Download citation
Download citation
link to html
The title compounds, C21H22BrNO2, are isomeric 8-benzyl-2-[(4-bromo­phenyl)(hy­droxy)methyl]-8-aza­bicyclo­[3.2.1]octan-3-ones. Compound (I), the (±)-exo,syn-(1RS,2SR,5SR,9SR) isomer, crystallizes in the hexa­gonal space group R\overline{3}, while compounds (II) [the (+)-exo,anti-(1R,2S,5S,9R) isomer] and (III) [the (±)-exo,anti-(1RS,2SR,5SR,9RS) isomer] crystallize in the ortho­rhom­bic space groups P212121 and Pna21, respectively. The absolute configuration was determined for enantio­merically pure (II). For the noncentrosymmetric crystal of (III), its absolute structure was established. In the crystal structures of (I) and (II), an intra­molecular hydrogen bond is formed between the hy­droxy group and the heterocyclic N atom. In the crystal structure of racemic (III), hydrogen-bonded chains of mol­ecules are formed via inter­molecular O—H...O inter­actions. Additionally, face-to-edge π–π inter­actions are present in the crystal structures of (I) and (II). In all three structures, the piperidinone rings adopt chair conformations and the N-benzyl substituents occupy the equatorial positions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270113002503/gz3222sup1.cif
Contains datablocks I, II, III, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113002503/gz3222Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113002503/gz3222IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270113002503/gz3222IIIsup4.hkl
Contains datablock III

CCDC references: 934584; 934585; 934586

Comment top

Tropane (8-methyl-8-azabicyclo[3.2.1]octane) and nortropane (8-azabicyclo[3.2.1]octane) scaffolds can be found in numerous natural alkaloids, many of which demonstrate a range of biological activities (Lounasmaa, 1988; Lounasmaa & Tamminen, 1993). Several tropane alkaloids and their non-natural analogues have been synthesized in the quest for interesting properties suitable for agrochemical and pharmaceutical applications (Singh, 2000; Zhao et al., 2000; Xu et al., 2002; Pollini et al., 2006). Diastereomerically and enantiomerically pure aldols of tropinone are key intermediates used by us in the stereoselective syntheses of knightinol, alkaloid KD-B (Majewski & Lazny, 1995) and ferrugine (Sienkiewicz et al., 2009; Lazny, Sienkiewicz, Olenski et al., 2012), as well as by others for the synthesis of the non-natural enantiomer of cocaine (ent-cocaine) (Lee et al., 2000). However, the stereoselective syntheses of nortropinone aldols (Lazny et al., 2001; Lazny & Nodzewska, 2003; Lazny et al., 2010) were not so effective. Possible approaches to obtaining nor-derivatives have used synthetic equivalents of nortropinone, including triazene derivatives (Lazny et al., 2001, 2010; Lazny & Nodzewska, 2003), urethane derivatives (Lazny et al., 2010) and polymer-supported analogues (Lazny et al., 2006, 2010; Sienkiewicz & Lazny, 2010). We now report the crystal structures of the three title stereoisomeric forms, (I)–(III), of a promising newly prepared N-benzyl-protected derivative.

By analogy with the recently reported spontaneous reaction of an N-methyl derivative, i.e. tropinone, with aldehydes in the presence of water, which surprisingly gave the other, atypical, diastereomer (Lazny, Nodzewska, & Tomczuk, 2011; Lazny, Nodzewska, Sidorowicz & Kalicki, 2012; Lazny, Ratkiewicz, Nodzewska & Wysocka, 2012), we succeeded in converting a much less reactive N-benzyl derivative and an aromatic aldehyde to an aldol product. Based on NMR data, we identified (Lazny, Nodzewska, Sidorowicz & Kalicki, 2012), with high probability, the major product of the reaction as the exo,syn isomer. Analogously with previous reports, the major product of the reaction promoted by a lithium amide (e.g. lithium diisopropylamide, LDA) was assigned the likely exo,anti configuration (Lazny et al., 2010; Lazny, Sienkiewicz, Olenski et al., 2012), but the tentative assignments needed to be confirmed. In order to prepare an enantiomerically pure N-benzyl analogue of tropinone aldol, we used known enantioselective deprotonation with chiral lithium amide bases (O'Brien, 1998; Simpkins & Weller, 2010). The procedure gave an enantiomerically pure crystalline aldol (likely the exo,anti isomer), the absolute structure of which reflects the preferred enantio-differentiation of enantiotopic H atoms of the N-benzyltropinone system by the chiral lithium amide used (O'Brien, 1998; Simpkins & Weller, 2010; Majewski & Lazny, 1995). From the asymmetric synthesis point of view, it is essential to know the sense of the enantioselection. Therefore, it is crucial not only to determine unambiguously the relative structures of the aldols but also, more importantly, to determine positively the absolute configuration of the product resulting from the reaction of N-benzylnortropinone with the specific enantiomeric form of the chiral reagent used.

Based on the present crystallographic studies, the relative configuration of (I) was established. The absolute configuration of (II) and the absolute structure of the crystal of (III) were determined unequivocally based on anomalous diffraction effects, as confirmed by the observed Flack parameters.

In the crystal structure of (I) (Fig. 1), the piperidinone ring of the tropinone system adopts a distorted chair conformation with puckering parameters Q = 0.6536 (18) Å, θ = 43.51 (17)° and ϕ = 5.8 (3)° (Cremer & Pople, 1975). A chair conformation of the piperidinone ring is observed in the crystal structures of (II) and (III) (Figs. 2 and 3), as is observed in other N-methyl and N-benzyl derivatives of tropinone and granatanone (Li et al., 1993; Lazny, Wolosewicz, Zielinska et al., 2011; Lazny, Nodzewska, Sidorowicz & Kalicki, 2012; Lazny, Wolosewicz, Dauter & Brzezinski, 2012; Lazny, Sienkiewicz, Olenski et al., 2012; Brzezinski et al., 2012; Jiang et al., 2012). The puckering parameters of the six-membered heterocyclic ring are Q = 0.643 (2) Å, θ = 27.07 (18)° and ϕ = 6.5 (4)° for (II), and Q = 0.650 (3) Å, θ = 20.4 (3)° and ϕ = 3.5 (9)° for (III).

In the crystal structure of (I), the piperidinone scaffold is remarkably flattened at the C3 pole of the ring. The strained heterocyclic ring conformation is stabilized by an intramolecular O—H···N hydrogen bond, as well as by intramolecular [C15—H15···Cg1, with C15···Cg1 = 3.391 (2) Å and C15—H15···Cg1 = 146°] and intermolecular [C11—H11···Cg2, with C11···Cg2 = 3.455 (2) Å and C11—H11···Cg2 = 152°] face-to-edge C—H···π interactions [the symmetry-related molecule is at (y - 1, -x + y, -z + 1)]. Additionally, the 4-bromophenyl group participates in the formation of short Br···Br contacts [3.5122 (3) Å] with two symmetry-related molecules at (y - 1, -x + y, -z) and (x - y + 1, x + 1, -z). The intramolecular O—H···N hydrogen bond is also observed in (II). Additionally, intermolecular face-to-edge C—Br···π interactions [the symmetry-related molecule is at (x + 1/2, -y + 3/2, -z + 1)] are present in the crystal structure of (II) [C13—Br13···Cg1, with C13···Cg1 = 5.372 (2) Å and C13—Br13···Cg1 = 151.83 (7)°]. For (I) and (II), Cg1 and Cg2 are the centroids of C17–C22 and C10–C15 rings, respectively.

The N-benzyl substituents of (I)–(III) are equatorial, similar to the majority of crystal structures of N-alkylnortropanes and the thermodynamic preference for tropanes in solution (Lazny, Ratkiewicz, Nodzewska, Wynimko & Siergiejczyk, 2012). Such a configuration is strongly related to the exo orientation of the bulky 4-bromophenyl(hydroxy)methyl groups at atom C2. The existence of the specific N-alkyl invertomer can be explained by steric hindrance of the C2 substituent in (I)–(III). Moreover in (I) and (II), an intramolecular hydrogen bond is formed between heterocyclic atom N8 and the OH group (Figs. 1 and 2); in (I), N···O = 2.7902 (19) Å and N—H···O = 149°, while in (II) the corresponding values are 2.682 (2) Å and 157 (4)°. As a result, in the crystal structures of (I) and (II), the N-equatorial invertomers are additionally stabilized and inversion to the N-axial conformers are not possible. Similar conformations are observed in solution. The H9C—C9—C2—H2 torsion angles of -64.13° for (I) and 56.70° for (II) in the solid state correspond, approximately, to the probable angles in solution, estimated using the Karplus correlation of dihedral angles (52 and 58°) and the observed vicinal coupling constants for benzylic carbinol proton signals, at 4.88 p.p.m. (d, J = 2.2 Hz) and 5.04 p.p.m (d, J = 2.8 Hz), respectively (Karplus, 1959, 1963; Bifulco et al., 2007). This indicates similar conformations of (I) and (II) in solution and in the solid state.

In the crystal structures of (I) and (II), the packing is based mainly on weak intermolecular interactions. A different mechanism is observed in (III), where the –OH group participates in the formation of an intermolecular hydrogen bond with carbonyl atom O3 from a symmetry-related molecule at (-x + 2, -y + 1, z - 1/2) [O···O = 2.874 (3) Å and O—H···O = 176°]. Molecules related by 21 axes form helices extending along the c direction, and a different orientation of the OH group at atom C9 is observed. However, due to the exo configuration of the substituent on the bicyclic system, formation of the second N-benzyl invertomer is prevented here by the close proximity of the (4-bromophenyl)(hydroxy)methyl group. The H9C—C9—C2—H2 torsion angle of 170.19° in (III) corresponds to the conformation which is disfavoured in solution, as indicated by the relevant vicinal coupling constant (J = 2.8 Hz) which rules out such a value for the torsion angle.

Note that the mode of stabilization of the N-alkyl group in the equatorial position reported here is also likely to be operational in other N-methyl-substituted tropinones and also in N-benzylgranatanone derivatives (Lazny, Wolosewicz, Zielinska et al., 2011; Lazny, Sienkiewicz, Olenski et al., 2012; Lazny, Wolosewicz, Dauter & Brzezinski, 2012; Brzezinski et al., 2012).

Related literature top

For related literature, see: Bifulco et al. (2007); Brzezinski et al. (2012); Cremer & Pople (1975); Jiang et al. (2012); Karplus (1959, 1963); Lazny & Nodzewska (2003); Lazny et al. (2001, 2006, 2010); Lazny, Nodzewska & Tomczuk (2011); Lazny, Nodzewska, Sidorowicz & Kalicki (2012); Lazny, Ratkiewicz, Nodzewska & Wysocka (2012); Lazny, Ratkiewicz, Nodzewska, Wynimko & Siergiejczyk (2012); Lazny, Sienkiewicz, Olenski, Urbanczyk-Lipkowska & Kalicki (2012); Lazny, Wolosewicz, Dauter & Brzezinski (2012); Lazny, Wolosewicz, Zielinska, Urbanczyk-Lipkowska & Kalicki (2011); Lee et al. (2000); Li et al. (1993); Lounasmaa (1988); Lounasmaa & Tamminen (1993); Majewski & Lazny (1995); O'Brien (1998); Pollini et al. (2006); Sienkiewicz & Lazny (2010); Sienkiewicz et al. (2009); Simpkins & Weller (2010); Singh (2000); Xu et al. (2002); Zhao et al. (2000).

Experimental top

The reaction of 4-bromobenzaldehyde (0.093 g, 0.50 mmol) with N-benzylnortropinone (0.215 g, 1.00 mmol) in water (1.25 ml) admixed with an organic cosolvent [dimethylformamide (DMF), 0.25 ml], according to the literature procedure of Lazny, Nodzewska & Tomczuk (2011), gave (I), which was crystallized from diethyl ether [yield 0.116 g, 58%; m.p. 428–429 K (decomposition)]. Crystals suitable for X-ray diffraction study were obtained at room temperature by slow evaporation of a heptane solution of (I). Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz, δ, p.p.m.): 7.61 (br s, 1H), 7.49–7.44 (m, 3H), 7.40–7.32 (m, 2H), 7.30–7.26 (m, 2H), 6.80–6.74 (m, 2H), 4.88 (d, J = 2.2 Hz, 1H), 3.70–3.65 (m, 1H), 3.62 (d, J = 12.4 Hz, 1H), 3.49 (d, J = 12.4 Hz, 1H), 3.40–3.35 (m, 1H), 2.96 (dd, J = 17.0 Hz, 5.1 Hz, 1H), 2.48 (dt, J = 17.0 Hz, 1.7 Hz, 1H), 2.21–2.27 (m, 1H), 2.25–2.15 (m, 2H), 1.78–1.67 (m, 1H), 1.53–1.42 (m, 1H); 13C NMR (CDCl3, 100 MHz, δ, p.p.m.): 210.6, 142.4, 137.3, 131.2, 129.8, 129.1, 128.1, 127.2, 120.5, 75.6, 63.1, 59.9, 58.0, 57.4, 50.5, 27.1, 26.8.

The reaction of 4-bromobenzaldehyde (0.330 g, 1.78 mmol) with N-benzylnortropinone (0.333 g, 1.55 mmol) promoted with chiral lithium (R)-N-benzhydryl-1-phenylethanamide (0.535 g, 1.86 mmol), according to the literature procedure of Lazny, Nodzewska & Tomczuk (2011), followed by precipitation from a mixture of dichloromethane and hexane (1:8 v/v), gave (II) [yield 0.470 g, 76%, 75% ee (by 1H NMR in the presence of (R)-(-)-2,2,2-trifluoro-1-(9-anthryl)ethanol] as a white solid. An analytical sample was recrystallized from dichloromethane–hexane (1:8 v/v) [m.p. 404–405 K (decomposition); ee 98%; [α]D at 293 K = 37° (c = 0.5, CHCl3, where c is the concentration in grams per 100 ml)]. Crystals suitable for X-ray diffraction study were obtained at room temperature by slow evaporation of a heptane solution of (II).

The reaction of 4-bromobenzaldehyde (0.213 g, 1.15 mmol) with N-benzylnortropinone (0.215 g, 1.00 mmol) promoted with LDA (lithium diisopropylamide; 1.20 mmol), according to the literature procedure of Lazny, Nodzewska & Tomczuk (2011), gave (III), which was crystallized from a mixture of heptane and AcOEt (7:1 v/v) [yield 0.380 g, 95%; m.p. 421–423 K (decomposition)]. No additional crystallization attempts were required prior to X-ray data collection. Spectroscopic analysis: 1H NMR (CDCl3, 400 MHz, δ, p.p.m.): 7.50 (br s, 1H), 7.45–7.32 (m, 7H), 7.12–7.03 (m, 2H), 5.04 (d, J = 2.8 Hz, 1H), 3.74–3.63 (m, 3H), 3.60–3.54 (m, 1H), 2.78 (dd, J = 16.0 Hz, 3.3 Hz, 1H), 2.40 (s, 1H), 2.38–2.15 (m, 3H), 1.72–1.58 (m, 2H); 13C NMR (CDCl3, 100 MHz, δ, p.p.m.): 208.0, 140.7, 137.4, 131.0, 129.0, 128.8, 127.8, 127.3, 121.0, 75.8, 65.0, 64.1, 58.9, 57.0, 51.5, 26.8, 26.4.

The obtained crystals of (I), (II) and (III) were rather large for the microfocus beam, but due to their fragility any manipulation (e.g. cutting) was unfeasible prior to the diffraction experiments.

Refinement top

All H atoms were initially located in electron-density difference maps. For all three compounds, C-bonded H atoms were constrained to idealized positions, with C—H = 0.95–1.00 Å and Uiso(H) = 1.2Ueq(C). The hydroxy H atoms of (I) and (III) were also constrained to idealized positions, with O—H = 0.84 Å and Uiso(H) = 1.5Ueq(O). For (II), the hydroxy H atom was freely refined.

Computing details top

For all compounds, data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The dashed line indicates the intramolecular hydrogen bond.
[Figure 3] Fig. 3. The molecular structure of (III), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(I) (±)-exo,syn-(1RS,2SR,5SR)-8-Benzyl-2- [(SR)-(4-bromophenyl)(hydroxy)methyl]-8-azabicyclo[3.2.1]octan-3-one top
Crystal data top
C21H22BrNO2Dx = 1.523 Mg m3
Mr = 400.31Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3Cell parameters from 11027 reflections
Hall symbol: -R 3θ = 2.7–29.5°
a = 29.8145 (5) ŵ = 2.36 mm1
c = 10.2028 (2) ÅT = 100 K
V = 7854.2 (4) Å3Prism, colourless
Z = 180.54 × 0.46 × 0.29 mm
F(000) = 3708
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
4885 independent reflections
Radiation source: SuperNova (Mo) X-ray Source4130 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.033
Detector resolution: 10.4052 pixels mm-1θmax = 29.6°, θmin = 2.7°
ω scansh = 4138
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 4140
Tmin = 0.434, Tmax = 0.633l = 1412
24029 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0333P)2 + 18.6115P]
where P = (Fo2 + 2Fc2)/3
4885 reflections(Δ/σ)max = 0.004
227 parametersΔρmax = 0.52 e Å3
0 restraintsΔρmin = 0.67 e Å3
Crystal data top
C21H22BrNO2Z = 18
Mr = 400.31Mo Kα radiation
Trigonal, R3µ = 2.36 mm1
a = 29.8145 (5) ÅT = 100 K
c = 10.2028 (2) Å0.54 × 0.46 × 0.29 mm
V = 7854.2 (4) Å3
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
4885 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
4130 reflections with I > 2σ(I)
Tmin = 0.434, Tmax = 0.633Rint = 0.033
24029 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0330 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0333P)2 + 18.6115P]
where P = (Fo2 + 2Fc2)/3
4885 reflectionsΔρmax = 0.52 e Å3
227 parametersΔρmin = 0.67 e Å3
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.16570 (6)0.94796 (6)0.71283 (16)0.0114 (3)
H10.17090.96330.62310.014*
C20.10840 (6)0.90755 (6)0.73507 (16)0.0123 (3)
H20.08860.92640.74280.015*
C30.10052 (7)0.87706 (7)0.86202 (18)0.0165 (3)
C40.14678 (7)0.87775 (7)0.92536 (17)0.0157 (3)
H4A0.14390.84350.91170.019*
H4B0.14530.88261.02100.019*
C50.19969 (7)0.91966 (6)0.87456 (17)0.0137 (3)
H50.22740.91200.90130.016*
C60.21288 (7)0.97402 (7)0.92092 (17)0.0162 (3)
H6A0.25080.99790.92150.019*
H6B0.19910.97271.00990.019*
C70.18603 (7)0.99099 (6)0.81840 (17)0.0153 (3)
H7A0.15710.99350.85870.018*
H7B0.21101.02500.78000.018*
C90.08391 (6)0.86743 (6)0.62219 (17)0.0135 (3)
H9C0.04780.84180.64960.016*
C100.07998 (6)0.89204 (6)0.49583 (17)0.0130 (3)
C110.03816 (6)0.90032 (7)0.47817 (18)0.0157 (3)
H110.01220.88910.54390.019*
C120.03378 (7)0.92454 (7)0.36686 (19)0.0171 (3)
H120.00520.93000.35630.021*
C130.07184 (7)0.94069 (7)0.27109 (17)0.0164 (3)
C140.11339 (7)0.93221 (7)0.28452 (18)0.0162 (3)
H140.13900.94300.21790.019*
C150.11708 (6)0.90772 (6)0.39687 (17)0.0148 (3)
H150.14530.90160.40620.018*
C160.24871 (6)0.95065 (7)0.66966 (17)0.0151 (3)
H16A0.27120.93790.70520.018*
H16B0.26430.98770.69350.018*
C170.24634 (6)0.94546 (6)0.52295 (17)0.0129 (3)
C180.23544 (6)0.89856 (7)0.46486 (18)0.0144 (3)
H180.23020.87040.51880.017*
C190.23212 (7)0.89259 (7)0.33004 (18)0.0167 (3)
H190.22430.86040.29200.020*
C200.24027 (7)0.93395 (7)0.25023 (18)0.0170 (3)
H200.23820.93000.15760.020*
C210.25148 (7)0.98090 (7)0.30617 (18)0.0173 (3)
H210.25721.00920.25190.021*
C220.25429 (6)0.98643 (6)0.44173 (18)0.0151 (3)
H220.26171.01850.47950.018*
N80.19619 (5)0.92084 (5)0.72953 (14)0.0118 (3)
O30.05746 (6)0.85040 (6)0.90646 (15)0.0310 (3)
O90.11078 (5)0.83943 (5)0.60591 (13)0.0162 (3)
H9O0.14180.85820.62860.024*
Br130.068838 (8)0.977249 (8)0.12272 (2)0.02544 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0141 (7)0.0100 (7)0.0104 (8)0.0063 (6)0.0004 (6)0.0007 (6)
C20.0143 (7)0.0116 (7)0.0112 (8)0.0068 (6)0.0018 (6)0.0004 (6)
C30.0211 (8)0.0157 (8)0.0132 (8)0.0095 (7)0.0042 (6)0.0019 (6)
C40.0234 (9)0.0139 (8)0.0113 (8)0.0104 (7)0.0029 (6)0.0025 (6)
C50.0187 (8)0.0146 (7)0.0095 (8)0.0096 (7)0.0011 (6)0.0005 (6)
C60.0226 (8)0.0141 (8)0.0119 (8)0.0092 (7)0.0020 (6)0.0025 (6)
C70.0208 (8)0.0115 (7)0.0142 (8)0.0086 (7)0.0022 (6)0.0013 (6)
C90.0130 (7)0.0113 (7)0.0149 (8)0.0052 (6)0.0019 (6)0.0001 (6)
C100.0116 (7)0.0099 (7)0.0146 (8)0.0032 (6)0.0012 (6)0.0027 (6)
C110.0106 (7)0.0156 (8)0.0183 (9)0.0046 (6)0.0000 (6)0.0016 (6)
C120.0121 (7)0.0158 (8)0.0215 (9)0.0056 (6)0.0043 (7)0.0023 (7)
C130.0181 (8)0.0143 (8)0.0131 (8)0.0054 (7)0.0055 (6)0.0015 (6)
C140.0148 (8)0.0169 (8)0.0135 (8)0.0054 (6)0.0001 (6)0.0029 (6)
C150.0127 (7)0.0151 (8)0.0158 (8)0.0065 (6)0.0006 (6)0.0031 (6)
C160.0113 (7)0.0200 (8)0.0134 (8)0.0074 (6)0.0001 (6)0.0020 (6)
C170.0093 (7)0.0158 (7)0.0131 (8)0.0058 (6)0.0016 (6)0.0002 (6)
C180.0129 (7)0.0145 (7)0.0162 (9)0.0072 (6)0.0026 (6)0.0016 (6)
C190.0155 (8)0.0177 (8)0.0179 (9)0.0092 (7)0.0018 (6)0.0040 (7)
C200.0153 (8)0.0259 (9)0.0118 (8)0.0118 (7)0.0004 (6)0.0015 (7)
C210.0171 (8)0.0203 (8)0.0156 (9)0.0102 (7)0.0019 (6)0.0049 (7)
C220.0125 (7)0.0130 (7)0.0184 (9)0.0052 (6)0.0008 (6)0.0007 (6)
N80.0133 (6)0.0128 (6)0.0103 (7)0.0073 (5)0.0011 (5)0.0008 (5)
O30.0223 (7)0.0379 (8)0.0273 (8)0.0111 (7)0.0108 (6)0.0166 (7)
O90.0169 (6)0.0127 (6)0.0203 (7)0.0084 (5)0.0024 (5)0.0027 (5)
Br130.02526 (11)0.02610 (11)0.02010 (11)0.00920 (8)0.00645 (7)0.00505 (7)
Geometric parameters (Å, º) top
C1—N81.498 (2)C11—C121.386 (3)
C1—C21.537 (2)C11—H110.9500
C1—C71.548 (2)C12—C131.388 (3)
C1—H11.0000C12—H120.9500
C2—C31.531 (2)C13—C141.390 (2)
C2—C91.555 (2)C13—Br131.8935 (18)
C2—H21.0000C14—C151.393 (2)
C3—O31.210 (2)C14—H140.9500
C3—C41.514 (3)C15—H150.9500
C4—C51.532 (2)C16—N81.491 (2)
C4—H4A0.9900C16—C171.503 (2)
C4—H4B0.9900C16—H16A0.9900
C5—N81.485 (2)C16—H16B0.9900
C5—C61.539 (2)C17—C221.395 (2)
C5—H51.0000C17—C181.399 (2)
C6—C71.548 (2)C18—C191.384 (3)
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900C19—C201.394 (3)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.389 (3)
C9—O91.426 (2)C20—H200.9500
C9—C101.517 (2)C21—C221.391 (3)
C9—H9C1.0000C21—H210.9500
C10—C151.395 (2)C22—H220.9500
C10—C111.399 (2)O9—H9O0.8400
N8—C1—C2107.26 (12)C15—C10—C9122.51 (15)
N8—C1—C7106.04 (13)C11—C10—C9119.10 (15)
C2—C1—C7111.59 (13)C12—C11—C10121.46 (16)
N8—C1—H1110.6C12—C11—H11119.3
C2—C1—H1110.6C10—C11—H11119.3
C7—C1—H1110.6C13—C12—C11118.93 (16)
C3—C2—C1111.76 (14)C13—C12—H12120.5
C3—C2—C9107.23 (13)C11—C12—H12120.5
C1—C2—C9113.83 (13)C12—C13—C14121.06 (16)
C3—C2—H2107.9C12—C13—Br13119.78 (13)
C1—C2—H2107.9C14—C13—Br13119.12 (14)
C9—C2—H2107.9C13—C14—C15119.21 (16)
O3—C3—C4120.59 (16)C13—C14—H14120.4
O3—C3—C2120.29 (17)C15—C14—H14120.4
C4—C3—C2118.98 (15)C14—C15—C10120.95 (16)
C3—C4—C5115.22 (14)C14—C15—H15119.5
C3—C4—H4A108.5C10—C15—H15119.5
C5—C4—H4A108.5N8—C16—C17111.44 (14)
C3—C4—H4B108.5N8—C16—H16A109.3
C5—C4—H4B108.5C17—C16—H16A109.3
H4A—C4—H4B107.5N8—C16—H16B109.3
N8—C5—C4107.49 (14)C17—C16—H16B109.3
N8—C5—C6105.39 (13)H16A—C16—H16B108.0
C4—C5—C6111.83 (14)C22—C17—C18118.45 (16)
N8—C5—H5110.7C22—C17—C16121.52 (15)
C4—C5—H5110.7C18—C17—C16120.02 (15)
C6—C5—H5110.7C19—C18—C17121.02 (16)
C5—C6—C7103.59 (13)C19—C18—H18119.5
C5—C6—H6A111.0C17—C18—H18119.5
C7—C6—H6A111.0C18—C19—C20119.81 (16)
C5—C6—H6B111.0C18—C19—H19120.1
C7—C6—H6B111.0C20—C19—H19120.1
H6A—C6—H6B109.0C21—C20—C19119.95 (16)
C1—C7—C6104.57 (13)C21—C20—H20120.0
C1—C7—H7A110.8C19—C20—H20120.0
C6—C7—H7A110.8C20—C21—C22119.88 (16)
C1—C7—H7B110.8C20—C21—H21120.1
C6—C7—H7B110.8C22—C21—H21120.1
H7A—C7—H7B108.9C21—C22—C17120.88 (16)
O9—C9—C10112.70 (14)C21—C22—H22119.6
O9—C9—C2110.56 (13)C17—C22—H22119.6
C10—C9—C2112.19 (13)C5—N8—C16110.92 (13)
O9—C9—H9C107.0C5—N8—C1101.24 (12)
C10—C9—H9C107.0C16—N8—C1111.80 (13)
C2—C9—H9C107.0C9—O9—H9O109.5
C15—C10—C11118.38 (16)
(II) (+)-exo,anti-(1R,2S,5S)-8-Benzyl- 2-[(R)-(4-bromophenyl)(hydroxy)methyl]-8-azabicyclo[3.2.1]octan-3-one top
Crystal data top
C21H22BrNO2F(000) = 824
Mr = 400.31Dx = 1.453 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 28586 reflections
a = 5.96905 (4) Åθ = 2.8–31.7°
b = 14.76590 (9) ŵ = 2.26 mm1
c = 20.76083 (13) ÅT = 100 K
V = 1829.83 (2) Å3Needle, colourless
Z = 40.52 × 0.11 × 0.09 mm
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
5359 independent reflections
Radiation source: SuperNova (Mo) X-ray Source5007 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.064
Detector resolution: 10.4052 pixels mm-1θmax = 30.0°, θmin = 2.8°
ω scansh = 88
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 020
Tmin = 0.308, Tmax = 0.816l = 029
67899 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080 w = 1/[σ2(Fo2) + (0.0364P)2 + 1.3126P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.002
5359 reflectionsΔρmax = 0.64 e Å3
230 parametersΔρmin = 0.48 e Å3
0 restraintsAbsolute structure: Flack (1983), with 2292 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.011 (7)
Crystal data top
C21H22BrNO2V = 1829.83 (2) Å3
Mr = 400.31Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 5.96905 (4) ŵ = 2.26 mm1
b = 14.76590 (9) ÅT = 100 K
c = 20.76083 (13) Å0.52 × 0.11 × 0.09 mm
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
5359 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
5007 reflections with I > 2σ(I)
Tmin = 0.308, Tmax = 0.816Rint = 0.064
67899 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.033H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.080Δρmax = 0.64 e Å3
S = 1.04Δρmin = 0.48 e Å3
5359 reflectionsAbsolute structure: Flack (1983), with 2292 Friedel pairs
230 parametersAbsolute structure parameter: 0.011 (7)
0 restraints
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1312 (3)0.55838 (13)0.31042 (9)0.0135 (3)
H10.09700.51670.34710.016*
C20.1759 (3)0.65521 (13)0.33494 (9)0.0137 (3)
H20.03530.67760.35570.016*
C30.2284 (3)0.71768 (14)0.27886 (9)0.0152 (4)
C40.3650 (4)0.67675 (14)0.22454 (10)0.0184 (4)
H4A0.52630.68270.23490.022*
H4B0.33620.71120.18450.022*
C50.3101 (4)0.57637 (14)0.21296 (9)0.0160 (4)
H50.41030.54990.17930.019*
C60.0607 (4)0.56476 (15)0.19451 (10)0.0200 (4)
H6A0.00560.61790.17010.024*
H6B0.03820.50960.16820.024*
C70.0594 (3)0.55655 (15)0.25996 (10)0.0201 (4)
H7A0.14470.49910.26260.024*
H7B0.16380.60780.26660.024*
C90.3654 (3)0.65803 (13)0.38653 (9)0.0143 (4)
H9C0.31540.62080.42410.017*
C100.4132 (4)0.75302 (12)0.41086 (9)0.0138 (3)
C110.2675 (4)0.79506 (14)0.45369 (10)0.0180 (4)
H110.13250.76540.46560.022*
C120.3161 (4)0.88017 (15)0.47949 (10)0.0212 (4)
H120.21610.90860.50880.025*
C130.5142 (4)0.92214 (14)0.46127 (10)0.0181 (4)
C140.6610 (4)0.88237 (14)0.41832 (10)0.0185 (4)
H140.79530.91240.40630.022*
C150.6091 (4)0.79761 (13)0.39295 (9)0.0165 (4)
H150.70840.76990.36310.020*
C160.3379 (3)0.42820 (13)0.26515 (9)0.0153 (4)
H16A0.46400.41230.23630.018*
H16B0.19720.40940.24380.018*
C170.3623 (3)0.37737 (13)0.32782 (9)0.0141 (4)
C180.5521 (3)0.38911 (14)0.36635 (10)0.0169 (4)
H180.66430.43120.35380.020*
C190.5780 (4)0.33984 (14)0.42264 (10)0.0203 (4)
H190.70690.34870.44870.024*
C200.4160 (4)0.27755 (14)0.44106 (9)0.0209 (4)
H200.43510.24310.47930.025*
C210.2259 (4)0.26583 (14)0.40347 (10)0.0199 (4)
H210.11470.22330.41600.024*
C220.1982 (4)0.31643 (14)0.34735 (9)0.0165 (4)
H220.06630.30920.32230.020*
N80.3346 (3)0.52773 (11)0.27504 (7)0.0127 (3)
O30.1665 (3)0.79597 (10)0.27787 (7)0.0223 (3)
O90.5686 (3)0.62051 (10)0.36339 (7)0.0188 (3)
H9O0.529 (6)0.584 (2)0.3352 (17)0.049 (10)*
Br130.59443 (4)1.035874 (13)0.497759 (12)0.02729 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0134 (9)0.0133 (8)0.0138 (8)0.0004 (7)0.0020 (6)0.0001 (6)
C20.0121 (8)0.0143 (9)0.0146 (8)0.0015 (7)0.0007 (7)0.0000 (7)
C30.0151 (9)0.0138 (9)0.0167 (9)0.0005 (7)0.0036 (7)0.0024 (7)
C40.0220 (10)0.0146 (9)0.0187 (9)0.0021 (7)0.0035 (8)0.0059 (7)
C50.0197 (9)0.0149 (9)0.0134 (8)0.0044 (7)0.0021 (7)0.0039 (7)
C60.0236 (11)0.0207 (10)0.0155 (9)0.0039 (8)0.0047 (8)0.0008 (7)
C70.0148 (9)0.0244 (11)0.0211 (9)0.0016 (8)0.0014 (7)0.0039 (8)
C90.0169 (9)0.0129 (8)0.0132 (8)0.0013 (7)0.0006 (7)0.0006 (6)
C100.0171 (9)0.0126 (8)0.0118 (8)0.0025 (8)0.0015 (7)0.0009 (6)
C110.0179 (9)0.0194 (10)0.0166 (9)0.0005 (8)0.0026 (7)0.0016 (7)
C120.0246 (10)0.0199 (10)0.0191 (9)0.0039 (8)0.0015 (8)0.0050 (7)
C130.0256 (10)0.0110 (9)0.0177 (9)0.0020 (8)0.0027 (8)0.0012 (7)
C140.0210 (10)0.0156 (9)0.0189 (9)0.0018 (8)0.0012 (7)0.0041 (7)
C150.0168 (9)0.0165 (9)0.0161 (8)0.0020 (8)0.0034 (7)0.0008 (7)
C160.0196 (9)0.0124 (8)0.0138 (8)0.0011 (7)0.0011 (7)0.0006 (6)
C170.0172 (9)0.0107 (8)0.0142 (8)0.0016 (7)0.0004 (7)0.0011 (6)
C180.0171 (10)0.0129 (8)0.0207 (9)0.0001 (7)0.0021 (7)0.0005 (7)
C190.0245 (10)0.0170 (9)0.0193 (9)0.0000 (9)0.0064 (8)0.0010 (7)
C200.0322 (11)0.0147 (9)0.0157 (8)0.0001 (9)0.0006 (9)0.0019 (7)
C210.0274 (11)0.0145 (9)0.0177 (9)0.0057 (8)0.0039 (8)0.0014 (7)
C220.0173 (9)0.0157 (9)0.0164 (9)0.0017 (8)0.0001 (7)0.0037 (7)
N80.0141 (7)0.0114 (7)0.0127 (7)0.0014 (6)0.0018 (5)0.0019 (6)
O30.0303 (8)0.0136 (7)0.0229 (7)0.0059 (6)0.0067 (6)0.0007 (6)
O90.0155 (7)0.0167 (7)0.0241 (7)0.0053 (6)0.0034 (6)0.0063 (6)
Br130.03686 (12)0.01334 (9)0.03168 (11)0.00017 (8)0.00484 (11)0.00574 (9)
Geometric parameters (Å, º) top
C1—N81.489 (2)C11—C121.397 (3)
C1—C21.541 (3)C11—H110.9500
C1—C71.547 (3)C12—C131.387 (3)
C1—H11.0000C12—H120.9500
C2—C31.518 (3)C13—C141.381 (3)
C2—C91.558 (3)C13—Br131.904 (2)
C2—H21.0000C14—C151.393 (3)
C3—O31.214 (3)C14—H140.9500
C3—C41.517 (3)C15—H150.9500
C4—C51.537 (3)C16—N81.484 (3)
C4—H4A0.9900C16—C171.509 (3)
C4—H4B0.9900C16—H16A0.9900
C5—N81.483 (2)C16—H16B0.9900
C5—C61.547 (3)C17—C221.391 (3)
C5—H51.0000C17—C181.398 (3)
C6—C71.541 (3)C18—C191.385 (3)
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900C19—C201.388 (3)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.388 (3)
C9—O91.417 (2)C20—H200.9500
C9—C101.518 (3)C21—C221.394 (3)
C9—H9C1.0000C21—H210.9500
C10—C111.390 (3)C22—H220.9500
C10—C151.393 (3)O9—H9O0.83 (4)
N8—C1—C2107.67 (15)C11—C10—C9120.53 (19)
N8—C1—C7105.08 (15)C15—C10—C9120.38 (17)
C2—C1—C7111.55 (16)C10—C11—C12121.1 (2)
N8—C1—H1110.8C10—C11—H11119.4
C2—C1—H1110.8C12—C11—H11119.4
C7—C1—H1110.8C13—C12—C11118.32 (19)
C3—C2—C1110.26 (15)C13—C12—H12120.8
C3—C2—C9111.16 (16)C11—C12—H12120.8
C1—C2—C9112.18 (15)C14—C13—C12121.78 (19)
C3—C2—H2107.7C14—C13—Br13118.19 (17)
C1—C2—H2107.7C12—C13—Br13120.00 (16)
C9—C2—H2107.7C13—C14—C15119.0 (2)
O3—C3—C4122.03 (18)C13—C14—H14120.5
O3—C3—C2121.93 (18)C15—C14—H14120.5
C4—C3—C2116.04 (16)C14—C15—C10120.70 (19)
C3—C4—C5112.68 (17)C14—C15—H15119.7
C3—C4—H4A109.1C10—C15—H15119.7
C5—C4—H4A109.1N8—C16—C17111.99 (16)
C3—C4—H4B109.1N8—C16—H16A109.2
C5—C4—H4B109.1C17—C16—H16A109.2
H4A—C4—H4B107.8N8—C16—H16B109.2
N8—C5—C4108.07 (16)C17—C16—H16B109.2
N8—C5—C6104.87 (16)H16A—C16—H16B107.9
C4—C5—C6110.56 (17)C22—C17—C18118.98 (18)
N8—C5—H5111.0C22—C17—C16120.33 (18)
C4—C5—H5111.0C18—C17—C16120.67 (18)
C6—C5—H5111.0C19—C18—C17120.53 (19)
C7—C6—C5103.78 (16)C19—C18—H18119.7
C7—C6—H6A111.0C17—C18—H18119.7
C5—C6—H6A111.0C18—C19—C20120.2 (2)
C7—C6—H6B111.0C18—C19—H19119.9
C5—C6—H6B111.0C20—C19—H19119.9
H6A—C6—H6B109.0C21—C20—C19119.81 (19)
C6—C7—C1104.69 (16)C21—C20—H20120.1
C6—C7—H7A110.8C19—C20—H20120.1
C1—C7—H7A110.8C20—C21—C22120.0 (2)
C6—C7—H7B110.8C20—C21—H21120.0
C1—C7—H7B110.8C22—C21—H21120.0
H7A—C7—H7B108.9C17—C22—C21120.46 (19)
O9—C9—C10108.26 (16)C17—C22—H22119.8
O9—C9—C2112.21 (15)C21—C22—H22119.8
C10—C9—C2112.93 (16)C5—N8—C16111.15 (15)
O9—C9—H9C107.7C5—N8—C1101.60 (14)
C10—C9—H9C107.7C16—N8—C1112.33 (15)
C2—C9—H9C107.7C9—O9—H9O105 (3)
C11—C10—C15119.02 (18)
(III) (±)-exo,anti-(1RS,2SR,5SR)-8-Benzyl-2- [(RS)-(4-bromophenyl)(hydroxy)methyl]-8-azabicyclo[3.2.1]octan-3-one top
Crystal data top
C21H22BrNO2F(000) = 824
Mr = 400.31Dx = 1.477 Mg m3
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 10458 reflections
a = 9.0968 (4) Åθ = 2.9–28.2°
b = 32.0680 (18) ŵ = 2.30 mm1
c = 6.1711 (4) ÅT = 100 K
V = 1800.22 (17) Å3Needle, colourless
Z = 40.80 × 0.09 × 0.07 mm
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
4327 independent reflections
Radiation source: SuperNova (Mo) X-ray Source3985 reflections with I > 2σ(I)
Mirror monochromatorRint = 0.026
Detector resolution: 10.4052 pixels mm-1θmax = 28.3°, θmin = 2.9°
ω scansh = 1112
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
k = 4242
Tmin = 0.726, Tmax = 0.870l = 78
9954 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.067 w = 1/[σ2(Fo2) + (0.0278P)2 + 0.5747P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max = 0.002
4327 reflectionsΔρmax = 0.34 e Å3
227 parametersΔρmin = 0.29 e Å3
1 restraintAbsolute structure: Flack (1983), with 1887 Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.020 (8)
Crystal data top
C21H22BrNO2V = 1800.22 (17) Å3
Mr = 400.31Z = 4
Orthorhombic, Pna21Mo Kα radiation
a = 9.0968 (4) ŵ = 2.30 mm1
b = 32.0680 (18) ÅT = 100 K
c = 6.1711 (4) Å0.80 × 0.09 × 0.07 mm
Data collection top
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
4327 independent reflections
Absorption correction: analytical
(CrysAlis PRO; Agilent, 2011)
3985 reflections with I > 2σ(I)
Tmin = 0.726, Tmax = 0.870Rint = 0.026
9954 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.031H-atom parameters constrained
wR(F2) = 0.067Δρmax = 0.34 e Å3
S = 1.06Δρmin = 0.29 e Å3
4327 reflectionsAbsolute structure: Flack (1983), with 1887 Friedel pairs
227 parametersAbsolute structure parameter: 0.020 (8)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7396 (3)0.40451 (7)0.6389 (4)0.0152 (5)
H10.79330.37890.68590.018*
C20.8347 (2)0.44367 (7)0.6741 (4)0.0147 (5)
H20.85800.44580.83200.018*
C30.7443 (3)0.48150 (7)0.6102 (4)0.0174 (5)
C40.6577 (3)0.47719 (8)0.4042 (4)0.0189 (5)
H4A0.72410.48070.27840.023*
H4B0.58210.49940.39750.023*
C50.5825 (3)0.43415 (7)0.3920 (4)0.0188 (5)
H50.52540.43120.25440.023*
C60.4833 (3)0.42654 (8)0.5910 (4)0.0189 (5)
H6A0.40460.40620.55740.023*
H6B0.43790.45290.64170.023*
C70.5914 (3)0.40887 (8)0.7622 (4)0.0207 (5)
H7A0.60130.42820.88640.025*
H7B0.55740.38150.81630.025*
C90.9808 (2)0.44178 (7)0.5477 (4)0.0150 (5)
H9A0.96090.43470.39270.018*
C101.0798 (2)0.40908 (7)0.6471 (4)0.0155 (5)
C111.1104 (2)0.37206 (7)0.5391 (4)0.0175 (5)
H111.07100.36760.39840.021*
C121.1984 (3)0.34127 (7)0.6346 (4)0.0208 (5)
H121.21920.31600.56020.025*
C131.2544 (3)0.34845 (7)0.8393 (4)0.0185 (5)
C141.2264 (2)0.38538 (6)0.9508 (5)0.0186 (5)
H141.26680.39001.09080.022*
C151.1385 (2)0.41532 (7)0.8534 (4)0.0173 (5)
H151.11790.44050.92840.021*
C160.6393 (3)0.36003 (8)0.3520 (4)0.0224 (5)
H16A0.58330.36170.21470.027*
H16B0.57100.35090.46760.027*
C170.7611 (3)0.32839 (7)0.3283 (4)0.0199 (5)
C180.7944 (3)0.29981 (6)0.4914 (6)0.0249 (5)
H180.73750.29950.62050.030*
C190.9101 (3)0.27178 (6)0.4670 (6)0.0295 (6)
H190.93220.25260.57990.035*
C200.9931 (3)0.27170 (8)0.2789 (5)0.0290 (6)
H201.07270.25280.26290.035*
C210.9590 (3)0.29945 (8)0.1140 (5)0.0252 (6)
H211.01410.29920.01680.030*
C220.8446 (3)0.32758 (8)0.1401 (4)0.0213 (5)
H220.82300.34670.02690.026*
N80.6991 (2)0.40193 (6)0.4065 (3)0.0158 (4)
O30.73771 (18)0.51265 (5)0.7239 (3)0.0217 (4)
O91.04507 (18)0.48249 (5)0.5611 (3)0.0197 (4)
H9O1.10950.48510.46450.030*
Br131.36610 (2)0.305844 (6)0.97680 (7)0.02681 (7)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0177 (11)0.0139 (10)0.0140 (12)0.0016 (9)0.0008 (9)0.0024 (10)
C20.0118 (10)0.0151 (10)0.0172 (12)0.0005 (8)0.0004 (9)0.0004 (9)
C30.0132 (11)0.0158 (11)0.0233 (14)0.0018 (9)0.0044 (10)0.0022 (10)
C40.0190 (12)0.0192 (11)0.0186 (13)0.0041 (9)0.0006 (9)0.0042 (9)
C50.0158 (11)0.0226 (11)0.0180 (12)0.0019 (10)0.0044 (9)0.0005 (10)
C60.0164 (11)0.0221 (12)0.0181 (13)0.0010 (9)0.0001 (10)0.0036 (10)
C70.0183 (12)0.0266 (12)0.0170 (13)0.0069 (10)0.0026 (10)0.0008 (10)
C90.0117 (10)0.0154 (10)0.0178 (12)0.0006 (9)0.0003 (9)0.0001 (8)
C100.0111 (10)0.0167 (11)0.0186 (12)0.0030 (9)0.0009 (9)0.0008 (9)
C110.0164 (11)0.0185 (10)0.0176 (14)0.0019 (9)0.0019 (8)0.0021 (9)
C120.0177 (12)0.0147 (11)0.0299 (14)0.0001 (9)0.0015 (10)0.0037 (10)
C130.0163 (11)0.0137 (10)0.0256 (13)0.0008 (9)0.0035 (10)0.0044 (10)
C140.0161 (9)0.0214 (10)0.0181 (14)0.0030 (8)0.0018 (11)0.0008 (11)
C150.0145 (11)0.0180 (11)0.0193 (13)0.0004 (9)0.0032 (10)0.0024 (10)
C160.0202 (12)0.0233 (12)0.0236 (14)0.0022 (10)0.0021 (10)0.0080 (11)
C170.0219 (12)0.0167 (11)0.0211 (13)0.0077 (9)0.0035 (10)0.0041 (10)
C180.0330 (12)0.0223 (11)0.0193 (13)0.0109 (9)0.0027 (14)0.0008 (14)
C190.0423 (14)0.0152 (9)0.0310 (14)0.0071 (9)0.0136 (18)0.0041 (15)
C200.0273 (14)0.0174 (11)0.0424 (18)0.0009 (11)0.0149 (13)0.0091 (12)
C210.0244 (13)0.0241 (13)0.0271 (15)0.0030 (10)0.0001 (11)0.0074 (11)
C220.0264 (13)0.0196 (12)0.0177 (13)0.0041 (10)0.0036 (10)0.0004 (10)
N80.0156 (9)0.0166 (9)0.0151 (11)0.0005 (8)0.0016 (8)0.0017 (8)
O30.0199 (9)0.0172 (8)0.0281 (10)0.0011 (7)0.0003 (8)0.0033 (7)
O90.0193 (8)0.0153 (7)0.0245 (9)0.0035 (7)0.0036 (7)0.0021 (7)
Br130.02635 (12)0.01963 (10)0.03446 (14)0.00432 (9)0.01027 (15)0.00369 (15)
Geometric parameters (Å, º) top
C1—N81.483 (3)C11—C121.402 (3)
C1—C21.540 (3)C11—H110.9500
C1—C71.555 (3)C12—C131.382 (4)
C1—H11.0000C12—H120.9500
C2—C31.518 (3)C13—C141.393 (3)
C2—C91.542 (3)C13—Br131.902 (2)
C2—H21.0000C14—C151.387 (3)
C3—O31.222 (3)C14—H140.9500
C3—C41.502 (3)C15—H150.9500
C4—C51.542 (3)C16—N81.488 (3)
C4—H4A0.9900C16—C171.509 (3)
C4—H4B0.9900C16—H16A0.9900
C5—N81.483 (3)C16—H16B0.9900
C5—C61.544 (3)C17—C181.394 (4)
C5—H51.0000C17—C221.388 (4)
C6—C71.551 (3)C18—C191.392 (3)
C6—H6A0.9900C18—H180.9500
C6—H6B0.9900C19—C201.385 (5)
C7—H7A0.9900C19—H190.9500
C7—H7B0.9900C20—C211.387 (4)
C9—O91.433 (3)C20—H200.9500
C9—C101.512 (3)C21—C221.386 (4)
C9—H9A1.0000C21—H210.9500
C10—C111.389 (3)C22—H220.9500
C10—C151.395 (4)O9—H9O0.8400
N8—C1—C2108.8 (2)C11—C10—C9121.1 (2)
N8—C1—C7105.24 (18)C15—C10—C9119.9 (2)
C2—C1—C7110.17 (19)C10—C11—C12121.0 (2)
N8—C1—H1110.8C10—C11—H11119.5
C2—C1—H1110.8C12—C11—H11119.5
C7—C1—H1110.8C13—C12—C11118.5 (2)
C3—C2—C1108.12 (19)C13—C12—H12120.7
C3—C2—C9111.52 (19)C11—C12—H12120.7
C1—C2—C9112.37 (19)C12—C13—C14121.7 (2)
C3—C2—H2108.2C12—C13—Br13119.02 (18)
C1—C2—H2108.2C14—C13—Br13119.19 (19)
C9—C2—H2108.2C15—C14—C13118.7 (2)
O3—C3—C4122.4 (2)C15—C14—H14120.7
O3—C3—C2122.1 (2)C13—C14—H14120.7
C4—C3—C2115.5 (2)C14—C15—C10121.1 (2)
C3—C4—C5110.87 (19)C14—C15—H15119.4
C3—C4—H4A109.5C10—C15—H15119.4
C5—C4—H4A109.5N8—C16—C17111.14 (19)
C3—C4—H4B109.5N8—C16—H16A109.4
C5—C4—H4B109.5C17—C16—H16A109.4
H4A—C4—H4B108.1N8—C16—H16B109.4
N8—C5—C4107.66 (18)C17—C16—H16B109.4
N8—C5—C6105.08 (19)H16A—C16—H16B108.0
C4—C5—C6111.2 (2)C18—C17—C22118.2 (2)
N8—C5—H5110.9C18—C17—C16122.1 (2)
C4—C5—H5110.9C22—C17—C16119.7 (2)
C6—C5—H5110.9C17—C18—C19120.7 (3)
C5—C6—C7103.23 (19)C17—C18—H18119.7
C5—C6—H6A111.1C19—C18—H18119.7
C7—C6—H6A111.1C20—C19—C18120.3 (3)
C5—C6—H6B111.1C20—C19—H19119.9
C7—C6—H6B111.1C18—C19—H19119.9
H6A—C6—H6B109.1C19—C20—C21119.5 (2)
C1—C7—C6104.44 (19)C19—C20—H20120.3
C1—C7—H7A110.9C21—C20—H20120.3
C6—C7—H7A110.9C22—C21—C20120.0 (3)
C1—C7—H7B110.9C22—C21—H21120.0
C6—C7—H7B110.9C20—C21—H21120.0
H7A—C7—H7B108.9C21—C22—C17121.3 (3)
O9—C9—C10111.43 (18)C21—C22—H22119.3
O9—C9—C2106.66 (17)C17—C22—H22119.3
C10—C9—C2109.60 (18)C5—N8—C1101.36 (17)
O9—C9—H9A109.7C5—N8—C16110.73 (18)
C10—C9—H9A109.7C1—N8—C16111.10 (19)
C2—C9—H9A109.7C9—O9—H9O109.5
C11—C10—C15118.9 (2)

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC21H22BrNO2C21H22BrNO2C21H22BrNO2
Mr400.31400.31400.31
Crystal system, space groupTrigonal, R3Orthorhombic, P212121Orthorhombic, Pna21
Temperature (K)100100100
a, b, c (Å)29.8145 (5), 29.8145 (5), 10.2028 (2)5.96905 (4), 14.76590 (9), 20.76083 (13)9.0968 (4), 32.0680 (18), 6.1711 (4)
α, β, γ (°)90, 90, 12090, 90, 9090, 90, 90
V3)7854.2 (4)1829.83 (2)1800.22 (17)
Z1844
Radiation typeMo KαMo KαMo Kα
µ (mm1)2.362.262.30
Crystal size (mm)0.54 × 0.46 × 0.290.52 × 0.11 × 0.090.80 × 0.09 × 0.07
Data collection
DiffractometerAgilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
Agilent SuperNova Dual
diffractometer (Cu at zero) with Atlas detector
Absorption correctionAnalytical
(CrysAlis PRO; Agilent, 2011)
Analytical
(CrysAlis PRO; Agilent, 2011)
Analytical
(CrysAlis PRO; Agilent, 2011)
Tmin, Tmax0.434, 0.6330.308, 0.8160.726, 0.870
No. of measured, independent and
observed [I > 2σ(I)] reflections
24029, 4885, 4130 67899, 5359, 5007 9954, 4327, 3985
Rint0.0330.0640.026
(sin θ/λ)max1)0.6940.7040.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.06 0.033, 0.080, 1.04 0.031, 0.067, 1.06
No. of reflections488553594327
No. of parameters227230227
No. of restraints001
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinementH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.0333P)2 + 18.6115P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0364P)2 + 1.3126P]
where P = (Fo2 + 2Fc2)/3
w = 1/[σ2(Fo2) + (0.0278P)2 + 0.5747P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)0.52, 0.670.64, 0.480.34, 0.29
Absolute structure?Flack (1983), with 2292 Friedel pairsFlack (1983), with 1887 Friedel pairs
Absolute structure parameter?0.011 (7)0.020 (8)

Computer programs: CrysAlis PRO (Agilent, 2011), SHELXD (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), OLEX2 (Dolomanov et al., 2009).

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds