6)C2—C1—C6—C563.0 (11)
S2ii—Ni—S1—P1178.35 (7)O2—P1—O21—C21169.9 (5)
S2—Ni—S1—P15.02 (7)S2—P1—O21—C2175.3 (5)
N1—Ni—S2—P196.67 (6)S1—P1—O21—C2151.4 (5)
N2i—Ni—S2—P183.33 (6)P1—O21—C21—C2663.9 (11)
S1ii—Ni—S2—P1172.12 (7)P1—O21—C21—C22147.4 (8)
S1—Ni—S2—P15.04 (7)O21—C21—C22—C2388.1 (15)
Ni—S2—P1—O2116.91 (18)C26—C21—C22—C2367.8 (16)
Ni—S2—P1—O21133.6 (2)C21—C22—C23—C2456 (2)
Ni—S2—P1—O1133.6 (2)C22—C23—C24—C2551 (2)
Ni—S2—P1—S16.67 (9)C23—C24—C25—C2654 (2)
Ni—S1—P1—O2114.68 (18)O21—C21—C26—C2580.1 (15)
Ni—S1—P1—O21134.49 (19)C22—C21—C26—C2570.1 (14)
Ni—S1—P1—O1134.49 (19)C24—C25—C26—C2161.4 (17)
Ni—S1—P1—S26.71 (9)P1—O2—C7—C12121.2 (6)
O21—P1—O2—C768.7 (5)P1—O2—C7—C8114.7 (6)
O1—P1—O2—C768.7 (5)O2—C7—C8—C9179.6 (7)
S2—P1—O2—C7172.7 (4)C12—C7—C8—C957.7 (9)
S1—P1—O2—C749.7 (5)C7—C8—C9—C1056.3 (10)
S1ii—Ni—N1—C1329.4 (3)C8—C9—C10—C1156.1 (10)
S1—Ni—N1—C13150.6 (3)C9—C10—C11—C1255.2 (11)
S2ii—Ni—N1—C13112.2 (3)O2—C7—C12—C11177.2 (5)
S2—Ni—N1—C1367.8 (3)C8—C7—C12—C1155.6 (8)
S1ii—Ni—N1—C13ii150.6 (3)C10—C11—C12—C754.5 (11)
S1—Ni—N1—C13ii29.4 (3)C13ii—N1—C13—C140.3 (5)
S2ii—Ni—N1—C13ii67.8 (3)Ni—N1—C13—C14179.7 (5)
S2—Ni—N1—C13ii112.2 (3)N1—C13—C14—C150.6 (9)
O2—P1—O1—C1169.9 (5)C13—C14—C15—C14ii0.3 (4)
S2—P1—O1—C175.3 (5)C13—C14—C15—C16179.7 (4)
S1—P1—O1—C151.4 (5)C14—C15—C16—C1737.7 (4)
P1—O1—C1—C2158.6 (6)C14ii—C15—C16—C17142.3 (4)
P1—O1—C1—C690.1 (7)C14—C15—C16—C17ii142.3 (4)
O1—C1—C2—C3172.3 (8)C14ii—C15—C16—C17ii37.7 (4)
C6—C1—C2—C361.5 (12)C17ii—C16—C17—C180.1 (4)
C1—C2—C3—C459.3 (12)C15—C16—C17—C18179.9 (4)
C2—C3—C4—C556.8 (10)C16—C17—C18—N20.1 (8)
C3—C4—C5—C659.2 (10)C18ii—N2—C18—C170.1 (4)
C4—C5—C6—C163.2 (11)Niiii—N2—C18—C17179.9 (4)
Symmetry codes: (i) x, y1, z; (ii) x, y, z+1/2; (iii) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C14—H14···S2iv0.952.863.604 (5)136
Symmetry code: (iv) x, y1, z.
 

Acknowledgements

This work was supported by the departmental research grant AX-0026 from The Robert A. Welch Foundation. Cheminova is thanked for the gift of the dithiophosphate ligand used in this study.

References

First citationBerdugo, E. & Tiekink, E. R. T. (2006). Acta Cryst. E62, m2218–m2220.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBerdugo, E., Tiekink, E. R. T., Wardell, J. L. & Wardell, S. M. S. V. (2006). Acta Cryst. E62, m2693–m2694.  Web of Science CSD CrossRef IUCr Journals Google Scholar
First citationBeurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., Garcia-Granda, S., Gould, R. O., Smits, J. M. M. & Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, University of Nijmegen, The Netherlands.  Google Scholar
First citationBrandenburg, K. (2006). DIAMOND. Release 3.1. Crystal Impact GbR, Bonn, Germany.  Google Scholar
First citationChen, D., Lai, C. S. & Tiekink, E. R. T. (2006). CrystEngComm, 8, 51–58.  Web of Science CSD CrossRef CAS Google Scholar
First citationHooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationJohnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.  Google Scholar
First citationLai, C. S., Liu, S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 221–226.  Web of Science CSD CrossRef CAS Google Scholar
First citationLai, C. S. & Tiekink, E. R. T. (2004). CrystEngComm, 6, 593–605.  Web of Science CSD CrossRef CAS Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSheldrick, G. M. (2003). SADABS. Version 2.10. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds