research communications\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Crystal structures of (μ2-η2,η2-4-hydroxybut-2-yn-1-yl 2-bromo-2-methylpropanoate-κ4C2,C3:C2,C3)bis­[tri­carbonylcobalt(II)](Co—Co) and [μ2-η2,η2-but-2-yne-1,4-diyl bis­(2-bromo-2-methyl­propanoate)-κ4C2,C3:C2,C3]bis­[tri­carbonylcobalt(II)](Co—Co)

aDepartment of Chemistry, University of Otago, PO Box 56, Dunedin, New Zealand
*Correspondence e-mail: jsimpson@alkali.otago.ac.nz

Edited by W. T. A. Harrison, University of Aberdeen, Scotland (Received 24 February 2014; accepted 29 April 2014; online 23 June 2014)

The title compounds, [Co2(C8H11BrO3)(CO)6], (1), and [Co2(C12H16Br2O4)(CO)6], (2), result from the replacement of two carbonyl ligands from dicobalt octa­carbonyl by the alkynes 4-hy­droxy­but-2-ynyl 2-bromo-2-methyl­propano­ate and but-2-yne-1,4-diyl bis­(2-bromo-2-methyl­propano­ate), respectively. Both mol­ecules have classic tetra­hedral C2Co2 cluster cores with the CoII atoms in a highly distorted octa­hedral coordination geometry. The alkyne ligands both adopt a cis-bent conformation on coordination. In the crystal structure of (1), classical O—H⋯O and non-classical C—H⋯O contacts form inversion dimers. These combine with weak O⋯O and Br⋯O contacts to stack the mol­ecules into inter­connected columns along the b-axis direction. C—H⋯O and C—H⋯Br contacts stabilize the packing for (2), and a weak Br⋯O contact is also observed. Inter­connected columns of mol­ecules again form along the b-axis direction.

1. Chemical context

In 1954 alkynes were found to act as ligands and displace two carbonyl groups from dicobalt octa­carbonyl to form alkyne-hexa­carbonyl-dicobalt complexes (Sternberg et al., 1954[Sternberg, H. W., Greenfield, H., Friedel, R. A., Wotiz, J., Markby, R. & Wender, I. (1954). J. Am. Chem. Soc. 76, 1457-1458.]). The novelty of these compounds, together with their close isolobal relationship to other members of the `tetra­hedrane series' (Hoffmann, 1982[Hoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711-724.]), spawned enormous inter­est in both the hexa­carbonyls and their substituted derivatives. Applications include use in organic synthesis (Melikyan et al., 2012[Melikyan, G. G., Rivas, B., Harutyunyan, S., Carlson, L. & Sepanian, R. (2012). Organometallics, 31, 1653-1663.]), as biological probes (Salmain & Jaouen, 1993[Salmain, M. & Jaouen, G. (1993). J. Organomet. Chem. 445, 237-243.]) and in the stab­il­ization of high-performance energetic materials (Windler et al., 2012[Windler, G. K., Zhang, M.-Z., Zitterbart, R., Pagoria, P. F. & Vollhardt, K. P. C. (2012). Chem. Eur. J. 18, 6588-6603.]). Their diverse redox properties (Robinson & Simpson, 1989[Robinson, B. H. & Simpson, J. (1989). Paramagnetic Organometallic Species in Activation, Selectivity and Catalysis, edited by M. Chanon, M. Julliard & J. C. Poite, pp. 357-374. Dordrecht: Kluwer.]) have also been exploited in the development of mol­ecular wires (McAdam et al., 1996[McAdam, C. J., Duffy, N. W., Robinson, B. H. & Simpson, J. (1996). Organometallics, 15, 3935-3943.]; Hore et al., 2000[Hore, L.-A., McAdam, C. J., Kerr, J. L., Duffy, N. W., Robinson, B. H. & Simpson, J. (2000). Organometallics, 19, 5039-5048.]; Xie et al., 2012[Xie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L., Suo, Q.-L. & Fu, P. (2012). Polyhedron, 38, 7-14.]) where alkyne-hexa­carbonyl-dicobalt cores are separated by electronically conducting spacers or connecting groups. Our recent inter­est in incorporating redox-active organometallic species into polymer materials (Dana et al., 2007[Dana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547-559.]; McAdam et al., 2008[McAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008). J. Organomet. Chem. 693, 2715-2722.]) prompted us to investigate the synthesis of alkyne-hexa­carbonyl-dicobalt complexes with potential ATRP initiator functionality by the incorporation of one or more known initiator substrates, such as 2-halo-2-methyl propanoyl esters (Wang & Matyjaszewski, 1995[Wang, J.-S. & Matyjaszewski, K. (1995). Macromolecules, 28, 7901-7910.]; Laurent & Grayson, 2006[Laurent, B. A. & Grayson, S. M. (2006). J. Am. Chem. Soc. 128, 4238-4239.]), into the alkyne system. The structures of two such mol­ecules with 2-bromo-2-methyl­propano­ate substituents are reported here.

[Scheme 1]

2. Structural commentary

The molecular structures of (1) and (2) are illustrated in Figs. 1[link] and 2[link]. Both compounds are classic alkyne dicobalt cluster systems incorporating the triple bonds of 4-hy­droxy­but-2-ynyl 2-bromo-2-methyl­propano­ate for (1) and but-2-yne-1,4-diyl bis­(2-bromo-2-methyl­propano­ate) for (2) into the tetra­hedral C2Co2 core of the alkyne dicobalt cluster unit. The coordin­ation geometry around each cobalt atom is distorted octa­hedral. Each cobalt atom carries one pseudo-axial and two pseudo-equatorial carbonyl substituents. The C2 and C3 atoms of the alkyne ligand for (1) and the corresponding C1 and C2 atoms for (2) are also pseudo-equatorial, with the bonds to the second Co atoms completing the highly distorted coordination spheres in pseudo-axial sites.

[Figure 1]
Figure 1
The structure of (1) with ellipsoids drawn at the 50% probability level.
[Figure 2]
Figure 2
The structure of (2) with ellipsoids drawn at the 50% probability level.

This combination of coordination spheres results in classical `sawhorse' structures (Arewgoda et al., 1983[Arewgoda, C. M., Robinson, B. H. & Simpson, J. (1983). J. Am. Chem. Soc. 105, 1893-1903.]) for each mol­ecule. The CH2OH and 2-bromo-2-ethyl­propano­ate substit­uents for (1) and the two 2-bromo-2-ethyl­propano­ate groups for (2), adopt a cis-bent configuration similar to the excited state of an alkyne system (Dickson & Fraser, 1974[Dickson, R. S. & Fraser, P. J. (1974). Adv. Organomet. Chem. 12, 323-377.]). Furthermore, the C11—Co1—Co2—C21 and C1—C2—C3—C4 planes for (1) and C15—Co1—Co2—C18 and C3—C2—C1—C8 planes for (2) are close to orthogonal with inter­planar angles of 89.65 (7) and 85.91 (7)°, respectively. The Co1—Co2 bond lengths are 2.4723 (7) Å for (1) and 2.4759 (10) Å for (2) with corresponding C2—C3 and C1—C2 distances of 1.344 (5) and 1.343 (3) Å (Tables 1[link] and 2[link]). These are not unusual in comparison to those found for the 480 C2Co2 alkyne dicobalt clusters with 6 CO ligands found in the Cambridge Structural Database (Allen, 2002[Allen, F. H. (2002). Acta Cryst. B58, 380-388.]). For these, the mean Co—Co and C—C distances are found to be 2.47 (1) and 1.337 (15) Å, respectively. The eight Co—Calkyne distances average 1.958 (7) Å, again comparable to the mean value of 1.965 (5) Å found previously.

Table 1
Selected bond lengths (Å) for (1)[link]

C2—C3 1.344 (5) C2—Co2 1.972 (3)
Co1—Co2 2.4723 (7) C3—Co1 1.956 (4)
C2—Co1 1.967 (3) C3—Co2 1.960 (3)

Table 2
Selected bond lengths (Å) for (2)[link]

C1—C2 1.343 (3) C1—Co2 1.949 (2)
Co1—Co2 2.4759 (10) C2—Co1 1.9508 (19)
C1—Co1 1.960 (2) C2—Co2 1.948 (2)

The C=O groups of the 2-bromo-2-methyl­propano­ate units point away from the cluster cores in both mol­ecules. The two carbonyl groups in (2) each lie on the same side of the mol­ecule, with the 2-bromo-2-methyl­propano­ate units arranged symmetrically with respect to the central C2Co2 unit. Bond lengths (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]) and angles in the –OC(O)–C(CH3)2Br chains are not unusual and are similar in both mol­ecules.

3. Supra­molecular features

In the crystal structure of (1), classical O1—H1⋯O3 hydrogen bonds (Table 3[link]) are augmented by two C—H⋯O contacts that link adjacent mol­ecules into inversion dimers generating R22(10), R22(18)and R22(20) rings (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]). Two additional inversion dimers also result from weaker C1—H1A⋯O1 and C8—H8A⋯O12 hydrogen bonds (Fig. 3[link]). These contacts, together with weak O2⋯O21, [2.965 (4) Å; symmetry operation 1 + x, y, z) and Br1⋯O1 [3.307 (3) Å; symmetry operationx, 1 − y, 2 − z] contacts stack the mol­ecules into inter­connected columns along the b-axis direction (Fig. 4[link]).

Table 3
Hydrogen-bond geometry (Å, °) for (1)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O3i 0.84 2.16 2.946 (4) 156
C4—H4B⋯O3i 0.99 2.60 3.360 (4) 134
C7—H7A⋯O1i 0.98 2.71 3.637 (5) 157
C1—H1A⋯O1ii 0.99 2.55 3.307 (5) 133
C8—H8A⋯O12iii 0.98 2.71 3.485 (5) 136
Symmetry codes: (i) -x, -y+1, -z+2; (ii) -x, -y+2, -z+2; (iii) -x+1, -y+1, -z+1.
[Figure 3]
Figure 3
Inversion dimers in the crystal structure of (1). Hydrogen bonds are drawn as dashed lines and symmetry operations are those detailed in Table 2[link].
[Figure 4]
Figure 4
Overall packing for (1) viewed along the b axis. Hydrogen bonds and other inter­atomic contacts are drawn as dashed lines.

Hydrogen bonding also figures prominently in the structure of (2), although in this mol­ecule no classical hydrogen bonds are possible. Bifurcated C3—H3B⋯O2 and C8–H8A⋯O2 contacts (Table 4[link]) produce R21(7) rings while inversion-related C8—H8B⋯O4 hydrogen bonds form R22(10) rings (Fig. 5[link]). The other significant contacts involve C—H⋯Br hydrogen bonds. C12—H12C⋯Br1 contacts link mol­ecules into C22(14) chains approximately parallel to [110] while C6—H6A⋯Br2 inter­actions, bolstered by short O1⋯Br2 contacts [3.296 (2) Å, symmetry operation x, −1 + y, z], form C22(12) chains parallel to [010] (Fig. 6[link]). The net result of these contacts is a series of inter­connected columns of mol­ecules stacked along the b-axis direction (Fig. 7[link]).

Table 5
Experimental details

  (1) (2)
Crystal data
Chemical formula [Co2(C8H11BrO3)(CO)6] [Co2(C12H16Br2O4)(CO)6]
Mr 521.00 669.99
Crystal system, space group Triclinic, P[\overline{1}] Triclinic, P[\overline{1}]
Temperature (K) 91 91
a, b, c (Å) 7.3887 (8), 11.1147 (12), 11.7274 (13) 9.392 (5), 10.710 (5), 13.269 (5)
α, β, γ (°) 78.583 (6), 85.239 (6), 76.342 (6) 71.314 (5), 71.973 (5), 84.630 (5)
V3) 916.67 (18) 1202.3 (10)
Z 2 2
Radiation type Mo Kα Mo Kα
μ (mm−1) 4.03 4.75
Crystal size (mm) 0.39 × 0.16 × 0.04 0.25 × 0.11 × 0.06
 
Data collection
Diffractometer Bruker APEXII CCD area detector Bruker APEXII CCD area detector
Absorption correction Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Multi-scan (SADABS; Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.])
Tmin, Tmax 0.302, 0.855 0.611, 1.000
No. of measured, independent and observed [I > 2σ(I)] reflections 11686, 3713, 2966 21546, 8127, 6040
Rint 0.055 0.037
(sin θ/λ)max−1) 0.628 0.751
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.097, 1.03 0.031, 0.069, 0.95
No. of reflections 3713 8127
No. of parameters 238 293
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.83, −0.73 1.43, −1.06
Computer programs: APEX2 and SAINT (Bruker, 2011[Bruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]), SHELXS97 and SHELXL2013 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]), TITAN2000 (Hunter & Simpson, 1999[Hunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.]), Mercury (Macrae et al., 2008[Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.]), enCIFer (Allen et al., 2004[Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335-338.]), PLATON (Spek, 2009[Spek, A. L. (2009). Acta Cryst. D65, 148-155.]) and publCIF (Westrip, 2010[Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.]).
[Figure 5]
Figure 5
C—H⋯O hydrogen bonds in the crystal structure of (2). Hydrogen bonds are drawn as dashed lines and symmetry operations are those detailed in Table 4[link].
[Figure 6]
Figure 6
Chains of mol­ecules of (2) formed by C—H⋯Br hydrogen bonds drawn as dashed lines. Symmetry operations are those detailed in Table 4[link].
[Figure 7]
Figure 7
Overall packing for (2) viewed along the b axis. Hydrogen bonds and other inter­atomic contacts are drawn as dashed lines.

4. Database survey

The first structure, of dicobalt hexa­carbonyl di­phenyl­acetyl­ene, was reported using film data (Sly, 1959[Sly, W. G. (1959). J. Am. Chem. Soc. 81, 18-20.]). The current database (Version 5.35, November 2013 with 1 update) details 480 hexa­carbonyl structures. However, this number rises to 730 if the search is extended to cover dicobalt alkyne compounds in which one or more carbonyl group has been substituted, mainly by phosphine ligands. Inter­estingly there are no current examples of similar 4-hydroxybut-2-ynyl carboxylate derivatives and only one but-2-yne-1,4-diyl di­ace­tate complex [(4-di­acet­oxy­but-2-yne)-hexa­carbonyl-dicobalt; Soleilhavoup et al., 2002[Soleilhavoup, M., Saccavini, C., Lepetit, C., Lavigne, G., Maurette, L., Donnadieu, B. & Chauvin, R. (2002). Organometallics, 21, 871-883.]] among this plethora of structures, underlining the novelty of the compounds reported here.

5. Synthesis and crystallization

In typical preparations, 1:1 molar qu­anti­ties of 4-hy­droxy­but-2-ynyl 2-bromo-2-methyl­propano­ate for (1) or a 2:1 molar ratio of but-2-yne-1,4-diyl bis­(2-bromo-2-methyl­propano­ate) for (2) with Co2(CO)8 were allowed to react at room temperature for 1 h in CH2Cl2 under nitro­gen. The reaction mixtures were filtered through silica gel to remove any insol­uble impurities and the filtrates taken to dryness in vacuo. The complexes were then purified by recrystallization from hexane at 273 K. Yields were in the range 70–80%. Complexation was confirmed by the absence of a band at 1860 cm−1 in the infrared spectrum, attributable to the μ2 (bridging) carbonyl groups of the dicobalt octa­carbonyl starting material. In addition, a hypsochromic shift of approximately 30 cm−1 of the remaining carbonyl stretching frequencies is seen, due to the decrease in electron density at the metal atoms upon coordination of these alkynes. Characteristic IR spectra were recorded for both products as follows: IR (ν, cm−1): (1): 3300 (broad, OH), ν(C≡O) 2099, 2062, 2032, ν(C=O) 1735; (2): ν(C≡O) 2096, 2058, 2031, ν(C=O) 1734.

6. Refinement

All H atoms bound to carbon were refined using a riding model with d(C—H) = 0.99 Å, Uiso = 1.2Ueq (C) for CH2, 0.98 Å, Uiso = 1.5Ueq (C) for CH3 atoms. In the final refinement, two reflections from the data for (2) with Fo << Fc were omitted from the refinement.

Table 4
Hydrogen-bond geometry (Å, °) for (2)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
C12—H12C⋯Br1i 0.98 2.99 3.961 (3) 170
C6—H6A⋯Br2ii 0.98 3.01 3.788 (2) 137
C8—H8B⋯O4iii 0.99 2.45 3.411 (3) 165
C3—H3B⋯O2iv 0.99 2.58 3.341 (3) 133
C8—H8A⋯O2iv 0.99 2.64 3.454 (3) 139
Symmetry codes: (i) x-1, y-1, z; (ii) x, y+1, z; (iii) -x+1, -y, -z+1; (iv) -x+1, -y+1, -z+1.

Supporting information


Computing details top

For both compounds, data collection: APEX2 (Bruker, 2011); cell refinement: APEX2 and SAINT (Bruker, 2011); data reduction: SAINT (Bruker, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL2013 (Sheldrick, 2008) and TITAN2000 (Hunter & Simpson, 1999); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL2013 (Sheldrick, 2008), enCIFer (Allen et al., 2004), PLATON (Spek, 2009) and publCIF (Westrip, 2010).

(1) [µ2-η2,η2-4-Hydroxybut-2-yn-1-yl 2-bromo-2-methylpropanoate-κ4C2,C3:C2,C3]bis[tricarbonylcobalt(II)](CoCo) top
Crystal data top
[Co2(C8H11BrO3)(CO)6]Z = 2
Mr = 521.00F(000) = 512
Triclinic, P1Dx = 1.888 Mg m3
a = 7.3887 (8) ÅMo Kα radiation, λ = 0.71073 Å
b = 11.1147 (12) ÅCell parameters from 3089 reflections
c = 11.7274 (13) Åθ = 4.7–51.2°
α = 78.583 (6)°µ = 4.03 mm1
β = 85.239 (6)°T = 91 K
γ = 76.342 (6)°Irregular fragment, orange-red
V = 916.67 (18) Å30.39 × 0.16 × 0.04 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
3713 independent reflections
Radiation source: fine-focus sealed tube2966 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ω scansθmax = 26.5°, θmin = 3.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 89
Tmin = 0.302, Tmax = 0.855k = 1313
11686 measured reflectionsl = 1414
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.038H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0486P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3713 reflectionsΔρmax = 0.83 e Å3
238 parametersΔρmin = 0.73 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.0205 (4)0.8525 (2)1.0602 (2)0.0210 (6)
H10.03870.78441.10000.032*
C10.1326 (5)0.8873 (4)0.9601 (3)0.0159 (8)
H1A0.16160.98000.93570.019*
H1B0.25170.86050.98030.019*
C20.0346 (4)0.8277 (3)0.8618 (3)0.0137 (7)
C30.0896 (4)0.7232 (3)0.8429 (3)0.0135 (7)
C40.1996 (5)0.6065 (3)0.9107 (3)0.0131 (7)
H4A0.28130.62820.96260.016*
H4B0.11440.55940.96000.016*
O20.3132 (3)0.5272 (2)0.8345 (2)0.0160 (5)
C50.2596 (5)0.4240 (3)0.8234 (3)0.0147 (8)
O30.1198 (4)0.3939 (2)0.8680 (2)0.0220 (6)
C60.3981 (5)0.3471 (3)0.7453 (3)0.0185 (8)
C70.3045 (6)0.2640 (4)0.6933 (3)0.0254 (9)
H7A0.25100.20890.75600.038*
H7B0.39670.21270.64720.038*
H7C0.20520.31690.64310.038*
C80.5019 (6)0.4259 (4)0.6532 (3)0.0274 (9)
H8A0.59210.37030.60970.041*
H8B0.56760.47330.69100.041*
H8C0.41260.48470.59950.041*
Br10.58507 (6)0.23943 (4)0.85597 (4)0.02956 (14)
Co10.14649 (6)0.86999 (5)0.73644 (4)0.01350 (13)
C110.3041 (5)0.9142 (3)0.8218 (3)0.0153 (8)
O110.4032 (3)0.9404 (3)0.8748 (2)0.0216 (6)
C120.3119 (5)0.7980 (4)0.6321 (3)0.0188 (8)
O120.4169 (4)0.7477 (3)0.5703 (2)0.0299 (7)
C130.0360 (5)1.0278 (4)0.6608 (3)0.0235 (9)
O130.0335 (4)1.1244 (3)0.6144 (3)0.0358 (8)
Co20.11056 (6)0.76340 (5)0.73243 (4)0.01475 (14)
C210.2640 (5)0.6741 (4)0.8176 (3)0.0216 (9)
O210.3575 (4)0.6190 (3)0.8772 (3)0.0327 (7)
C220.0153 (5)0.6651 (4)0.6246 (3)0.0216 (9)
O220.0493 (4)0.6009 (3)0.5607 (3)0.0342 (7)
C230.2750 (5)0.8974 (4)0.6540 (3)0.0216 (8)
O230.3745 (4)0.9823 (3)0.6055 (2)0.0293 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0248 (14)0.0207 (15)0.0180 (14)0.0051 (12)0.0019 (11)0.0039 (11)
C10.0151 (17)0.0157 (19)0.0168 (19)0.0025 (15)0.0022 (14)0.0049 (15)
C20.0112 (17)0.0148 (19)0.0147 (18)0.0052 (14)0.0024 (13)0.0003 (15)
C30.0114 (16)0.0169 (19)0.0132 (18)0.0063 (14)0.0017 (13)0.0020 (15)
C40.0151 (17)0.0108 (18)0.0135 (18)0.0024 (14)0.0019 (14)0.0040 (14)
O20.0163 (12)0.0133 (13)0.0174 (13)0.0020 (10)0.0043 (10)0.0041 (11)
C50.0173 (18)0.0119 (18)0.0126 (18)0.0001 (14)0.0014 (14)0.0002 (14)
O30.0244 (14)0.0199 (15)0.0229 (15)0.0087 (12)0.0082 (11)0.0059 (12)
C60.0210 (19)0.0128 (19)0.0185 (19)0.0021 (15)0.0010 (15)0.0025 (16)
C70.030 (2)0.025 (2)0.023 (2)0.0080 (18)0.0048 (17)0.0107 (18)
C80.036 (2)0.023 (2)0.020 (2)0.0042 (18)0.0098 (18)0.0042 (18)
Br10.0302 (2)0.0259 (2)0.0255 (2)0.00937 (17)0.00436 (17)0.00550 (18)
Co10.0140 (2)0.0128 (3)0.0133 (3)0.00413 (19)0.00139 (18)0.0009 (2)
C110.0146 (17)0.0111 (18)0.0171 (19)0.0004 (14)0.0047 (15)0.0014 (15)
O110.0190 (13)0.0231 (15)0.0241 (15)0.0054 (11)0.0014 (11)0.0065 (12)
C120.023 (2)0.019 (2)0.0168 (19)0.0116 (16)0.0023 (16)0.0030 (16)
O120.0360 (17)0.0303 (17)0.0251 (16)0.0105 (14)0.0129 (13)0.0111 (14)
C130.024 (2)0.027 (2)0.024 (2)0.0126 (18)0.0019 (17)0.0033 (18)
O130.0362 (17)0.0196 (17)0.046 (2)0.0045 (14)0.0146 (15)0.0100 (15)
Co20.0140 (2)0.0139 (3)0.0161 (3)0.00375 (19)0.00161 (19)0.0012 (2)
C210.0197 (19)0.023 (2)0.021 (2)0.0035 (17)0.0066 (16)0.0010 (17)
O210.0254 (15)0.0375 (19)0.0351 (18)0.0164 (14)0.0022 (13)0.0050 (15)
C220.0204 (19)0.020 (2)0.025 (2)0.0062 (16)0.0066 (16)0.0017 (18)
O220.0389 (18)0.0333 (18)0.0346 (18)0.0058 (14)0.0004 (14)0.0193 (15)
C230.0174 (19)0.025 (2)0.025 (2)0.0101 (17)0.0015 (16)0.0041 (18)
O230.0240 (15)0.0204 (16)0.0382 (18)0.0019 (13)0.0105 (13)0.0068 (13)
Geometric parameters (Å, º) top
O1—C11.430 (4)C7—H7A0.9800
O1—H10.8400C7—H7B0.9800
C1—C21.493 (5)C7—H7C0.9800
C1—H1A0.9900C8—H8A0.9800
C1—H1B0.9900C8—H8B0.9800
C2—C31.344 (5)C8—H8C0.9800
Co1—Co22.4723 (7)Co1—C111.805 (4)
C2—Co11.967 (3)Co1—C121.819 (4)
C2—Co21.972 (3)Co1—C131.833 (4)
C3—C41.476 (5)C11—O111.121 (4)
C3—Co11.956 (4)C12—O121.141 (5)
C3—Co21.960 (3)C13—O131.125 (5)
C4—O21.455 (4)Co2—C211.794 (4)
C4—H4A0.9900Co2—C221.824 (4)
C4—H4B0.9900Co2—C231.825 (4)
O2—C51.331 (4)C21—O211.136 (5)
C5—O31.207 (4)C22—O221.135 (5)
C5—C61.535 (5)C23—O231.132 (4)
C6—C71.516 (5)Br1—O1i3.307 (3)
C6—C81.526 (5)O2—O21ii2.965 (4)
C6—Br11.981 (3)
C1—O1—H1109.5C6—C8—H8A109.5
O1—C1—C2111.1 (3)C6—C8—H8B109.5
O1—C1—H1A109.4H8A—C8—H8B109.5
C2—C1—H1A109.4C6—C8—H8C109.5
O1—C1—H1B109.4H8A—C8—H8C109.5
C2—C1—H1B109.4H8B—C8—H8C109.5
H1A—C1—H1B108.0C6—Br1—O1iii68.68 (12)
C3—C2—C1140.2 (3)C11—Co1—C1299.92 (16)
C3—C2—Co169.5 (2)C11—Co1—C1398.37 (16)
C1—C2—Co1135.5 (3)C12—Co1—C13106.52 (17)
C3—C2—Co269.5 (2)C11—Co1—C3100.69 (15)
C1—C2—Co2135.7 (2)C12—Co1—C3102.34 (16)
Co1—C2—Co277.75 (13)C13—Co1—C3141.85 (16)
C2—C3—C4138.8 (3)C11—Co1—C298.44 (15)
C2—C3—Co170.4 (2)C12—Co1—C2140.87 (16)
C4—C3—Co1135.6 (2)C13—Co1—C2104.58 (16)
C2—C3—Co270.5 (2)C3—Co1—C240.06 (14)
C4—C3—Co2135.3 (3)C11—Co1—Co2148.11 (11)
Co1—C3—Co278.29 (13)C12—Co1—Co2100.47 (12)
O2—C4—C3111.1 (3)C13—Co1—Co299.02 (12)
O2—C4—H4A109.4C3—Co1—Co250.92 (10)
C3—C4—H4A109.4C2—Co1—Co251.21 (10)
O2—C4—H4B109.4O11—C11—Co1179.3 (3)
C3—C4—H4B109.4O12—C12—Co1176.8 (3)
H4A—C4—H4B108.0O13—C13—Co1179.3 (3)
C5—O2—C4117.6 (3)C21—Co2—C22101.27 (18)
C5—O2—O21ii142.6 (2)C21—Co2—C23101.86 (17)
C4—O2—O21ii89.70 (19)C22—Co2—C23104.94 (17)
O3—C5—O2124.9 (3)C21—Co2—C398.31 (15)
O3—C5—C6123.7 (3)C22—Co2—C3103.15 (15)
O2—C5—C6111.4 (3)C23—Co2—C3141.17 (17)
C7—C6—C8112.2 (3)C21—Co2—C296.59 (16)
C7—C6—C5110.8 (3)C22—Co2—C2141.37 (15)
C8—C6—C5114.1 (3)C23—Co2—C2104.47 (16)
C7—C6—Br1109.1 (3)C3—Co2—C239.97 (14)
C8—C6—Br1107.0 (3)C21—Co2—Co1145.74 (12)
C5—C6—Br1103.0 (2)C22—Co2—Co1100.40 (12)
C6—C7—H7A109.5C23—Co2—Co197.76 (12)
C6—C7—H7B109.5C3—Co2—Co150.79 (10)
H7A—C7—H7B109.5C2—Co2—Co151.04 (10)
C6—C7—H7C109.5O21—C21—Co2176.0 (3)
H7A—C7—H7C109.5O22—C22—Co2177.1 (3)
H7B—C7—H7C109.5O23—C23—Co2178.5 (3)
O1—C1—C2—C330.5 (6)C3—C4—O2—C5106.2 (3)
O1—C1—C2—Co185.6 (4)C3—C4—O2—O21ii100.4 (3)
O1—C1—C2—Co2147.0 (3)C4—O2—C5—O33.2 (5)
C1—C2—C3—C40.4 (8)O21ii—O2—C5—O3135.5 (3)
Co1—C2—C3—C4138.1 (5)C4—O2—C5—C6177.1 (3)
Co2—C2—C3—C4137.7 (5)O21ii—O2—C5—C644.8 (5)
C1—C2—C3—Co1137.7 (5)O3—C5—C6—C722.8 (5)
Co2—C2—C3—Co184.12 (10)O2—C5—C6—C7156.8 (3)
C1—C2—C3—Co2138.1 (5)O3—C5—C6—C8150.7 (4)
Co1—C2—C3—Co284.12 (10)O2—C5—C6—C829.0 (4)
C2—C3—C4—O2179.8 (4)O3—C5—C6—Br193.7 (4)
Co1—C3—C4—O264.1 (4)O2—C5—C6—Br186.6 (3)
Co2—C3—C4—O264.1 (4)
Symmetry codes: (i) x+1, y+1, z+2; (ii) x+1, y, z; (iii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O3iii0.842.162.946 (4)156
C4—H4B···O3iii0.992.603.360 (4)134
C7—H7A···O1iii0.982.713.637 (5)157
C1—H1A···O1iv0.992.553.307 (5)133
C8—H8A···O12v0.982.713.485 (5)136
Symmetry codes: (iii) x, y+1, z+2; (iv) x, y+2, z+2; (v) x+1, y+1, z+1.
(2) [µ2-η2,η2-But-2-yne-1,4-diyl bis(2-bromo-2-methylpropanoate)-κ4C2,C3:C2,C3]bis[tricarbonylcobalt(II)](CoCo) top
Crystal data top
[Co2(C12H16Br2O4)(CO)6]Z = 2
Mr = 669.99F(000) = 656
Triclinic, P1Dx = 1.851 Mg m3
a = 9.392 (5) ÅMo Kα radiation, λ = 0.71069 Å
b = 10.710 (5) ÅCell parameters from 5837 reflections
c = 13.269 (5) Åθ = 2.3–30.9°
α = 71.314 (5)°µ = 4.75 mm1
β = 71.973 (5)°T = 91 K
γ = 84.630 (5)°Rod, dark red
V = 1202.3 (10) Å30.25 × 0.11 × 0.06 mm
Data collection top
Bruker APEXII CCD area-detector
diffractometer
6040 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.037
ω scansθmax = 32.3°, θmin = 1.7°
Absorption correction: multi-scan
(SADABS; Bruker, 2011)
h = 1412
Tmin = 0.611, Tmax = 1.000k = 1616
21546 measured reflectionsl = 1918
8127 independent reflections
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.069 w = 1/[σ2(Fo2) + (0.0311P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.95(Δ/σ)max = 0.008
8127 reflectionsΔρmax = 1.43 e Å3
293 parametersΔρmin = 1.06 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Br10.75011 (2)0.49577 (2)0.81786 (2)0.02064 (5)
C70.6143 (2)0.74032 (18)0.72699 (17)0.0192 (4)
H7A0.53320.78910.69960.029*
H7B0.70790.75540.66570.029*
H7C0.62600.77080.78620.029*
C60.4399 (2)0.56200 (19)0.87435 (16)0.0167 (4)
H6A0.35110.60100.85260.025*
H6B0.45330.59810.93000.025*
H6C0.42700.46620.90610.025*
C50.5769 (2)0.59405 (18)0.77269 (16)0.0140 (4)
C40.5703 (2)0.54055 (17)0.68077 (16)0.0134 (4)
O20.63231 (16)0.58983 (13)0.58281 (11)0.0182 (3)
O10.48633 (15)0.43066 (12)0.72283 (11)0.0140 (3)
C30.4766 (2)0.36816 (18)0.64290 (15)0.0143 (4)
H3A0.57690.33900.60630.017*
H3B0.43730.43110.58480.017*
C20.3747 (2)0.25397 (17)0.70430 (15)0.0126 (4)
C10.3246 (2)0.15033 (18)0.68869 (15)0.0123 (4)
C80.3382 (2)0.09321 (18)0.59884 (16)0.0147 (4)
H8A0.31210.15980.53580.018*
H8B0.44240.06440.57150.018*
O30.23609 (15)0.01940 (12)0.64364 (11)0.0149 (3)
C90.2214 (2)0.07240 (18)0.56873 (16)0.0142 (4)
O40.28657 (18)0.03238 (14)0.47087 (12)0.0232 (3)
C100.1107 (2)0.18786 (18)0.62156 (17)0.0151 (4)
C110.0394 (3)0.2029 (2)0.53826 (19)0.0235 (5)
H11A0.01590.28660.56900.035*
H11B0.11750.20210.46900.035*
H11C0.02970.12980.52280.035*
C120.0002 (3)0.1871 (2)0.7318 (2)0.0316 (6)
H12A0.06490.10990.72010.047*
H12B0.05410.18350.78320.047*
H12C0.06150.26750.76360.047*
Br20.24396 (3)0.34166 (2)0.65043 (2)0.03253 (7)
Co10.37507 (3)0.09639 (2)0.82922 (2)0.01282 (6)
C130.2937 (2)0.0691 (2)0.89243 (17)0.0205 (4)
O130.2402 (2)0.17088 (14)0.92908 (14)0.0318 (4)
C140.3706 (2)0.15581 (19)0.94411 (17)0.0204 (4)
O140.3689 (2)0.19624 (15)1.01387 (13)0.0319 (4)
C150.5735 (3)0.06630 (19)0.78595 (17)0.0192 (4)
O150.69906 (18)0.05518 (17)0.75817 (14)0.0304 (4)
Co20.16116 (3)0.22826 (2)0.78080 (2)0.01303 (6)
C160.0196 (2)0.0985 (2)0.84785 (17)0.0179 (4)
O160.06494 (18)0.01443 (15)0.88945 (13)0.0269 (4)
C170.1197 (2)0.3291 (2)0.87509 (19)0.0214 (4)
O170.0949 (2)0.39023 (17)0.93381 (15)0.0367 (4)
C180.0866 (2)0.3323 (2)0.67223 (18)0.0203 (4)
O180.0423 (2)0.39556 (16)0.60153 (14)0.0316 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Br10.01709 (11)0.02490 (11)0.02151 (11)0.00005 (8)0.00881 (8)0.00622 (8)
C70.0267 (12)0.0152 (9)0.0180 (10)0.0055 (8)0.0077 (8)0.0054 (8)
C60.0178 (10)0.0187 (9)0.0128 (9)0.0030 (8)0.0027 (7)0.0047 (7)
C50.0169 (10)0.0136 (8)0.0136 (9)0.0020 (7)0.0076 (7)0.0034 (7)
C40.0150 (10)0.0116 (8)0.0143 (9)0.0023 (7)0.0058 (7)0.0031 (7)
O20.0226 (8)0.0179 (7)0.0127 (7)0.0087 (6)0.0023 (6)0.0031 (5)
O10.0181 (7)0.0130 (6)0.0118 (6)0.0078 (5)0.0031 (5)0.0041 (5)
C30.0191 (10)0.0138 (8)0.0114 (9)0.0060 (7)0.0036 (7)0.0051 (7)
C20.0122 (9)0.0124 (8)0.0128 (9)0.0011 (7)0.0033 (7)0.0035 (7)
C10.0105 (9)0.0135 (8)0.0124 (9)0.0008 (7)0.0026 (7)0.0038 (7)
C80.0146 (10)0.0147 (8)0.0136 (9)0.0066 (7)0.0006 (7)0.0043 (7)
O30.0168 (7)0.0145 (6)0.0134 (7)0.0068 (5)0.0011 (5)0.0056 (5)
C90.0129 (9)0.0141 (8)0.0190 (10)0.0017 (7)0.0070 (7)0.0077 (7)
O40.0279 (9)0.0270 (8)0.0163 (7)0.0110 (7)0.0035 (6)0.0086 (6)
C100.0140 (10)0.0123 (8)0.0207 (10)0.0002 (7)0.0067 (8)0.0059 (7)
C110.0216 (12)0.0227 (10)0.0312 (12)0.0052 (9)0.0156 (9)0.0059 (9)
C120.0267 (13)0.0314 (12)0.0347 (13)0.0165 (10)0.0075 (10)0.0190 (11)
Br20.03671 (15)0.01571 (10)0.05628 (17)0.00796 (9)0.03120 (13)0.01135 (10)
Co10.01475 (14)0.01102 (12)0.01208 (12)0.00128 (10)0.00391 (10)0.00241 (9)
C130.0217 (11)0.0184 (10)0.0198 (10)0.0038 (8)0.0049 (8)0.0061 (8)
O130.0383 (10)0.0140 (7)0.0350 (9)0.0047 (7)0.0020 (8)0.0037 (7)
C140.0262 (12)0.0153 (9)0.0186 (10)0.0013 (8)0.0096 (9)0.0005 (8)
O140.0538 (12)0.0281 (8)0.0198 (8)0.0015 (8)0.0169 (8)0.0103 (7)
C150.0238 (12)0.0183 (9)0.0152 (9)0.0005 (8)0.0089 (8)0.0019 (8)
O150.0179 (9)0.0433 (10)0.0290 (9)0.0048 (7)0.0082 (7)0.0100 (7)
Co20.01267 (13)0.01312 (12)0.01367 (13)0.00069 (10)0.00305 (10)0.00523 (10)
C160.0151 (10)0.0245 (10)0.0152 (9)0.0001 (8)0.0015 (8)0.0102 (8)
O160.0219 (9)0.0329 (9)0.0241 (8)0.0118 (7)0.0022 (7)0.0117 (7)
C170.0194 (11)0.0220 (10)0.0252 (11)0.0015 (8)0.0068 (9)0.0108 (9)
O170.0380 (11)0.0400 (10)0.0421 (11)0.0063 (8)0.0098 (8)0.0299 (9)
C180.0180 (11)0.0202 (10)0.0251 (11)0.0012 (8)0.0053 (9)0.0114 (8)
O180.0359 (10)0.0342 (9)0.0285 (9)0.0105 (7)0.0173 (8)0.0102 (7)
Geometric parameters (Å, º) top
Br1—C51.998 (2)O3—C91.338 (2)
C7—C51.519 (3)C9—O41.202 (2)
C7—H7A0.9800C9—C101.528 (3)
C7—H7B0.9800C10—C111.513 (3)
C7—H7C0.9800C10—C121.513 (3)
C6—C51.518 (3)C10—Br21.983 (2)
C6—H6A0.9800C11—H11A0.9800
C6—H6B0.9800C11—H11B0.9800
C6—H6C0.9800C11—H11C0.9800
C5—C41.524 (3)C12—H12A0.9800
C4—O21.207 (2)C12—H12B0.9800
C4—O11.341 (2)C12—H12C0.9800
O1—C31.452 (2)Co1—C151.803 (2)
C3—C21.474 (3)Co1—C141.819 (2)
C3—H3A0.9900Co1—C131.826 (2)
C3—H3B0.9900C13—O131.135 (2)
C1—C21.343 (3)C14—O141.136 (3)
Co1—Co22.4759 (10)C15—O151.128 (3)
C1—Co11.960 (2)Co2—C181.805 (2)
C1—Co21.949 (2)Co2—C161.820 (2)
C2—Co11.9508 (19)Co2—C171.835 (2)
C2—Co21.948 (2)C16—O161.136 (2)
C1—C81.473 (3)C17—O171.130 (3)
C8—O31.460 (2)C18—O181.137 (3)
C8—H8A0.9900O1—Br2i3.2960 (18)
C8—H8B0.9900
C5—C7—H7A109.5C11—C10—C9110.93 (16)
C5—C7—H7B109.5C12—C10—C9114.10 (17)
H7A—C7—H7B109.5C11—C10—Br2106.58 (14)
C5—C7—H7C109.5C12—C10—Br2107.91 (15)
H7A—C7—H7C109.5C9—C10—Br2102.33 (13)
H7B—C7—H7C109.5C10—C11—H11A109.5
C5—C6—H6A109.5C10—C11—H11B109.5
C5—C6—H6B109.5H11A—C11—H11B109.5
H6A—C6—H6B109.5C10—C11—H11C109.5
C5—C6—H6C109.5H11A—C11—H11C109.5
H6A—C6—H6C109.5H11B—C11—H11C109.5
H6B—C6—H6C109.5C10—C12—H12A109.5
C6—C5—C7112.32 (17)C10—C12—H12B109.5
C6—C5—C4114.29 (16)H12A—C12—H12B109.5
C7—C5—C4111.00 (15)C10—C12—H12C109.5
C6—C5—Br1107.83 (13)H12A—C12—H12C109.5
C7—C5—Br1108.67 (14)H12B—C12—H12C109.5
C4—C5—Br1102.04 (13)C15—Co1—C1497.61 (10)
O2—C4—O1124.07 (18)C15—Co1—C13103.39 (10)
O2—C4—C5124.81 (17)C14—Co1—C13106.12 (9)
O1—C4—C5111.12 (15)C15—Co1—C296.50 (8)
C4—O1—C3115.91 (14)C14—Co1—C2105.58 (9)
C4—O1—Br2i78.24 (11)C13—Co1—C2139.62 (9)
C3—O1—Br2i91.57 (10)C15—Co1—C1102.92 (9)
O1—C3—C2107.52 (15)C14—Co1—C1141.32 (9)
O1—C3—H3A110.2C13—Co1—C1100.56 (9)
C2—C3—H3A110.2C2—Co1—C140.16 (8)
O1—C3—H3B110.2C15—Co1—Co2146.69 (6)
C2—C3—H3B110.2C14—Co1—Co296.39 (7)
H3A—C3—H3B108.5C13—Co1—Co2101.48 (8)
C1—C2—C3140.49 (18)C2—Co1—Co250.52 (6)
C1—C2—Co269.89 (11)C1—Co1—Co250.50 (6)
C3—C2—Co2135.87 (14)O13—C13—Co1177.5 (2)
C1—C2—Co170.29 (11)O14—C14—Co1178.14 (18)
C3—C2—Co1133.59 (14)O15—C15—Co1175.85 (19)
Co2—C2—Co178.85 (7)C18—Co2—C16100.32 (10)
C2—C1—C8139.74 (17)C18—Co2—C17100.21 (10)
C2—C1—Co269.80 (12)C16—Co2—C17104.28 (10)
C8—C1—Co2134.45 (14)C18—Co2—C299.95 (9)
C2—C1—Co169.55 (11)C16—Co2—C2140.82 (9)
C8—C1—Co1136.33 (14)C17—Co2—C2104.64 (9)
Co2—C1—Co178.60 (8)C18—Co2—C198.17 (9)
O3—C8—C1108.09 (15)C16—Co2—C1103.58 (9)
O3—C8—H8A110.1C17—Co2—C1143.05 (9)
C1—C8—H8A110.1C2—Co2—C140.31 (8)
O3—C8—H8B110.1C18—Co2—Co1147.24 (7)
C1—C8—H8B110.1C16—Co2—Co197.95 (8)
H8A—C8—H8B108.4C17—Co2—Co1101.33 (7)
C9—O3—C8115.40 (14)C2—Co2—Co150.63 (6)
O4—C9—O3123.67 (18)C1—Co2—Co150.90 (6)
O4—C9—C10124.03 (18)O16—C16—Co2177.62 (19)
O3—C9—C10112.30 (16)O17—C17—Co2179.3 (2)
C11—C10—C12113.98 (19)O18—C18—Co2177.7 (2)
C6—C5—C4—O2151.45 (19)Co1—C2—C1—C8139.0 (3)
C7—C5—C4—O223.2 (3)C3—C2—C1—Co2139.2 (3)
Br1—C5—C4—O292.5 (2)Co1—C2—C1—Co284.98 (6)
C6—C5—C4—O128.7 (2)C3—C2—C1—Co1135.8 (3)
C7—C5—C4—O1156.98 (16)Co2—C2—C1—Co184.98 (6)
Br1—C5—C4—O187.39 (16)C2—C1—C8—O3174.7 (2)
O2—C4—O1—C32.0 (3)Co2—C1—C8—O360.5 (2)
C5—C4—O1—C3177.82 (15)Co1—C1—C8—O368.3 (2)
O2—C4—O1—Br2i83.95 (19)C1—C8—O3—C9172.04 (16)
C5—C4—O1—Br2i96.19 (14)C8—O3—C9—O40.2 (3)
C4—O1—C3—C2177.40 (15)C8—O3—C9—C10178.94 (15)
Br2i—O1—C3—C299.72 (14)O4—C9—C10—C1126.6 (3)
O1—C3—C2—C1173.2 (2)O3—C9—C10—C11152.47 (17)
O1—C3—C2—Co268.6 (2)O4—C9—C10—C12157.0 (2)
O1—C3—C2—Co158.2 (2)O3—C9—C10—C1222.1 (2)
C3—C2—C1—C83.2 (5)O4—C9—C10—Br286.7 (2)
Co2—C2—C1—C8136.1 (3)O3—C9—C10—Br294.18 (16)
Symmetry code: (i) x, y+1, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12C···Br1ii0.982.993.961 (3)170
C6—H6A···Br2i0.983.013.788 (2)137
C8—H8B···O4iii0.992.453.411 (3)165
C3—H3B···O2iv0.992.583.341 (3)133
C8—H8A···O2iv0.992.643.454 (3)139
Symmetry codes: (i) x, y+1, z; (ii) x1, y1, z; (iii) x+1, y, z+1; (iv) x+1, y+1, z+1.
 

Acknowledgements

We thank the New Economy Research Fund (grant No. UOO-X0808) for support of this work and the University of Otago for the purchase of the diffractometer.

References

First citationAllen, F. H. (2002). Acta Cryst. B58, 380–388.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CSD CrossRef Web of Science Google Scholar
First citationArewgoda, C. M., Robinson, B. H. & Simpson, J. (1983). J. Am. Chem. Soc. 105, 1893–1903.  CSD CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBruker (2011). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationDana, B. H., McAdam, C. J., Robinson, B. H., Simpson, J. & Wang, H. (2007). J. Inorg. Organomet. Polym. Mater. 17, 547–559.  Web of Science CrossRef CAS Google Scholar
First citationDickson, R. S. & Fraser, P. J. (1974). Adv. Organomet. Chem. 12, 323–377.  CAS Google Scholar
First citationHoffmann, R. (1982). Angew. Chem. Int. Ed. Engl. 21, 711–724.  CrossRef Web of Science Google Scholar
First citationHore, L.-A., McAdam, C. J., Kerr, J. L., Duffy, N. W., Robinson, B. H. & Simpson, J. (2000). Organometallics, 19, 5039–5048.  Web of Science CSD CrossRef CAS Google Scholar
First citationHunter, K. A. & Simpson, J. (1999). TITAN2000. University of Otago, New Zealand.  Google Scholar
First citationLaurent, B. A. & Grayson, S. M. (2006). J. Am. Chem. Soc. 128, 4238–4239.  Web of Science CrossRef PubMed CAS Google Scholar
First citationMacrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.  Web of Science CSD CrossRef CAS IUCr Journals Google Scholar
First citationMcAdam, C. J., Duffy, N. W., Robinson, B. H. & Simpson, J. (1996). Organometallics, 15, 3935–3943.  CSD CrossRef CAS Web of Science Google Scholar
First citationMcAdam, C. J., Moratti, S. C., Robinson, B. H. & Simpson, J. (2008). J. Organomet. Chem. 693, 2715–2722.  Web of Science CSD CrossRef CAS Google Scholar
First citationMelikyan, G. G., Rivas, B., Harutyunyan, S., Carlson, L. & Sepanian, R. (2012). Organometallics, 31, 1653–1663.  Web of Science CSD CrossRef CAS Google Scholar
First citationRobinson, B. H. & Simpson, J. (1989). Paramagnetic Organometallic Species in Activation, Selectivity and Catalysis, edited by M. Chanon, M. Julliard & J. C. Poite, pp. 357–374. Dordrecht: Kluwer.  Google Scholar
First citationSalmain, M. & Jaouen, G. (1993). J. Organomet. Chem. 445, 237–243.  CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSly, W. G. (1959). J. Am. Chem. Soc. 81, 18–20.  CSD CrossRef CAS Web of Science Google Scholar
First citationSoleilhavoup, M., Saccavini, C., Lepetit, C., Lavigne, G., Maurette, L., Donnadieu, B. & Chauvin, R. (2002). Organometallics, 21, 871–883.  Web of Science CSD CrossRef CAS Google Scholar
First citationSpek, A. L. (2009). Acta Cryst. D65, 148–155.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSternberg, H. W., Greenfield, H., Friedel, R. A., Wotiz, J., Markby, R. & Wender, I. (1954). J. Am. Chem. Soc. 76, 1457–1458.  CrossRef CAS Web of Science Google Scholar
First citationWang, J.-S. & Matyjaszewski, K. (1995). Macromolecules, 28, 7901–7910.  CrossRef CAS Web of Science Google Scholar
First citationWestrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationWindler, G. K., Zhang, M.-Z., Zitterbart, R., Pagoria, P. F. & Vollhardt, K. P. C. (2012). Chem. Eur. J. 18, 6588–6603.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationXie, R.-J., Han, L.-M., Zhu, N., Hong, H.-L., Suo, Q.-L. & Fu, P. (2012). Polyhedron, 38, 7–14.  Web of Science CSD CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds