Download citation
Download citation
link to html
The preparation and crystal structures of (4,11-di­benzyl-1,4,8,11-tetra­aza­bi­cyclo­[6.6.2]­hexa­decane-κ4N)copper(I) hexa-fluorophosphate, [Cu(C26H38N4)]PF6, and acetonitrile(4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-κ4N)-copper(II) bis(hexafluorophosphate), [Cu(C2H3N)(C26H38-N4)](PF6)2, are described. The CuI ion is tetracoordinated in a very distorted tetrahedron, while the CuII analogue is pentacoordinated in a square pyramid.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010827019901255X/ha1270sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901255X/ha1270Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010827019901255X/ha1270IIsup3.hkl
Contains datablock II

CCDC references: 140931; 140932

Comment top

Ethylene cross-bridged tetraazamacrocycles have recently gained popularity as proton sponges (Weisman et al., 1990; Bencini et al., 1994; Miyahara et al., 1999) but have been less well exploited as ligands for the coordination of transition metal ions (Weisman et al., 1996; Hubin et al., 1998). The short two-carbon cross-bridge imparts additional rigidity as well as topological constraints (Busch, 1993) to the parent macrocycle ligand. The resulting ligands are strongly basic, which causes coordination to transition metal ions to be difficult (Hubin et al., 1998). However, these same properties give the complexes valuable properties, such as remarkable kinetic stability in harsh aqueous conditions (Hubin et al., 1998) and useful oxidizing ability (Busch et al., 1998).

In further investigations of the properties of these interesting ligands, the copper(I) and copper(II) complexes of the benzyldisubstituted cross-bridged cyclam 4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane, (4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-κ4N)copper(I) hexafluorophosphate, (I), and [acetonitrile(4,11-dibenzyl-1,4,8,11- tetraazabicyclo[6.6.2]hexadecane-κ4N)]copper(II), (II), were prepared and then examined by X-ray crystallography, and their crystal structures are presented here.

In the CuI complex, (I), (Fig. 1) the Cu+ ion was found to coordinate to all four tertiary N atoms of the bicyclic ligand, in what is best described as octahedral geometry with two vacant positions; the pendant benzyl groups appear to block the approach of ligands to these positions, with comparatively short Cu···C distances (Cu···C18, C19, C25 and C26 in the range 3.24–3.37 Å). The trans angle at Cu, N8—Cu1—N1, is 171.85 (5)°, with the other N—Cu—N bond angles in the range 85.17 (5)–97.96 (5)°. The N1—Cu1 and N8—Cu1 bond lengths [2.0204 (13) and 2.0105 (13) Å] are short compared with the other Cu—N bond lengths [N4—Cu1 2.1608 (13) and N11—Cu1 2.1715 (13) Å] and with the average four-coordinate copper(I) to tertiary N bond length of 2.139 Å (Orpen et al., 1989; Allen & Kennard, 1993). This short bond length indicates how difficult it is for the ligand cavity to accomodate Cu+ in something approaching its preferred tetrahedral geometry.

Finally, it should be noted that (I) is the first structure of an ethylene cross-bridged cyclam in which the metal ion is completely enclosed within the ligand cavity (the Cu atom lies inside the N atoms subtending 172°), as opposed to the many other complexes (Hubin, 1999) with this size of cross-bridged ligand and small metal ions, such as Mn2+, Fe2+, Co2+, Ni2+, Zn2+, Mn3+ and Fe3+, in which the metal ion is situated outside the ligand cavity (axial N—M—N bond angles < 180°, bent away from the ligand cavity). We believe the geometric preferences of the various metal ions underlie this difference.

The product of the air oxidation of (I) in acetonitrile is the green Cu2+ complex, (II), in which an acetonitrile molecule takes up a fifth position around the metal. This complex is similar to previous Cu2+ complexes of ethylene cross-bridged ligands, which tend to have square pyramidal coordination geometries, as does (II) (Fig. 2). The acetonitrile ligand and three of the macrobicyclic N atoms are the equatorial ligands, with one bridgehead N of the ligand acting as the axial ligand. The flexibility of the benzyl groups of this ligand is demonstrated in this structure, as one has been forced to rotate, folding away from the CuII ion, in order for the acetonitrile ligand to coordinate. In the Cu+ complex, (I), both benzyl groups are folded towards the metal ion, essentially occupying the empty fifth coordination site. Similarly, complex (II) has the metal ion completely engulfed, with an N1—Cu1—N8 bond angle of 177.34 (9)°.

Experimental top

To prepare complex (I), Cu(CH3CN)·PF6 (0.373 g; 0.001 mol) dissolved in pyridine (10 ml) was added to the ligand (0.406 g; 0.001 mol) dissolved in pyridine (10 ml) under a nitrogen atmosphere. The reaction mixture was stirred for 20 h, giving a clear pale-yellow solution. Filtration followed by solvent evaporation yielded pale green-yellow crystalline blocks of (I). To prepare complex (II), a solution of complex (I) in MeOH (15 ml) was stirred overnight while air was gently bubbled through it. The solution quickly turned dark green. Filtration followed by evaporation of the solvent yielded a dark green crude product. Pure (II) was obtained on addition of excess NH4PF6 to an acetonitrile solution of the crude product. Ether diffusion into this solution yielded X-ray quality crystals.

Computing details top

For both compounds, data collection: SMART (Siemens, 1994); cell refinement: SAINT (Siemens, 1995); data reduction: SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1990) for (I); SHELXTL (Sheldrick, 1997b) for (II). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997a) for (I); SHELXTL for (II). Molecular graphics: SHELXTL (Sheldrick, 1997b) for (I); SHELXTL for (II). For both compounds, software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. View of the cation of (I) showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
[Figure 2] Fig. 2. View of the cation of (II) showing the atomic numbering. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as spheres of arbitrary radii.
(I) (4,11-dibenzyl-1,4,8,11-tetraazabicyclo[6.6.2]hexadecane-κ4N)copper(I) hexafluorophosphate top
Crystal data top
[Cu(C26H38N4)]PF6F(000) = 1280
Mr = 615.11Dx = 1.491 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
a = 9.5684 (2) ÅCell parameters from 5967 reflections
b = 11.7898 (2) Åθ = 3–20°
c = 24.294 (1) ŵ = 0.92 mm1
β = 90.684 (1)°T = 180 K
V = 2740.4 (7) Å3Irregular block, pale green-yellow
Z = 40.6 × 0.5 × 0.4 mm
Data collection top
Siemens SMART
diffractometer
6434 independent reflections
Radiation source: normal-focus sealed tube5449 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.020
Detector resolution: 8.192 pixels mm-1θmax = 28.6°, θmin = 1.7°
ω scansh = 1211
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1115
Tmin = 0.544, Tmax = 0.692l = 2732
15900 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.030H-atom parameters constrained
wR(F2) = 0.078 w = 1/[σ2(Fo2) + (0.036P)2 + 1.26P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.003
6434 reflectionsΔρmax = 0.52 e Å3
344 parametersΔρmin = 0.37 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997a), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0023 (2)
Crystal data top
[Cu(C26H38N4)]PF6V = 2740.4 (7) Å3
Mr = 615.11Z = 4
Monoclinic, P21/nMo Kα radiation
a = 9.5684 (2) ŵ = 0.92 mm1
b = 11.7898 (2) ÅT = 180 K
c = 24.294 (1) Å0.6 × 0.5 × 0.4 mm
β = 90.684 (1)°
Data collection top
Siemens SMART
diffractometer
6434 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
5449 reflections with I > 2σ(I)
Tmin = 0.544, Tmax = 0.692Rint = 0.020
15900 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0300 restraints
wR(F2) = 0.078H-atom parameters constrained
S = 1.02Δρmax = 0.52 e Å3
6434 reflectionsΔρmin = 0.37 e Å3
344 parameters
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different ϕ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 97% complete to at least 26° in θ. Crystal decay was found to be negligible by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H-atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl-H atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached.

Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105–107.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

H atoms were added at calculated positions and refined using a riding model, including free rotation about C—C bonds for methyl groups. H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl-H) times the equivalent isotropic displacement parameter of the carrier atom.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.780138 (18)0.257611 (15)0.115967 (7)0.01941 (6)
N10.65259 (14)0.26321 (11)0.04914 (5)0.0233 (3)
C20.68360 (18)0.37327 (14)0.02103 (7)0.0292 (3)
H2A0.60180.39600.00170.035*
H2B0.76390.36290.00380.035*
C30.71718 (19)0.46683 (14)0.06210 (7)0.0312 (4)
H3A0.74760.53520.04180.037*
H3B0.63130.48660.08230.037*
N40.82715 (14)0.43448 (11)0.10201 (6)0.0254 (3)
C50.81184 (19)0.50028 (14)0.15369 (7)0.0309 (4)
H5A0.71180.50150.16360.037*
H5B0.84080.57950.14670.037*
C60.89563 (19)0.45513 (14)0.20263 (7)0.0311 (4)
H6A0.99540.45420.19230.037*
H6B0.88620.50990.23320.037*
C70.85880 (18)0.33822 (14)0.22446 (7)0.0283 (3)
H7A0.91190.32620.25920.034*
H7B0.75830.33820.23370.034*
N80.88559 (14)0.23885 (11)0.18746 (5)0.0223 (3)
C91.03752 (16)0.23467 (14)0.17293 (7)0.0265 (3)
H9A1.08850.19060.20140.032*
H9B1.07540.31280.17330.032*
C101.06476 (16)0.18163 (15)0.11668 (7)0.0267 (3)
H10A1.16310.19620.10670.032*
H10B1.05250.09850.11950.032*
N110.97259 (14)0.22480 (11)0.07225 (6)0.0233 (3)
C120.95237 (18)0.13633 (14)0.02968 (7)0.0279 (3)
H12A0.93620.06290.04830.033*
H12B1.03990.12920.00870.033*
C130.83242 (18)0.15706 (15)0.01087 (7)0.0311 (4)
H13A0.83320.09520.03840.037*
H13B0.85190.22850.03070.037*
C140.68460 (18)0.16500 (14)0.01220 (7)0.0286 (3)
H14A0.61800.16730.01930.034*
H14B0.66590.09430.03280.034*
C151.01834 (18)0.33389 (14)0.04855 (7)0.0292 (3)
H15A0.98200.33930.01030.035*
H15B1.12170.33420.04690.035*
C160.97059 (18)0.43962 (14)0.08060 (7)0.0309 (4)
H16A1.03590.45170.11200.037*
H16B0.97780.50640.05610.037*
C170.50020 (17)0.26185 (14)0.06178 (7)0.0283 (3)
H17A0.44720.24730.02720.034*
H17B0.47300.33790.07520.034*
C180.45796 (16)0.17515 (14)0.10382 (7)0.0261 (3)
C190.45210 (17)0.20569 (16)0.15913 (7)0.0304 (4)
H19A0.47830.28020.17000.037*
C200.40847 (19)0.12876 (17)0.19856 (7)0.0360 (4)
H20A0.40340.15100.23610.043*
C210.37232 (19)0.01967 (17)0.18320 (8)0.0370 (4)
H21A0.34370.03330.21030.044*
C220.37759 (18)0.01281 (16)0.12859 (8)0.0343 (4)
H22A0.35310.08790.11810.041*
C230.41908 (17)0.06531 (15)0.08907 (7)0.0297 (3)
H23A0.42090.04340.05150.036*
C240.84474 (18)0.13664 (14)0.22006 (7)0.0281 (3)
H24A0.74560.14430.23060.034*
H24B0.90170.13450.25430.034*
C250.86281 (18)0.02626 (14)0.18998 (7)0.0289 (3)
C260.76459 (19)0.00868 (15)0.15140 (8)0.0339 (4)
H26A0.68300.03560.14500.041*
C270.7847 (2)0.10845 (18)0.12196 (9)0.0475 (5)
H27A0.71690.13240.09550.057*
C280.9039 (3)0.17285 (17)0.13123 (10)0.0521 (6)
H28A0.91900.23980.11030.063*
C291.0000 (2)0.14036 (17)0.17041 (10)0.0484 (5)
H29A1.08090.18530.17700.058*
C300.9793 (2)0.04218 (16)0.20032 (9)0.0385 (4)
H30A1.04490.02110.22810.046*
P10.32707 (5)0.59307 (4)0.143834 (18)0.03149 (11)
F60.31406 (13)0.50136 (10)0.09562 (5)0.0439 (3)
F50.33857 (16)0.68426 (13)0.19194 (5)0.0652 (4)
F40.18627 (17)0.64902 (13)0.12183 (7)0.0778 (5)
F20.23928 (15)0.51241 (14)0.18269 (6)0.0656 (4)
F30.46584 (13)0.53303 (14)0.16510 (6)0.0639 (4)
F10.4150 (2)0.67196 (14)0.10468 (6)0.0821 (6)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02024 (10)0.01963 (10)0.01840 (10)0.00113 (7)0.00165 (7)0.00011 (7)
N10.0256 (7)0.0247 (7)0.0195 (6)0.0033 (5)0.0003 (5)0.0008 (5)
C20.0335 (9)0.0300 (8)0.0241 (8)0.0057 (7)0.0011 (7)0.0059 (7)
C30.0389 (9)0.0227 (8)0.0321 (9)0.0049 (7)0.0025 (7)0.0063 (7)
N40.0299 (7)0.0207 (6)0.0259 (7)0.0003 (5)0.0051 (5)0.0003 (5)
C50.0374 (9)0.0210 (8)0.0344 (9)0.0003 (7)0.0059 (7)0.0068 (7)
C60.0336 (9)0.0284 (8)0.0315 (9)0.0041 (7)0.0043 (7)0.0119 (7)
C70.0307 (8)0.0334 (9)0.0209 (8)0.0014 (7)0.0026 (6)0.0071 (7)
N80.0215 (6)0.0249 (7)0.0206 (6)0.0020 (5)0.0031 (5)0.0012 (5)
C90.0202 (7)0.0341 (9)0.0252 (8)0.0025 (6)0.0002 (6)0.0013 (6)
C100.0215 (7)0.0317 (8)0.0269 (8)0.0046 (6)0.0046 (6)0.0006 (6)
N110.0248 (6)0.0229 (6)0.0223 (6)0.0006 (5)0.0053 (5)0.0007 (5)
C120.0307 (8)0.0274 (8)0.0257 (8)0.0032 (6)0.0073 (6)0.0048 (6)
C130.0365 (9)0.0331 (9)0.0238 (8)0.0027 (7)0.0036 (7)0.0075 (7)
C140.0328 (9)0.0309 (8)0.0219 (8)0.0019 (7)0.0018 (6)0.0072 (6)
C150.0302 (8)0.0295 (8)0.0283 (8)0.0029 (7)0.0103 (7)0.0026 (7)
C160.0349 (9)0.0255 (8)0.0324 (9)0.0066 (7)0.0090 (7)0.0019 (7)
C170.0249 (8)0.0322 (9)0.0277 (8)0.0051 (6)0.0037 (6)0.0014 (7)
C180.0170 (7)0.0337 (9)0.0275 (8)0.0030 (6)0.0014 (6)0.0036 (7)
C190.0263 (8)0.0349 (9)0.0301 (9)0.0031 (7)0.0007 (7)0.0068 (7)
C200.0321 (9)0.0507 (11)0.0252 (9)0.0044 (8)0.0014 (7)0.0028 (8)
C210.0284 (9)0.0474 (11)0.0351 (10)0.0011 (8)0.0001 (7)0.0088 (8)
C220.0292 (9)0.0356 (9)0.0382 (10)0.0040 (7)0.0016 (7)0.0012 (8)
C230.0250 (8)0.0362 (9)0.0280 (8)0.0007 (7)0.0008 (6)0.0062 (7)
C240.0293 (8)0.0324 (9)0.0225 (8)0.0032 (7)0.0037 (6)0.0050 (6)
C250.0297 (8)0.0268 (8)0.0303 (9)0.0020 (6)0.0071 (7)0.0082 (7)
C260.0347 (9)0.0291 (9)0.0381 (10)0.0014 (7)0.0039 (7)0.0046 (7)
C270.0586 (13)0.0348 (10)0.0491 (12)0.0124 (9)0.0043 (10)0.0030 (9)
C280.0720 (16)0.0229 (9)0.0621 (15)0.0002 (9)0.0267 (12)0.0005 (9)
C290.0515 (12)0.0327 (10)0.0614 (14)0.0134 (9)0.0183 (11)0.0114 (10)
C300.0361 (10)0.0351 (10)0.0445 (11)0.0077 (8)0.0049 (8)0.0115 (8)
P10.0326 (2)0.0385 (3)0.0233 (2)0.00352 (19)0.00192 (17)0.00251 (18)
F60.0562 (7)0.0384 (6)0.0371 (6)0.0049 (5)0.0016 (5)0.0093 (5)
F50.0814 (10)0.0734 (10)0.0405 (7)0.0005 (8)0.0079 (7)0.0275 (7)
F40.0823 (11)0.0691 (10)0.0809 (11)0.0464 (8)0.0411 (9)0.0288 (8)
F20.0549 (8)0.0958 (11)0.0466 (8)0.0204 (8)0.0160 (6)0.0082 (7)
F30.0352 (7)0.1018 (12)0.0545 (8)0.0187 (7)0.0106 (6)0.0054 (8)
F10.1319 (15)0.0738 (10)0.0406 (8)0.0551 (10)0.0057 (8)0.0039 (7)
Geometric parameters (Å, º) top
Cu1—N82.0105 (13)C15—C161.542 (2)
Cu1—N12.0204 (13)C17—C181.504 (2)
Cu1—N42.1608 (13)C18—C231.393 (2)
Cu1—N112.1715 (13)C18—C191.393 (2)
N1—C171.494 (2)C19—C201.387 (3)
N1—C21.498 (2)C20—C211.382 (3)
N1—C141.499 (2)C21—C221.382 (3)
C2—C31.519 (2)C22—C231.392 (3)
C3—N41.472 (2)C24—C251.504 (2)
N4—C161.475 (2)C25—C261.382 (3)
N4—C51.485 (2)C25—C301.397 (2)
C5—C61.522 (3)C26—C271.391 (3)
C6—C71.520 (2)C27—C281.386 (3)
C7—N81.500 (2)C28—C291.370 (3)
N8—C241.496 (2)C29—C301.382 (3)
N8—C91.501 (2)P1—F11.5802 (15)
C9—C101.528 (2)P1—F31.5857 (13)
C10—N111.476 (2)P1—F41.5870 (13)
N11—C151.478 (2)P1—F21.5875 (14)
N11—C121.480 (2)P1—F51.5908 (13)
C12—C131.523 (2)P1—F61.5978 (12)
C13—C141.530 (2)
N8—Cu1—N1171.85 (5)C12—C13—C14117.74 (14)
N8—Cu1—N497.96 (5)N1—C14—C13117.57 (14)
N1—Cu1—N488.12 (5)N11—C15—C16114.58 (13)
N8—Cu1—N1189.04 (5)N4—C16—C15115.31 (13)
N1—Cu1—N1196.92 (5)N1—C17—C18114.70 (13)
N4—Cu1—N1185.17 (5)C23—C18—C19118.34 (16)
C17—N1—C2107.59 (12)C23—C18—C17122.03 (15)
C17—N1—C14108.76 (13)C19—C18—C17119.59 (15)
C2—N1—C14110.68 (13)C20—C19—C18120.87 (17)
C17—N1—Cu1114.60 (10)C21—C20—C19119.90 (17)
C2—N1—Cu1105.89 (10)C20—C21—C22120.34 (18)
C14—N1—Cu1109.28 (10)C21—C22—C23119.52 (17)
N1—C2—C3111.78 (13)C22—C23—C18121.02 (16)
N4—C3—C2112.85 (13)N8—C24—C25114.05 (13)
C3—N4—C16114.70 (14)C26—C25—C30118.99 (17)
C3—N4—C5110.15 (13)C26—C25—C24120.42 (15)
C16—N4—C5112.24 (13)C30—C25—C24120.59 (17)
C3—N4—Cu1101.82 (10)C25—C26—C27120.21 (18)
C16—N4—Cu1106.94 (10)C28—C27—C26119.9 (2)
C5—N4—Cu1110.41 (10)C29—C28—C27120.2 (2)
N4—C5—C6114.93 (14)C28—C29—C30120.0 (2)
C7—C6—C5117.87 (14)C29—C30—C25120.5 (2)
N8—C7—C6117.20 (13)F1—P1—F390.52 (10)
C24—N8—C7105.32 (12)F1—P1—F490.49 (11)
C24—N8—C9110.97 (12)F3—P1—F4178.01 (9)
C7—N8—C9109.84 (12)F1—P1—F2179.24 (10)
C24—N8—Cu1114.47 (10)F3—P1—F289.19 (8)
C7—N8—Cu1110.12 (10)F4—P1—F289.78 (10)
C9—N8—Cu1106.13 (9)F1—P1—F590.68 (8)
N8—C9—C10113.57 (13)F3—P1—F590.69 (8)
N11—C10—C9113.96 (13)F4—P1—F591.01 (8)
C10—N11—C15114.07 (13)F2—P1—F590.03 (8)
C10—N11—C12109.87 (12)F1—P1—F689.68 (7)
C15—N11—C12112.22 (13)F3—P1—F689.67 (7)
C10—N11—Cu1101.91 (9)F4—P1—F688.62 (7)
C15—N11—Cu1107.00 (9)F2—P1—F689.62 (8)
C12—N11—Cu1111.27 (10)F5—P1—F6179.49 (8)
N11—C12—C13115.47 (13)
(II) [acetonitrile(4,11-dibenzyl-1,4,8,11- tetraazabicyclo[6.6.2]hexadecane-κ4N)]copper(II) bis(hexafluorophosphate) top
Crystal data top
[Cu(C2H3N)(C26H38N4)]2PF6Z = 2
Mr = 801.14F(000) = 822
Triclinic, P1Dx = 1.598 Mg m3
a = 9.9695 (4) ÅMo Kα radiation, λ = 0.71073 Å
b = 10.5610 (5) ÅCell parameters from 7334 reflections
c = 17.7607 (8) Åθ = 3–20°
α = 101.236 (1)°µ = 0.85 mm1
β = 101.105 (1)°T = 180 K
γ = 109.157 (1)°Block, dark green
V = 1664.83 (13) Å30.4 × 0.2 × 0.2 mm
Data collection top
Siemens SMART
diffractometer
7384 independent reflections
Radiation source: normal-focus sealed tube6457 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.015
Detector resolution: 8.192 pixels mm-1θmax = 28.5°, θmin = 1.2°
ω scansh = 1213
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
k = 1413
Tmin = 0.774, Tmax = 0.881l = 2023
10176 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0648P)2 + 3.3905P]
where P = (Fo2 + 2Fc2)/3
7384 reflections(Δ/σ)max = 0.006
434 parametersΔρmax = 1.09 e Å3
0 restraintsΔρmin = 0.88 e Å3
Crystal data top
[Cu(C2H3N)(C26H38N4)]2PF6γ = 109.157 (1)°
Mr = 801.14V = 1664.83 (13) Å3
Triclinic, P1Z = 2
a = 9.9695 (4) ÅMo Kα radiation
b = 10.5610 (5) ŵ = 0.85 mm1
c = 17.7607 (8) ÅT = 180 K
α = 101.236 (1)°0.4 × 0.2 × 0.2 mm
β = 101.105 (1)°
Data collection top
Siemens SMART
diffractometer
7384 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
6457 reflections with I > 2σ(I)
Tmin = 0.774, Tmax = 0.881Rint = 0.015
10176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.05Δρmax = 1.09 e Å3
7384 reflectionsΔρmin = 0.88 e Å3
434 parameters
Special details top

Experimental. The temperature of the crystal was controlled using the Oxford Cryosystem Cryostream Cooler (Cosier & Glazer, 1986). The data collection nominally covered over a hemisphere of reciprocal space, by a combination of three sets of exposures with different ϕ angles for the crystal; each 10 s exposure covered 0.3° in ω. The crystal-to-detector distance was 5.0 cm. Coverage of the unique set is over 90% complete to at least 25° in θ (though slightly lower to the highest angle used. Crystal decay was found to be negligible by by repeating the initial frames at the end of data collection and analyzing the duplicate reflections. H atoms were added at calculated positions and refined using a riding model. Anisotropic displacement parameters were used for all non-H atoms; H atoms were given isotropic displacement parameters equal to 1.2 (or 1.5 for methyl-H atoms) times the equivalent isotropic displacement parameter of the atom to which they are attached.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.72383 (4)0.64532 (4)0.74953 (2)0.02522 (11)
N10.6664 (3)0.7778 (2)0.83199 (14)0.0254 (5)
N40.9319 (3)0.7114 (3)0.83699 (15)0.0297 (5)
N80.7695 (3)0.5127 (3)0.66624 (15)0.0307 (5)
N110.6508 (3)0.4772 (3)0.79689 (15)0.0292 (5)
N310.7844 (3)0.7929 (3)0.68970 (15)0.0337 (6)
C20.7868 (3)0.8212 (3)0.90787 (17)0.0298 (6)
H2A0.76290.74940.93700.036*
H2B0.79320.91000.94230.036*
C30.9367 (3)0.8403 (3)0.89103 (19)0.0328 (6)
H3A0.96480.91790.86630.039*
H3B1.01310.86560.94210.039*
C51.0591 (3)0.7446 (4)0.8024 (2)0.0372 (7)
H5A1.15080.77070.84540.045*
H5B1.06620.82690.78220.045*
C61.0512 (4)0.6258 (4)0.7343 (2)0.0414 (8)
H6A1.04600.54470.75530.050*
H6B1.14480.65590.71920.050*
C70.9233 (4)0.5763 (4)0.6582 (2)0.0376 (7)
H7A0.92910.65710.63660.045*
H7B0.93840.50680.61810.045*
C90.7521 (4)0.3819 (3)0.6913 (2)0.0363 (7)
H9A0.84730.39260.72660.044*
H9B0.72510.30280.64350.044*
C100.6337 (4)0.3503 (3)0.73505 (19)0.0363 (7)
H10A0.53510.31450.69610.044*
H10B0.63960.27670.76100.044*
C120.5035 (4)0.4523 (3)0.8130 (2)0.0344 (7)
H12A0.47770.37080.83480.041*
H12B0.42830.42780.76160.041*
C130.4946 (4)0.5740 (3)0.8702 (2)0.0348 (7)
H13A0.56970.59810.92160.042*
H13B0.39640.54330.88040.042*
C140.5177 (3)0.7054 (3)0.84260 (19)0.0310 (6)
H14A0.44280.68070.79100.037*
H14B0.49800.77280.88180.037*
C150.9249 (4)0.5980 (3)0.87599 (19)0.0338 (7)
H15A0.98290.64040.93270.041*
H15B0.97230.53950.85020.041*
C160.7673 (4)0.5035 (3)0.87228 (18)0.0332 (6)
H16A0.76840.41260.87830.040*
H16B0.73920.54660.91830.040*
C170.6631 (3)0.9067 (3)0.80587 (18)0.0297 (6)
H17A0.76490.96330.80670.036*
H17B0.60170.87500.74980.036*
C180.6056 (3)1.0007 (3)0.85457 (18)0.0307 (6)
C190.6980 (4)1.1081 (3)0.9225 (2)0.0365 (7)
H19A0.79901.12090.94010.044*
C200.6445 (5)1.1971 (4)0.9650 (2)0.0463 (8)
H20A0.70851.26931.01150.056*
C210.4983 (5)1.1801 (4)0.9392 (2)0.0480 (9)
H21A0.46111.23970.96830.058*
C220.4066 (4)1.0765 (4)0.8712 (3)0.0487 (9)
H22A0.30641.06600.85310.058*
C230.4590 (4)0.9872 (4)0.8287 (2)0.0413 (8)
H23A0.39460.91640.78180.050*
C240.6646 (4)0.4814 (3)0.58505 (17)0.0333 (6)
H24A0.69310.56550.56570.040*
H24B0.67630.40600.54730.040*
C250.5041 (4)0.4379 (3)0.58379 (18)0.0332 (6)
C260.4082 (4)0.2973 (4)0.5560 (2)0.0416 (8)
H26A0.44420.22790.53700.050*
C270.2610 (5)0.2586 (4)0.5560 (2)0.0495 (9)
H27A0.19740.16280.53780.059*
C280.2062 (4)0.3584 (4)0.5825 (2)0.0489 (9)
H28A0.10560.33120.58290.059*
C290.2987 (4)0.4981 (4)0.6083 (2)0.0402 (7)
H29A0.26120.56710.62570.048*
C300.4456 (4)0.5372 (3)0.60880 (18)0.0343 (7)
H30A0.50790.63340.62650.041*
C320.8336 (5)0.8881 (4)0.6642 (2)0.0450 (8)
C330.8972 (7)1.0057 (5)0.6355 (3)0.0739 (16)
H33A0.95900.98480.60200.111*
H33B0.95781.08750.68090.111*
H33C0.81811.02520.60380.111*
P10.25685 (13)0.86859 (11)0.57564 (6)0.0501 (3)
P21.09189 (9)0.28008 (9)0.86784 (5)0.03456 (19)
F110.1276 (4)0.9107 (3)0.53289 (18)0.0757 (8)
F120.3798 (4)0.8247 (3)0.6198 (3)0.1284 (19)
F130.1839 (5)0.8581 (5)0.6465 (2)0.1230 (16)
F140.3239 (6)0.8803 (7)0.5041 (3)0.164 (2)
F150.1558 (5)0.7101 (3)0.5317 (3)0.1265 (18)
F160.3562 (4)1.0242 (3)0.6212 (2)0.0884 (10)
F211.1366 (3)0.3811 (5)0.8157 (3)0.1260 (18)
F221.0440 (3)0.1769 (3)0.92155 (19)0.0792 (9)
F231.2569 (3)0.3287 (3)0.92069 (18)0.0769 (9)
F240.9256 (3)0.2306 (3)0.81601 (16)0.0666 (7)
F251.0655 (5)0.3923 (4)0.92798 (19)0.1120 (15)
F261.1094 (6)0.1584 (5)0.81033 (19)0.143 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.02845 (19)0.02773 (19)0.02295 (18)0.01262 (14)0.00828 (13)0.01013 (13)
N10.0266 (12)0.0274 (11)0.0231 (11)0.0104 (9)0.0061 (9)0.0096 (9)
N40.0273 (12)0.0354 (13)0.0297 (12)0.0134 (10)0.0076 (10)0.0144 (10)
N80.0383 (14)0.0356 (13)0.0268 (12)0.0208 (11)0.0125 (10)0.0121 (10)
N110.0344 (13)0.0272 (12)0.0267 (12)0.0108 (10)0.0088 (10)0.0103 (10)
N310.0383 (14)0.0406 (15)0.0269 (13)0.0184 (12)0.0123 (11)0.0102 (11)
C20.0329 (15)0.0301 (14)0.0257 (14)0.0123 (12)0.0062 (11)0.0074 (11)
C30.0280 (14)0.0345 (15)0.0309 (15)0.0088 (12)0.0024 (12)0.0091 (12)
C50.0262 (15)0.0499 (19)0.0401 (18)0.0156 (14)0.0093 (13)0.0200 (15)
C60.0362 (17)0.058 (2)0.0452 (19)0.0275 (16)0.0189 (15)0.0238 (17)
C70.0396 (17)0.0505 (19)0.0366 (17)0.0264 (15)0.0186 (14)0.0187 (15)
C90.052 (2)0.0336 (16)0.0328 (16)0.0244 (15)0.0141 (14)0.0126 (13)
C100.0507 (19)0.0280 (15)0.0326 (16)0.0159 (14)0.0116 (14)0.0120 (12)
C120.0352 (16)0.0314 (15)0.0356 (16)0.0073 (13)0.0123 (13)0.0138 (13)
C130.0348 (16)0.0338 (16)0.0385 (17)0.0101 (13)0.0174 (13)0.0140 (13)
C140.0289 (14)0.0334 (15)0.0326 (15)0.0119 (12)0.0116 (12)0.0099 (12)
C150.0366 (16)0.0391 (16)0.0305 (15)0.0182 (14)0.0070 (12)0.0155 (13)
C160.0404 (17)0.0356 (16)0.0276 (15)0.0170 (13)0.0079 (12)0.0147 (12)
C170.0335 (15)0.0314 (15)0.0291 (14)0.0150 (12)0.0103 (12)0.0125 (12)
C180.0318 (15)0.0308 (14)0.0331 (15)0.0141 (12)0.0080 (12)0.0140 (12)
C190.0341 (16)0.0358 (16)0.0389 (17)0.0152 (13)0.0044 (13)0.0106 (13)
C200.062 (2)0.0433 (19)0.0355 (18)0.0280 (18)0.0082 (16)0.0060 (15)
C210.062 (2)0.052 (2)0.050 (2)0.0378 (19)0.0265 (19)0.0194 (17)
C220.0392 (19)0.050 (2)0.066 (3)0.0264 (17)0.0140 (17)0.0183 (19)
C230.0352 (17)0.0372 (17)0.049 (2)0.0173 (14)0.0034 (14)0.0091 (15)
C240.0451 (18)0.0367 (16)0.0219 (14)0.0218 (14)0.0087 (12)0.0061 (12)
C250.0439 (17)0.0339 (15)0.0233 (14)0.0180 (13)0.0065 (12)0.0086 (12)
C260.052 (2)0.0339 (16)0.0356 (17)0.0185 (15)0.0042 (15)0.0072 (14)
C270.052 (2)0.0361 (18)0.048 (2)0.0073 (16)0.0037 (17)0.0102 (16)
C280.0412 (19)0.057 (2)0.046 (2)0.0144 (17)0.0091 (16)0.0188 (18)
C290.0449 (19)0.0478 (19)0.0339 (17)0.0249 (16)0.0112 (14)0.0112 (14)
C300.0422 (17)0.0349 (16)0.0256 (14)0.0172 (14)0.0060 (12)0.0068 (12)
C320.066 (2)0.0421 (19)0.0302 (17)0.0238 (18)0.0144 (16)0.0099 (14)
C330.120 (4)0.040 (2)0.049 (2)0.009 (2)0.035 (3)0.0118 (19)
P10.0671 (7)0.0408 (5)0.0444 (5)0.0240 (5)0.0115 (5)0.0136 (4)
P20.0318 (4)0.0406 (4)0.0357 (4)0.0172 (3)0.0076 (3)0.0160 (4)
F110.087 (2)0.0622 (16)0.0802 (19)0.0358 (15)0.0076 (16)0.0268 (15)
F120.107 (3)0.0627 (19)0.168 (4)0.0461 (19)0.058 (3)0.002 (2)
F130.109 (3)0.168 (4)0.075 (2)0.011 (3)0.032 (2)0.065 (3)
F140.124 (4)0.296 (7)0.080 (3)0.081 (4)0.059 (3)0.036 (4)
F150.117 (3)0.0535 (17)0.149 (4)0.0393 (19)0.062 (3)0.018 (2)
F160.087 (2)0.0399 (14)0.116 (3)0.0120 (14)0.0046 (19)0.0169 (15)
F210.0527 (17)0.195 (4)0.151 (3)0.019 (2)0.0186 (19)0.150 (3)
F220.0538 (15)0.089 (2)0.094 (2)0.0122 (14)0.0057 (14)0.0635 (18)
F230.0324 (12)0.104 (2)0.093 (2)0.0111 (13)0.0021 (12)0.0673 (18)
F240.0387 (12)0.0864 (18)0.0653 (16)0.0186 (12)0.0064 (11)0.0298 (14)
F250.175 (4)0.109 (3)0.0598 (18)0.114 (3)0.020 (2)0.0127 (17)
F260.206 (5)0.212 (5)0.0520 (18)0.183 (4)0.007 (2)0.011 (2)
Geometric parameters (Å, º) top
Cu1—N312.049 (3)C18—C191.394 (5)
Cu1—N82.056 (3)C18—C231.395 (5)
Cu1—N112.088 (2)C19—C201.395 (5)
Cu1—N12.116 (2)C20—C211.380 (6)
Cu1—N42.142 (3)C21—C221.377 (6)
N1—C21.497 (4)C22—C231.389 (5)
N1—C141.496 (4)C24—C251.507 (5)
N1—C171.530 (4)C25—C301.399 (4)
N4—C151.485 (4)C25—C261.402 (5)
N4—C31.486 (4)C26—C271.388 (6)
N4—C51.485 (4)C27—C281.383 (6)
N8—C91.499 (4)C28—C291.385 (5)
N8—C71.507 (4)C29—C301.383 (5)
N8—C241.513 (4)C32—C331.435 (6)
N11—C101.495 (4)P1—F141.552 (4)
N11—C121.498 (4)P1—F161.562 (3)
N11—C161.504 (4)P1—F121.574 (3)
N31—C321.182 (5)P1—F131.575 (4)
C2—C31.536 (4)P1—F151.584 (3)
C5—C61.532 (5)P1—F111.602 (3)
C6—C71.533 (5)P2—F211.557 (3)
C9—C101.518 (5)P2—F261.559 (3)
C12—C131.514 (4)P2—F251.560 (3)
C13—C141.523 (4)P2—F231.586 (2)
C15—C161.541 (5)P2—F241.589 (2)
C17—C181.514 (4)P2—F221.602 (3)
N31—Cu1—N888.19 (10)C19—C18—C23118.2 (3)
N31—Cu1—N11173.04 (10)C19—C18—C17121.7 (3)
N8—Cu1—N1186.28 (10)C23—C18—C17119.9 (3)
N31—Cu1—N191.98 (10)C18—C19—C20121.0 (3)
N8—Cu1—N1177.33 (10)C21—C20—C19119.8 (4)
N11—Cu1—N193.35 (9)C22—C21—C20119.9 (3)
N31—Cu1—N497.76 (10)C21—C22—C23120.7 (3)
N8—Cu1—N495.25 (10)C22—C23—C18120.5 (3)
N11—Cu1—N486.96 (10)C25—C24—N8114.5 (2)
N1—Cu1—N487.37 (10)C30—C25—C26117.9 (3)
C2—N1—C14111.7 (2)C30—C25—C24121.0 (3)
C2—N1—C17109.7 (2)C26—C25—C24121.1 (3)
C14—N1—C17107.1 (2)C27—C26—C25120.5 (3)
C2—N1—Cu1104.17 (17)C28—C27—C26120.5 (3)
C14—N1—Cu1112.26 (18)C27—C28—C29119.7 (4)
C17—N1—Cu1111.96 (17)C30—C29—C28120.1 (3)
C15—N4—C3113.3 (2)C29—C30—C25121.3 (3)
C15—N4—C5111.2 (2)N31—C32—C33178.2 (5)
C3—N4—C5110.1 (2)F14—P1—F1690.9 (3)
C15—N4—Cu1107.17 (19)F14—P1—F1292.7 (3)
C3—N4—Cu1102.02 (17)F16—P1—F1288.65 (18)
C5—N4—Cu1112.85 (19)F14—P1—F13177.8 (3)
C9—N8—C7109.6 (2)F16—P1—F1389.3 (2)
C9—N8—C24111.0 (3)F12—P1—F1389.4 (3)
C7—N8—C24106.5 (2)F14—P1—F1590.5 (3)
C9—N8—Cu1108.14 (18)F16—P1—F15178.4 (3)
C7—N8—Cu1112.3 (2)F12—P1—F1590.66 (18)
C24—N8—Cu1109.31 (18)F13—P1—F1589.3 (3)
C10—N11—C12107.0 (2)F14—P1—F1189.5 (3)
C10—N11—C16111.3 (2)F16—P1—F1192.07 (17)
C12—N11—C16110.6 (2)F12—P1—F11177.7 (3)
C10—N11—Cu1106.24 (18)F13—P1—F1188.4 (2)
C12—N11—Cu1114.11 (19)F15—P1—F1188.57 (17)
C16—N11—Cu1107.55 (18)F21—P2—F2692.8 (3)
C32—N31—Cu1171.3 (3)F21—P2—F2591.7 (3)
N1—C2—C3111.2 (2)F26—P2—F25175.1 (3)
N4—C3—C2111.7 (2)F21—P2—F2392.98 (15)
N4—C5—C6114.8 (3)F26—P2—F2390.9 (2)
C5—C6—C7117.4 (3)F25—P2—F2390.7 (2)
N8—C7—C6116.8 (3)F21—P2—F2487.86 (16)
N8—C9—C10111.2 (3)F26—P2—F2489.5 (2)
N11—C10—C9111.6 (3)F25—P2—F2488.87 (19)
N11—C12—C13115.2 (3)F23—P2—F24179.09 (16)
C12—C13—C14115.8 (3)F21—P2—F22179.2 (2)
N1—C14—C13116.9 (3)F26—P2—F2287.7 (3)
N4—C15—C16114.4 (2)F25—P2—F2287.8 (2)
N11—C16—C15115.1 (2)F23—P2—F2287.57 (14)
C18—C17—N1117.0 (2)F24—P2—F2291.60 (15)

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(C26H38N4)]PF6[Cu(C2H3N)(C26H38N4)]2PF6
Mr615.11801.14
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)180180
a, b, c (Å)9.5684 (2), 11.7898 (2), 24.294 (1)9.9695 (4), 10.5610 (5), 17.7607 (8)
α, β, γ (°)90, 90.684 (1), 90101.236 (1), 101.105 (1), 109.157 (1)
V3)2740.4 (7)1664.83 (13)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.920.85
Crystal size (mm)0.6 × 0.5 × 0.40.4 × 0.2 × 0.2
Data collection
DiffractometerSiemens SMART
diffractometer
Siemens SMART
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Multi-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.544, 0.6920.774, 0.881
No. of measured, independent and
observed [I > 2σ(I)] reflections
15900, 6434, 5449 10176, 7384, 6457
Rint0.0200.015
(sin θ/λ)max1)0.6740.672
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.030, 0.078, 1.02 0.055, 0.146, 1.05
No. of reflections64347384
No. of parameters344434
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.52, 0.371.09, 0.88

Computer programs: SMART (Siemens, 1994), SAINT (Siemens, 1995), SAINT, SHELXS97 (Sheldrick, 1990), SHELXTL (Sheldrick, 1997b), SHELXL97 (Sheldrick, 1997a), SHELXTL.

Selected geometric parameters (Å, º) for (I) top
Cu1—N82.0105 (13)Cu1—N42.1608 (13)
Cu1—N12.0204 (13)Cu1—N112.1715 (13)
N8—Cu1—N1171.85 (5)N8—Cu1—N1189.04 (5)
N8—Cu1—N497.96 (5)N1—Cu1—N1196.92 (5)
N1—Cu1—N488.12 (5)N4—Cu1—N1185.17 (5)
Selected geometric parameters (Å, º) for (II) top
Cu1—N312.049 (3)Cu1—N12.116 (2)
Cu1—N82.056 (3)Cu1—N42.142 (3)
Cu1—N112.088 (2)
N31—Cu1—N888.19 (10)N11—Cu1—N193.35 (9)
N31—Cu1—N11173.04 (10)N31—Cu1—N497.76 (10)
N8—Cu1—N1186.28 (10)N8—Cu1—N495.25 (10)
N31—Cu1—N191.98 (10)N11—Cu1—N486.96 (10)
N8—Cu1—N1177.33 (10)N1—Cu1—N487.37 (10)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds