Download citation
Download citation
link to html
The crystal structure of the title compound, [Co(C5H7O2)3], has been investigated by a multi-temperature measurement. In contrast to the isomorphous Al compound, the title compound exists in the studied temperature range as its monoclinic α polymorph (space group P21/c) and does not undergo a phase transition. Rigid-body TLS analyses have been performed and the anisotropic thermal expansion tensor αij has been determined. The cell axes show a linear expansion behavior with respect to the temperature, but the slope is significantly different. A possible explanation are the different strengths of different inter­molecular C—H...O contacts, which run in different crystallographic directions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107022950/gz3091sup1.cif
Contains datablocks Ia, Ib, Ic, Id, Ie, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022950/gz3091Iasup2.hkl
Contains datablock Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022950/gz3091Ibsup3.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022950/gz3091Icsup4.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022950/gz3091Idsup5.hkl
Contains datablock Id

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107022950/gz3091Iesup6.hkl
Contains datablock Ie

CCDC references: 655478; 655479; 655480; 655481; 655482

Comment top

Metal complexes, especially transition metal complexes, play an important role in catalytic processes. Trivalent metal acetylacetonate (pentane-2,4-dionate, acac) complexes are particularly accessible species for studying structure, bonding and ligand coordination in organometallic systems. Polymorphism is well known for these complexes [see e.g. Geremia & Demitri (2005) for Mn(acac)3]. In the course of our ongoing studies on these complexes (von Chrzanowski et al., 2006, 2007), we have now determined the crystal structure of Co(acac)3, (I). According to an old nomenclature of Astbury & Morgan (1926), the α polymorph crystallizes in the monoclinic crystal system with space group P21/c. In our temperature-dependent study of α-Al(acac)3, which is isomorphous to α-Co(acac)3, we observed a phase transition to a new δ polymorph. This phase transition occurs between 150 and 110 K.

To our knowledge, all previous crystallographic investigations of Co(acac)3 were carried out at room temperature. Only the α polymorph of Co(acac)3 has been reported, crystallizing in the monoclinic crystal system with space group P21/c (Hon & Pfluger, 1973; Krüger & Reynhardt, 1974). We report here a multi-temperature measurement with the temperatures 240, (Ia), 210, (Ib), 180, (Ic), 150, (Id), and 110 K, (Ie), which are the same as in our previous publication on α-Al(acac)3 (von Chrzanowski et al., 2007).

Co(acac)3 crystallizes as an α polymorph with one independent molecule in the asymmetric unit. No phase transition was observed in the chosen temperature range. The temperature-dependent measurement shows, as expected, a decrease of the anisotropic displacement parameters with decreasing temperature and therefore a decrease of the thermal motion (Fig. 1). The molecule has an approximate noncrystallographic D3 symmetry, with r.m.s. deviations between 0.114 [for (IIe)] and 0.122 Å [for (Ia)] from ideal symmetry (Pilati & Forni, 1998).

It is known that it is difficult to reach the precision of four-circle diffractometer cell parameters from area-detector data (Herbstein, 2000). Two difficulties are noteworthy: (A) The detector is moveable and the detector–crystal distance is highly correlated with the unit-cell volume. (B) The precise peak position in rotation direction (time axis) is unknown. In order to overcome some of these difficulties we carried out temperature-dependent cell parameter determinations with a fixed detector position and the Phi/Phi-Chi routine (Duisenberg et al., 2000), which is designed to provide accurate peak positions for the reflections. A different crystal was used than for the above-described intensity measurements for the crystal structure determinations. The chosen temperature range was from 290 to 110 K, with steps of 20 K and a cooling rate of 120 K h-1. The cell axes and the cell volume decrease linearly, the a axis being the most sensitive to change of temperature. The slope ratio b:c:a is approximately 1:1.8:2.7 (Fig. 2). The cell parameters of the known crystal structure determinations of Co(acac)3 at room temperature are summarized in Table 1. It can be clearly seen that the consistancy of these data is much worse than the internal consistency given in Fig. 2, which is based on one single-crystal and one diffractometer.

The thermal expansion can also be represented by a symmetrical second-rank tensor, αij. Calculations for the tensor components, eigenvalues and eigenvectors were performed by the program ALPHA (Jessen & Küppers, 1991). 20 reflections were included in the calculation with θ values calculated from the cell parameters. In a monoclinic unit cell, two off-diagonal terms of the tensor are zero and one axis is parallel to the crystallographic b axis. The behavior of the thermal expansion is anisotropic, as can be seen in the values for the tensor components of thermal expansion αij (Table 2). The largest expansion of Co(acac)3 occurs along the crystallographic a axis. This expansion is represented by the eigenvalue of α3, which is almost parallel to the crystallographic a axis (Table 3). Note that the β angle and its change cannot be determined reliably; for example, a relatively large change in β from 98.5 to 98.6° results in an extremely small change in θ of 0.006° for the (002) reflection.

The anisotropic thermal expansion tensor might give valuable insight into the strengths of intermolecular interactions (Salud et al., 1998; Kitaigorodsky 1973), while in other cases such a direct relation has been questioned (Boldyreva et al., 1997). It has been noted that acetylacetonate complexes are linked together in the crystal by pure van der Waals interactions (Alekseev et al., 2006), but in the case of α-Co(acac)3, we detect three different C—H···O hydrogen bonds of different lengths (Table 4). Methyl H atoms act as hydrogen-bond donors and metal-coordinated O atoms as acceptors, with C—H···O angles between 170 and 180° for I(a)–I(e). The weakest interaction is C11—H11B···O1iii [from 2.78 for (Ia) to 2.65 Å for (Ie); symmetry code: (iii) -x, -y + 1, -z + 1], and the vector C11···O1iii forms an angle of 33° to the crystallographic a axis. The other two interactions are shorter [C6—H6B···O6ii and C1—H1A···O4i [2.53 for (Ia) to 2.47 for (Ie), and 2.54 for (Ia) to 2.52 Å for (Ie); symmetry codes: (i) x, y + 1, z; (ii) x, -y + 1/2, z - 1/2] and form angles of 84 and 72°, respectively, with the crystallographic a axis (Fig. 3). The lengths of these hydrogen bonds are linearly dependent on the temperature (Fig. 4). Interesting enough, the longest distance, C11···O1iii, has the largest slope. This hydrogen bond has the smallest angle to the crystallographic a axis, which has also the largest temperature dependence of the cell parameters (see above). The other two hydrogen bonds are approximately in the bc plane and have a smaller temperature dependence.

The eigenvalues of the translation T and libration L tensors obtained from rigid-body analyses (PLATON; Spek, 2003) show that the decrease of the thermal motion is linear in the whole temperature range (Fig. 5). The agreement factors of the rigid-body analyses are rather high {R = 0.104–0.129; R = [Σ(Uobs - Ucalc)2/ΣUobs2]1/2}. This situation is similar to that for α-Al(acac)3, where the agreement factors (R = 0.155–0.167) are even higher. The corresponding internal motion is visualized by difference plots (Hummel et al., 1990) between the observed displacement parameters and the rigid-body models (Fig. 6). The nonrigid behavior is mainly expressed by only one acac ligand (C11–C15). This behavior is also observed in the aluminium compound.

Considering the displacement parameters at a particular temperature, the internal motions are also reflected in a relatively large variation of the bond lengths. Fo example, the Co—O distances range between 1.8746 (18) and 1.8892 (17) Å at 240 K (Ia). The corresponding Al—O distances in α-Al(acac)3 for 240 K are 1.8712 (13)–1.8862 (12) Å and show a similar variation (von Chrzanowski et al., 2007). Because octahedral, low-spin CoIII with electron configuration d6 does not express Jahn–Teller distortions (Wiberg, 1985), this variation can only be explained by internal thermal motion. The thermal motion also contributes to a shortening of the Co—O distances (Table 5) of the crystal structure determinations compared with the value of 1.899 Å obtained for Co(acac)3 from high-level density functional theory (6–31 G* for C, H, O and triple-zeta for Co) calculations (Diaz-Acosta et al., 2003).

Related literature top

For related literature, see: Alekseev et al. (2006); Astbury & Morgan (1926); Boldyreva et al. (1997); Chrzanowski et al. (2006, 2007); Diaz-Acosta, Baker, Hinton & Pulay (2003); Duisenberg et al. (2000); Geremia & Demitri (2005); Herbstein (2000); Hon & Pfluger (1973); Hummel et al. (1990); Jessen & Küppers (1991); Kitaigorodsky (1973); Kottke & Stalke (1993); Krüger & Reynhardt (1974); Pilati & Forni (1998); Salud et al. (1998); Spek (2003); Wiberg (1985).

Experimental top

Dark-green crystals were obtained by slow evaporation of a solution of the commercially available material (Aldrich) in ethyl acetate at room temperature.

Refinement top

The crystal stucture determinations of I(a)–I(e) were all carried out on the same crystal, which was mounted on a glass capillary with perfluoro polyether oil (Kottke & Stalke, 1993). The X-ray intensities of (Ia)–(Id) were obtained with an exposure time of 40 s per frame and a rotation angle of 1°. 258 ϕ and 125 ω scans were measured. The X-ray intensities of (Ie) were obtained with two different exposure times and rotation angles of 1°. 258 ϕ and 323 ω scans were measured with an exposure time of 60 s per frame and 173 ϕ scans with an exposure time of 12 s per frame.

All H atoms were introduced in geometrically idealized positions, refined with a riding model and subsequently confirmed in a difference Fourier map. Their Uiso(H) values were set at 1.2Ueq(C) for H atoms of the central CH groups and 1.5Ueq(C) for methyl H atoms.

Because the above-mentioned oil mounting technique is not suitable for ambient temperatures, a second, different crystal was selected and mounted with Super Glue for the cell parameter determinations. The detector position was kept fixed and the Phi/Phi-Chi routine (Duisenberg et al., 2000) was used.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: PEAKREF (Schreurs, 2005); data reduction: EVALCCD (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002). Program(s) used to solve structure: coordinates taken from α-Al(acac)3 (von Chrzanowski et al., 2007) for (Ia); coordinates taken from Ia for (Ib); coordinates taken from Ib for (Ic); coordinates taken from Ic for (Id); coordinates taken from Id for (Ie). For all compounds, program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: manual editing of SHELXL97 (Sheldrick, 1997) output.

Figures top
[Figure 1] Fig. 1. Displacement ellipsoid plots and atomic numbering schemes of (Ia) at 240 K, (Ib) at 210 K, (Ic) at 180 K, (Id) at 150 K and (Ie) at 110 K. Ellipsoids are drawn at the 50% probability level. H atoms have been omitted for clarity. All plots are drawn in the same orientation and have the same labeling scheme.
[Figure 2] Fig. 2. (a) Unit-cell lengths a (middle line), b (lower line) and c (top line), (b) cell angle β and (c) cell volume as a function of temperature. (a = 13.486 + 1.32 × 10 -3 T, b = 7.313 + 0.50 × 10 -3 T, c = 15.932 + 0.88 × 10 -3 T and V = 1552.6 + 0.357 T.)
[Figure 3] Fig. 3. Hydrogen-bond interactions in (Ie). The C—H···O contacts are shown with dashed lines. (a) The C1—H11B···O1iii contact, viewed along the crystallographic c axis. (b) The C6—H6B···O6ii contact, viewed along the crystallographic b axis. (c) The C1—H1A···O4i contact, viewed along the crystallographic a axis. [Symmetry codes: (i) x, y + 1, z; (ii) x, -y, + 1/2 z - 1/2; (iii) -x, -y + 1, -z + 1.]
[Figure 4] Fig. 4. D···A distances for the hydrogen contacts C1—H1A···O4i (middle line), C6—H6B···O6ii (lower line) and C11—H11B···O1iii (top line) as a function of temperature [C1···O4i = 3.482 + 0.13 × 10 -3 T, C6···O6ii = 3.399 + 0.38 × 10 -3 T and C11···O1iii = 3.530 + 0.89 × 10 -3 T; symmetry codes: (i) x, y + 1, z; (ii) x, -y + 1/2, z - 1/2; (iii) -x, -y + 1, -z + 1.]
[Figure 5] Fig. 5. Eigenvalues of translation Ti (top) and libration Li (bottom) tensors from rigid-body analyses (PLATON; Spek, 2003) as a function of temperature. (T1 = 1.68 × 10-3 + 0.15 × 10 -3 T, T2 = 0.95 × 10-3 + 0.13 × 10 -3 T, T3 = 0.76 × 10-3 + 0.11 × 10 -3 T, L1 = -0.67 + 0.06 T, L2 = -0.86 + 0.02 T, L3 = -0.22 + 0.02 T.]
[Figure 6] Fig. 6. Peanut plots of (Ia) at 240 K, (Ib) at 210 K, (Ic) at 180 K, (Id) at 150 K and (Ie) at 110 K, showing the difference between the measured displacement parameters and the parameters obtained by rigid-body analyses using the program THMA11 (Schomaker & Trueblood, 1998). A scale factor of 3.08 was used for the r.m.s. surfaces. Blue lines indicate positive differences and purple lines negative ones.
(Ia) α-Tris(pentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H7O2)3]F(000) = 744
Mr = 356.25Dx = 1.443 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4640 reflections
a = 13.8094 (7) Åθ = 2.8–26.7°
b = 7.4331 (4) ŵ = 1.07 mm1
c = 16.1484 (9) ÅT = 240 K
β = 98.430 (3)°Hexagonal plate, dark green
V = 1639.66 (15) Å30.23 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Radiation source: rotating anode2578 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
258 ϕ and 231 ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.47, Tmax = 0.95k = 99
18651 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.091H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0368P)2 + 0.6573P]
where P = (Fo2 + 2Fc2)/3
3762 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Co(C5H7O2)3]V = 1639.66 (15) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.8094 (7) ŵ = 1.07 mm1
b = 7.4331 (4) ÅT = 240 K
c = 16.1484 (9) Å0.23 × 0.15 × 0.05 mm
β = 98.430 (3)°
Data collection top
Nonius KappaCCD
diffractometer
3762 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2578 reflections with I > 2σ(I)
Tmin = 0.47, Tmax = 0.95Rint = 0.044
18651 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.091H-atom parameters constrained
S = 1.04Δρmax = 0.28 e Å3
3762 reflectionsΔρmin = 0.33 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24194 (2)0.26923 (4)0.46867 (2)0.03240 (12)
O10.25285 (13)0.5029 (2)0.51514 (10)0.0373 (4)
O20.36630 (12)0.1878 (2)0.51874 (11)0.0370 (4)
O30.30162 (13)0.3565 (2)0.37905 (10)0.0387 (4)
O40.21755 (12)0.0347 (2)0.42653 (11)0.0382 (4)
O50.12231 (14)0.3415 (2)0.40755 (11)0.0432 (5)
O60.19163 (13)0.1917 (2)0.56466 (10)0.0392 (4)
C10.3214 (2)0.7522 (3)0.59027 (18)0.0511 (7)
H1A0.29130.82840.54490.077*
H1B0.38610.79780.61150.077*
H1C0.28130.75220.63480.077*
C20.3299 (2)0.5628 (3)0.55848 (15)0.0355 (6)
C30.4168 (2)0.4681 (4)0.57869 (17)0.0435 (7)
H30.47050.53010.60810.052*
C40.43070 (18)0.2896 (4)0.55889 (16)0.0367 (6)
C50.5273 (2)0.2011 (4)0.58784 (19)0.0544 (8)
H5A0.52240.12880.63700.082*
H5B0.57720.29260.60160.082*
H5C0.54480.12480.54360.082*
C60.3566 (2)0.3605 (4)0.24872 (17)0.0528 (8)
H6A0.36930.48460.26550.079*
H6B0.31400.35730.19540.079*
H6C0.41800.30120.24330.079*
C70.30816 (17)0.2655 (4)0.31353 (15)0.0364 (6)
C80.27609 (19)0.0892 (4)0.29927 (16)0.0418 (7)
H80.28280.03810.24720.050*
C90.23519 (17)0.0170 (3)0.35514 (16)0.0349 (6)
C100.2077 (2)0.2088 (3)0.33435 (18)0.0451 (7)
H10A0.23840.28670.37880.068*
H10B0.22990.24180.28210.068*
H10C0.13720.22180.32870.068*
C110.0460 (2)0.3751 (5)0.3695 (2)0.0751 (11)
H11A0.02920.48320.34110.113*
H11B0.10140.39960.39840.113*
H11C0.06310.28010.32880.113*
C120.0404 (2)0.3167 (4)0.43198 (19)0.0498 (7)
C130.0261 (2)0.2402 (5)0.5075 (2)0.0622 (9)
H130.03870.22440.51740.075*
C140.1005 (2)0.1853 (4)0.56930 (18)0.0478 (7)
C150.0776 (3)0.1152 (5)0.6519 (2)0.0719 (10)
H15A0.12460.02270.67260.108*
H15B0.01220.06460.64430.108*
H15C0.08140.21300.69200.108*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.0375 (2)0.0331 (2)0.02644 (18)0.00398 (16)0.00405 (13)0.00139 (15)
O10.0448 (10)0.0334 (9)0.0332 (10)0.0071 (8)0.0041 (8)0.0044 (8)
O20.0375 (10)0.0365 (10)0.0369 (10)0.0069 (8)0.0053 (8)0.0027 (8)
O30.0526 (11)0.0361 (10)0.0288 (10)0.0003 (8)0.0104 (8)0.0024 (8)
O40.0482 (11)0.0340 (9)0.0323 (10)0.0019 (8)0.0052 (8)0.0030 (8)
O50.0432 (11)0.0494 (11)0.0345 (10)0.0068 (9)0.0031 (8)0.0006 (9)
O60.0433 (11)0.0439 (11)0.0309 (9)0.0037 (9)0.0071 (8)0.0007 (8)
C10.073 (2)0.0366 (16)0.0442 (16)0.0044 (15)0.0106 (15)0.0054 (13)
C20.0524 (16)0.0315 (14)0.0244 (13)0.0037 (13)0.0115 (12)0.0006 (11)
C30.0415 (15)0.0432 (16)0.0443 (16)0.0059 (13)0.0011 (13)0.0044 (13)
C40.0333 (14)0.0474 (16)0.0308 (13)0.0015 (12)0.0091 (11)0.0039 (12)
C50.0386 (16)0.070 (2)0.0539 (19)0.0071 (15)0.0052 (14)0.0006 (16)
C60.067 (2)0.0587 (19)0.0344 (16)0.0053 (16)0.0149 (14)0.0007 (14)
C70.0350 (13)0.0449 (16)0.0283 (13)0.0081 (12)0.0014 (11)0.0016 (12)
C80.0539 (17)0.0425 (16)0.0293 (14)0.0046 (13)0.0067 (13)0.0073 (12)
C90.0325 (13)0.0350 (14)0.0336 (15)0.0081 (11)0.0068 (11)0.0029 (11)
C100.0498 (16)0.0386 (15)0.0435 (16)0.0007 (13)0.0046 (13)0.0087 (13)
C110.054 (2)0.099 (3)0.065 (2)0.0210 (19)0.0156 (17)0.015 (2)
C120.0410 (16)0.061 (2)0.0433 (17)0.0059 (14)0.0071 (14)0.0136 (14)
C130.0326 (15)0.102 (3)0.0519 (19)0.0028 (17)0.0057 (14)0.0047 (19)
C140.0472 (18)0.0565 (19)0.0415 (16)0.0078 (14)0.0127 (14)0.0062 (14)
C150.069 (2)0.097 (3)0.054 (2)0.015 (2)0.0237 (18)0.008 (2)
Geometric parameters (Å, º) top
Co1—O51.8746 (18)C6—C71.499 (3)
Co1—O61.8798 (17)C6—H6A0.9700
Co1—O31.8826 (17)C6—H6B0.9700
Co1—O41.8841 (17)C6—H6C0.9700
Co1—O21.8872 (17)C7—C81.391 (4)
Co1—O11.8892 (17)C8—C91.381 (4)
O1—C21.265 (3)C8—H80.9400
O2—C41.271 (3)C9—C101.500 (3)
O3—C71.270 (3)C10—H10A0.9700
O4—C91.272 (3)C10—H10B0.9700
O5—C121.265 (3)C10—H10C0.9700
O6—C141.272 (3)C11—C121.509 (4)
C1—C21.509 (3)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C11—H11C0.9700
C1—H1C0.9700C12—C131.385 (4)
C2—C31.389 (4)C13—C141.385 (4)
C3—C41.384 (4)C13—H130.9400
C3—H30.9400C14—C151.509 (4)
C4—C51.499 (4)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C15—H15C0.9700
C5—H5C0.9700
O5—Co1—O696.79 (8)C7—C6—H6A109.5
O5—Co1—O387.01 (8)C7—C6—H6B109.5
O6—Co1—O3174.86 (8)H6A—C6—H6B109.5
O5—Co1—O488.74 (8)C7—C6—H6C109.5
O6—Co1—O486.89 (7)H6A—C6—H6C109.5
O3—Co1—O496.68 (7)H6B—C6—H6C109.5
O5—Co1—O2173.61 (8)O3—C7—C8125.4 (2)
O6—Co1—O288.37 (8)O3—C7—C6115.1 (2)
O3—Co1—O288.08 (8)C8—C7—C6119.5 (2)
O4—Co1—O287.79 (7)C9—C8—C7125.5 (2)
O5—Co1—O187.62 (8)C9—C8—H8117.2
O6—Co1—O188.40 (7)C7—C8—H8117.2
O3—Co1—O188.30 (7)O4—C9—C8124.8 (2)
O4—Co1—O1173.67 (7)O4—C9—C10114.4 (2)
O2—Co1—O196.31 (7)C8—C9—C10120.8 (2)
C2—O1—Co1123.70 (16)C9—C10—H10A109.5
C4—O2—Co1123.54 (16)C9—C10—H10B109.5
C7—O3—Co1123.34 (16)H10A—C10—H10B109.5
C9—O4—Co1123.98 (16)C9—C10—H10C109.5
C12—O5—Co1123.61 (19)H10A—C10—H10C109.5
C14—O6—Co1123.25 (18)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3125.4 (2)O5—C12—C13125.7 (3)
O1—C2—C1114.6 (2)O5—C12—C11113.9 (3)
C3—C2—C1120.0 (3)C13—C12—C11120.4 (3)
C4—C3—C2125.1 (3)C12—C13—C14124.7 (3)
C4—C3—H3117.4C12—C13—H13117.6
C2—C3—H3117.4C14—C13—H13117.6
O2—C4—C3125.3 (2)O6—C14—C13125.6 (3)
O2—C4—C5115.0 (2)O6—C14—C15113.7 (3)
C3—C4—C5119.7 (3)C13—C14—C15120.7 (3)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Co1—O1—C2169.71 (19)Co1—O1—C2—C30.2 (3)
O6—Co1—O1—C293.42 (19)Co1—O1—C2—C1179.13 (16)
O3—Co1—O1—C282.63 (19)O1—C2—C3—C44.3 (4)
O2—Co1—O1—C25.24 (19)C1—C2—C3—C4174.6 (3)
O6—Co1—O2—C496.43 (19)Co1—O2—C4—C36.5 (3)
O3—Co1—O2—C479.85 (19)Co1—O2—C4—C5175.39 (17)
O4—Co1—O2—C4176.61 (19)C2—C3—C4—O20.8 (4)
O1—Co1—O2—C48.22 (19)C2—C3—C4—C5177.3 (3)
O5—Co1—O3—C783.63 (19)Co1—O3—C7—C82.3 (3)
O4—Co1—O3—C74.7 (2)Co1—O3—C7—C6178.88 (17)
O2—Co1—O3—C792.28 (19)O3—C7—C8—C92.4 (4)
O1—Co1—O3—C7171.34 (19)C6—C7—C8—C9176.4 (3)
O5—Co1—O4—C982.57 (19)Co1—O4—C9—C81.3 (3)
O6—Co1—O4—C9179.44 (19)Co1—O4—C9—C10178.76 (16)
O3—Co1—O4—C94.27 (19)C7—C8—C9—O43.0 (4)
O2—Co1—O4—C992.07 (19)C7—C8—C9—C10177.0 (2)
O6—Co1—O5—C125.7 (2)Co1—O5—C12—C132.5 (4)
O3—Co1—O5—C12177.7 (2)Co1—O5—C12—C11176.06 (19)
O4—Co1—O5—C1281.0 (2)O5—C12—C13—C142.6 (5)
O1—Co1—O5—C1293.8 (2)C11—C12—C13—C14178.8 (3)
O5—Co1—O6—C145.9 (2)Co1—O6—C14—C132.9 (4)
O4—Co1—O6—C1482.5 (2)Co1—O6—C14—C15178.9 (2)
O2—Co1—O6—C14170.3 (2)C12—C13—C14—O62.4 (5)
O1—Co1—O6—C1493.3 (2)C12—C13—C14—C15175.7 (3)
(Ib) α-Tris(pentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H7O2)3]F(000) = 744
Mr = 356.25Dx = 1.452 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5079 reflections
a = 13.7708 (8) Åθ = 2.8–27.4°
b = 7.4195 (3) ŵ = 1.08 mm1
c = 16.1242 (7) ÅT = 210 K
β = 98.455 (2)°Hexagonal plate, dark green
V = 1629.54 (14) Å30.23 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3741 independent reflections
Radiation source: rotating anode2680 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
258 ϕ and 231 ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.52, Tmax = 0.95k = 99
18555 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.039Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.087H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0353P)2 + 0.6301P]
where P = (Fo2 + 2Fc2)/3
3741 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.28 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C5H7O2)3]V = 1629.54 (14) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7708 (8) ŵ = 1.08 mm1
b = 7.4195 (3) ÅT = 210 K
c = 16.1242 (7) Å0.23 × 0.15 × 0.05 mm
β = 98.455 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3741 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2680 reflections with I > 2σ(I)
Tmin = 0.52, Tmax = 0.95Rint = 0.042
18555 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.087H-atom parameters constrained
S = 1.07Δρmax = 0.28 e Å3
3741 reflectionsΔρmin = 0.35 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24197 (2)0.26957 (4)0.468616 (19)0.02782 (11)
O10.25288 (12)0.5035 (2)0.51525 (10)0.0324 (4)
O20.36674 (12)0.1877 (2)0.51862 (10)0.0318 (4)
O30.30175 (12)0.3569 (2)0.37877 (10)0.0340 (4)
O40.21735 (12)0.0346 (2)0.42637 (10)0.0332 (4)
O50.12202 (13)0.3424 (2)0.40742 (10)0.0374 (4)
O60.19161 (12)0.1914 (2)0.56482 (10)0.0338 (4)
C10.3222 (2)0.7534 (3)0.59070 (17)0.0444 (7)
H1A0.29230.83010.54530.067*
H1B0.38720.79860.61220.067*
H1C0.28190.75360.63520.067*
C20.33036 (19)0.5641 (3)0.55876 (14)0.0310 (5)
C30.41765 (18)0.4686 (3)0.57876 (16)0.0370 (6)
H30.47160.53050.60820.044*
C40.43134 (17)0.2898 (3)0.55878 (15)0.0312 (5)
C50.52864 (18)0.2009 (4)0.58784 (18)0.0459 (7)
H5A0.52420.13000.63770.069*
H5B0.57880.29260.60070.069*
H5C0.54570.12300.54390.069*
C60.3570 (2)0.3606 (4)0.24813 (16)0.0452 (7)
H6A0.36540.48690.26290.068*
H6B0.31640.34970.19390.068*
H6C0.42070.30660.24560.068*
C70.30835 (17)0.2652 (3)0.31320 (14)0.0311 (5)
C80.27599 (18)0.0889 (3)0.29848 (15)0.0364 (6)
H80.28240.03790.24620.044*
C90.23499 (17)0.0174 (3)0.35489 (15)0.0314 (5)
C100.2074 (2)0.2099 (3)0.33412 (17)0.0400 (6)
H10A0.23950.28820.37800.060*
H10B0.22810.24210.28110.060*
H10C0.13680.22350.32990.060*
C110.0471 (2)0.3764 (5)0.3697 (2)0.0651 (9)
H11A0.03030.48510.34160.098*
H11B0.10250.40040.39890.098*
H11C0.06430.28190.32860.098*
C120.0398 (2)0.3169 (4)0.43210 (17)0.0439 (7)
C130.0252 (2)0.2405 (5)0.50768 (19)0.0555 (8)
H130.03970.22450.51770.067*
C140.1004 (2)0.1860 (4)0.56963 (17)0.0417 (7)
C150.0774 (2)0.1138 (5)0.65211 (19)0.0625 (9)
H15A0.12380.01940.67200.094*
H15B0.01130.06490.64430.094*
H15C0.08220.21050.69300.094*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.03260 (18)0.02829 (18)0.02240 (16)0.00374 (15)0.00354 (12)0.00118 (14)
O10.0396 (10)0.0285 (9)0.0290 (9)0.0060 (8)0.0044 (8)0.0038 (7)
O20.0313 (9)0.0328 (9)0.0311 (9)0.0060 (7)0.0035 (7)0.0019 (7)
O30.0455 (10)0.0315 (9)0.0264 (9)0.0003 (8)0.0100 (8)0.0014 (7)
O40.0420 (10)0.0297 (9)0.0276 (9)0.0006 (8)0.0039 (8)0.0018 (7)
O50.0368 (10)0.0431 (10)0.0302 (9)0.0064 (8)0.0020 (8)0.0014 (8)
O60.0356 (10)0.0399 (10)0.0262 (9)0.0043 (8)0.0055 (7)0.0017 (7)
C10.0629 (18)0.0337 (15)0.0372 (14)0.0025 (13)0.0090 (13)0.0047 (12)
C20.0444 (15)0.0296 (13)0.0209 (12)0.0039 (11)0.0104 (11)0.0011 (10)
C30.0337 (13)0.0387 (15)0.0379 (15)0.0042 (12)0.0031 (11)0.0024 (12)
C40.0300 (13)0.0402 (14)0.0246 (12)0.0017 (11)0.0081 (10)0.0041 (11)
C50.0323 (14)0.0568 (18)0.0481 (17)0.0080 (13)0.0044 (12)0.0008 (14)
C60.0562 (18)0.0511 (17)0.0300 (14)0.0032 (14)0.0115 (13)0.0005 (13)
C70.0307 (12)0.0376 (14)0.0240 (12)0.0057 (11)0.0012 (10)0.0007 (11)
C80.0481 (16)0.0376 (15)0.0233 (13)0.0026 (12)0.0045 (12)0.0066 (11)
C90.0290 (12)0.0319 (13)0.0300 (13)0.0069 (11)0.0065 (10)0.0032 (11)
C100.0437 (15)0.0336 (14)0.0400 (15)0.0031 (12)0.0029 (12)0.0082 (12)
C110.0472 (18)0.086 (2)0.055 (2)0.0161 (17)0.0157 (16)0.0109 (18)
C120.0383 (15)0.0527 (17)0.0373 (15)0.0057 (13)0.0061 (12)0.0116 (13)
C130.0293 (14)0.091 (2)0.0464 (17)0.0021 (16)0.0062 (13)0.0031 (17)
C140.0423 (16)0.0483 (17)0.0360 (15)0.0070 (13)0.0107 (13)0.0046 (12)
C150.057 (2)0.085 (2)0.0496 (19)0.0123 (18)0.0219 (16)0.0091 (18)
Geometric parameters (Å, º) top
Co1—O51.8748 (17)C6—C71.503 (3)
Co1—O61.8815 (16)C6—H6A0.9700
Co1—O31.8834 (16)C6—H6B0.9700
Co1—O41.8846 (16)C6—H6C0.9700
Co1—O21.8878 (16)C7—C81.391 (3)
Co1—O11.8884 (16)C8—C91.385 (3)
O1—C21.270 (3)C8—H80.9400
O2—C41.271 (3)C9—C101.503 (3)
O3—C71.272 (3)C10—H10A0.9700
O4—C91.272 (3)C10—H10B0.9700
O5—C121.268 (3)C10—H10C0.9700
O6—C141.270 (3)C11—C121.512 (4)
C1—C21.507 (3)C11—H11A0.9700
C1—H1A0.9700C11—H11B0.9700
C1—H1B0.9700C11—H11C0.9700
C1—H1C0.9700C12—C131.385 (4)
C2—C31.391 (3)C13—C141.389 (4)
C3—C41.385 (3)C13—H130.9400
C3—H30.9400C14—C151.510 (4)
C4—C51.505 (3)C15—H15A0.9700
C5—H5A0.9700C15—H15B0.9700
C5—H5B0.9700C15—H15C0.9700
C5—H5C0.9700
O5—Co1—O696.88 (7)C7—C6—H6A109.5
O5—Co1—O386.96 (8)C7—C6—H6B109.5
O6—Co1—O3174.90 (7)H6A—C6—H6B109.5
O5—Co1—O488.78 (7)C7—C6—H6C109.5
O6—Co1—O486.80 (7)H6A—C6—H6C109.5
O3—Co1—O496.66 (7)H6B—C6—H6C109.5
O5—Co1—O2173.54 (7)O3—C7—C8125.8 (2)
O6—Co1—O288.36 (7)O3—C7—C6115.0 (2)
O3—Co1—O288.04 (7)C8—C7—C6119.2 (2)
O4—Co1—O287.75 (7)C9—C8—C7125.1 (2)
O5—Co1—O187.54 (7)C9—C8—H8117.5
O6—Co1—O188.42 (7)C7—C8—H8117.5
O3—Co1—O188.39 (7)O4—C9—C8124.9 (2)
O4—Co1—O1173.58 (7)O4—C9—C10114.5 (2)
O2—Co1—O196.40 (7)C8—C9—C10120.6 (2)
C2—O1—Co1123.81 (15)C9—C10—H10A109.5
C4—O2—Co1123.43 (15)C9—C10—H10B109.5
C7—O3—Co1123.25 (15)H10A—C10—H10B109.5
C9—O4—Co1124.05 (15)C9—C10—H10C109.5
C12—O5—Co1123.35 (17)H10A—C10—H10C109.5
C14—O6—Co1123.20 (17)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3125.1 (2)O5—C12—C13126.1 (3)
O1—C2—C1114.9 (2)O5—C12—C11113.8 (3)
C3—C2—C1120.0 (2)C13—C12—C11120.1 (3)
C4—C3—C2125.2 (2)C12—C13—C14124.2 (3)
C4—C3—H3117.4C12—C13—H13117.9
C2—C3—H3117.4C14—C13—H13117.9
O2—C4—C3125.5 (2)O6—C14—C13125.9 (2)
O2—C4—C5115.0 (2)O6—C14—C15113.7 (2)
C3—C4—C5119.5 (2)C13—C14—C15120.4 (3)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Co1—O1—C2169.55 (18)Co1—O1—C2—C30.3 (3)
O6—Co1—O1—C293.49 (18)Co1—O1—C2—C1179.20 (15)
O3—Co1—O1—C282.53 (18)O1—C2—C3—C44.3 (4)
O2—Co1—O1—C25.32 (18)C1—C2—C3—C4174.6 (2)
O6—Co1—O2—C496.51 (17)Co1—O2—C4—C36.5 (3)
O3—Co1—O2—C479.88 (17)Co1—O2—C4—C5175.39 (16)
O4—Co1—O2—C4176.63 (17)C2—C3—C4—O20.8 (4)
O1—Co1—O2—C48.28 (18)C2—C3—C4—C5177.2 (2)
O5—Co1—O3—C783.87 (18)Co1—O3—C7—C81.9 (3)
O4—Co1—O3—C74.54 (19)Co1—O3—C7—C6178.92 (16)
O2—Co1—O3—C792.04 (18)O3—C7—C8—C92.9 (4)
O1—Co1—O3—C7171.49 (18)C6—C7—C8—C9176.3 (2)
O5—Co1—O4—C982.60 (18)Co1—O4—C9—C81.1 (3)
O6—Co1—O4—C9179.56 (18)Co1—O4—C9—C10178.83 (15)
O3—Co1—O4—C94.19 (18)C7—C8—C9—O43.3 (4)
O2—Co1—O4—C991.96 (18)C7—C8—C9—C10176.8 (2)
O6—Co1—O5—C125.9 (2)Co1—O5—C12—C132.9 (4)
O3—Co1—O5—C12177.5 (2)Co1—O5—C12—C11176.28 (18)
O4—Co1—O5—C1280.7 (2)O5—C12—C13—C142.5 (5)
O1—Co1—O5—C1294.0 (2)C11—C12—C13—C14178.3 (3)
O5—Co1—O6—C145.5 (2)Co1—O6—C14—C132.1 (4)
O4—Co1—O6—C1482.9 (2)Co1—O6—C14—C15178.39 (19)
O2—Co1—O6—C14170.7 (2)C12—C13—C14—O63.0 (5)
O1—Co1—O6—C1492.8 (2)C12—C13—C14—C15176.5 (3)
(Ic) α-Tris(pentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H7O2)3]F(000) = 744
Mr = 356.25Dx = 1.461 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 5763 reflections
a = 13.7338 (6) Åθ = 2.8–27.5°
b = 7.4070 (3) ŵ = 1.08 mm1
c = 16.0959 (7) ÅT = 180 K
β = 98.467 (1)°Hexagonal plate, dark green
V = 1619.53 (12) Å30.23 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3713 independent reflections
Radiation source: rotating anode2765 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.039
258 ϕ and 231 ω scansθmax = 27.5°, θmin = 2.6°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.51, Tmax = 0.95k = 99
18433 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.036Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.079H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0299P)2 + 0.9397P]
where P = (Fo2 + 2Fc2)/3
3713 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
[Co(C5H7O2)3]V = 1619.53 (12) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.7338 (6) ŵ = 1.08 mm1
b = 7.4070 (3) ÅT = 180 K
c = 16.0959 (7) Å0.23 × 0.15 × 0.05 mm
β = 98.467 (1)°
Data collection top
Nonius KappaCCD
diffractometer
3713 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2765 reflections with I > 2σ(I)
Tmin = 0.51, Tmax = 0.95Rint = 0.039
18433 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0360 restraints
wR(F2) = 0.079H-atom parameters constrained
S = 1.04Δρmax = 0.29 e Å3
3713 reflectionsΔρmin = 0.35 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24188 (2)0.26991 (4)0.468544 (18)0.02385 (10)
O10.25304 (11)0.5044 (2)0.51528 (9)0.0280 (4)
O20.36719 (11)0.1878 (2)0.51843 (9)0.0272 (3)
O30.30186 (11)0.3574 (2)0.37845 (9)0.0292 (4)
O40.21708 (11)0.0344 (2)0.42624 (9)0.0291 (4)
O50.12137 (12)0.3430 (2)0.40746 (9)0.0320 (4)
O60.19158 (11)0.1914 (2)0.56495 (9)0.0291 (4)
C10.32292 (19)0.7544 (3)0.59080 (15)0.0374 (6)
H1A0.29180.83160.54500.056*
H1B0.38880.80060.61170.056*
H1C0.28290.75450.63650.056*
C20.33088 (17)0.5650 (3)0.55891 (13)0.0264 (5)
C30.41855 (17)0.4695 (3)0.57882 (15)0.0315 (5)
H30.47340.53200.60840.038*
C40.43201 (16)0.2896 (3)0.55872 (13)0.0268 (5)
C50.52963 (17)0.2008 (4)0.58740 (16)0.0390 (6)
H5A0.52530.12820.63760.058*
H5B0.58040.29360.60060.058*
H5C0.54680.12260.54260.058*
C60.35762 (19)0.3608 (4)0.24765 (15)0.0390 (6)
H6A0.36790.48800.26330.058*
H6B0.31580.35270.19290.058*
H6C0.42130.30370.24430.058*
C70.30840 (15)0.2657 (3)0.31271 (13)0.0266 (5)
C80.27601 (17)0.0889 (3)0.29815 (14)0.0308 (5)
H80.28280.03710.24530.037*
C90.23460 (15)0.0178 (3)0.35453 (14)0.0264 (5)
C100.20658 (18)0.2104 (3)0.33381 (15)0.0337 (5)
H10A0.23630.28910.37960.051*
H10B0.23040.24520.28160.051*
H10C0.13480.22250.32670.051*
C110.0482 (2)0.3771 (4)0.37002 (18)0.0562 (8)
H11A0.03150.48800.34210.084*
H11B0.10450.39980.39950.084*
H11C0.06520.28200.32800.084*
C120.03889 (18)0.3176 (3)0.43228 (16)0.0370 (6)
C130.02462 (18)0.2400 (4)0.50804 (16)0.0469 (7)
H130.04120.22380.51830.056*
C140.09994 (18)0.1846 (3)0.56992 (15)0.0354 (6)
C150.0772 (2)0.1123 (4)0.65230 (17)0.0532 (8)
H15A0.12540.01900.67300.080*
H15B0.01100.06000.64430.080*
H15C0.08060.21070.69330.080*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02776 (16)0.02445 (16)0.01921 (15)0.00333 (13)0.00304 (11)0.00107 (13)
O10.0331 (8)0.0262 (8)0.0245 (8)0.0058 (7)0.0032 (7)0.0026 (6)
O20.0278 (8)0.0266 (8)0.0271 (8)0.0050 (7)0.0033 (7)0.0018 (7)
O30.0385 (9)0.0268 (8)0.0231 (8)0.0006 (7)0.0074 (7)0.0016 (7)
O40.0375 (9)0.0260 (8)0.0238 (8)0.0008 (7)0.0043 (7)0.0020 (7)
O50.0326 (9)0.0364 (9)0.0251 (8)0.0050 (7)0.0016 (7)0.0011 (7)
O60.0307 (9)0.0337 (9)0.0233 (8)0.0033 (7)0.0055 (7)0.0011 (7)
C10.0520 (15)0.0283 (13)0.0326 (13)0.0010 (12)0.0085 (11)0.0033 (11)
C20.0382 (13)0.0251 (11)0.0178 (11)0.0024 (10)0.0102 (10)0.0008 (9)
C30.0292 (12)0.0330 (13)0.0315 (13)0.0043 (10)0.0022 (10)0.0027 (10)
C40.0266 (11)0.0344 (12)0.0205 (11)0.0011 (10)0.0067 (9)0.0045 (10)
C50.0297 (13)0.0489 (16)0.0379 (14)0.0057 (12)0.0037 (11)0.0000 (12)
C60.0472 (15)0.0445 (15)0.0264 (13)0.0037 (12)0.0098 (11)0.0003 (11)
C70.0257 (11)0.0335 (12)0.0199 (10)0.0064 (10)0.0009 (9)0.0013 (10)
C80.0389 (13)0.0312 (13)0.0218 (12)0.0016 (10)0.0030 (10)0.0066 (9)
C90.0238 (11)0.0279 (12)0.0245 (12)0.0067 (9)0.0063 (9)0.0026 (9)
C100.0375 (13)0.0277 (12)0.0333 (13)0.0011 (11)0.0040 (10)0.0045 (10)
C110.0419 (16)0.075 (2)0.0457 (17)0.0162 (15)0.0118 (13)0.0102 (16)
C120.0313 (13)0.0450 (15)0.0316 (13)0.0037 (11)0.0056 (11)0.0116 (11)
C130.0266 (13)0.076 (2)0.0384 (14)0.0021 (14)0.0050 (11)0.0032 (15)
C140.0364 (14)0.0410 (15)0.0296 (13)0.0059 (11)0.0074 (11)0.0059 (11)
C150.0489 (17)0.072 (2)0.0413 (16)0.0109 (15)0.0165 (14)0.0065 (15)
Geometric parameters (Å, º) top
Co1—O51.8762 (16)C6—C71.502 (3)
Co1—O61.8813 (15)C6—H6A0.9800
Co1—O31.8851 (15)C6—H6B0.9800
Co1—O41.8853 (15)C6—H6C0.9800
Co1—O21.8893 (15)C7—C81.392 (3)
Co1—O11.8902 (15)C8—C91.387 (3)
O1—C21.271 (3)C8—H80.9500
O2—C41.270 (3)C9—C101.502 (3)
O3—C71.272 (2)C10—H10A0.9800
O4—C91.273 (2)C10—H10B0.9800
O5—C121.270 (3)C10—H10C0.9800
O6—C141.274 (3)C11—C121.509 (3)
C1—C21.504 (3)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.388 (4)
C2—C31.393 (3)C13—C141.388 (4)
C3—C41.389 (3)C13—H130.9500
C3—H30.9500C14—C151.505 (3)
C4—C51.504 (3)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Co1—O696.82 (7)C7—C6—H6A109.5
O5—Co1—O387.09 (7)C7—C6—H6B109.5
O6—Co1—O3174.87 (7)H6A—C6—H6B109.5
O5—Co1—O488.82 (7)C7—C6—H6C109.5
O6—Co1—O486.73 (7)H6A—C6—H6C109.5
O3—Co1—O496.69 (6)H6B—C6—H6C109.5
O5—Co1—O2173.57 (7)O3—C7—C8125.6 (2)
O6—Co1—O288.40 (7)O3—C7—C6115.1 (2)
O3—Co1—O287.93 (7)C8—C7—C6119.3 (2)
O4—Co1—O287.73 (7)C9—C8—C7125.3 (2)
O5—Co1—O187.52 (7)C9—C8—H8117.4
O6—Co1—O188.51 (7)C7—C8—H8117.4
O3—Co1—O188.35 (6)O4—C9—C8124.8 (2)
O4—Co1—O1173.61 (7)O4—C9—C10114.4 (2)
O2—Co1—O196.40 (7)C8—C9—C10120.8 (2)
C2—O1—Co1123.80 (14)C9—C10—H10A109.5
C4—O2—Co1123.50 (14)C9—C10—H10B109.5
C7—O3—Co1123.30 (14)H10A—C10—H10B109.5
C9—O4—Co1124.05 (14)C9—C10—H10C109.5
C12—O5—Co1123.46 (16)H10A—C10—H10C109.5
C14—O6—Co1123.39 (15)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3125.2 (2)O5—C12—C13125.9 (2)
O1—C2—C1114.9 (2)O5—C12—C11113.9 (2)
C3—C2—C1120.0 (2)C13—C12—C11120.2 (2)
C4—C3—C2125.0 (2)C12—C13—C14124.5 (2)
C4—C3—H3117.5C12—C13—H13117.8
C2—C3—H3117.5C14—C13—H13117.8
O2—C4—C3125.5 (2)O6—C14—C13125.6 (2)
O2—C4—C5115.0 (2)O6—C14—C15113.8 (2)
C3—C4—C5119.4 (2)C13—C14—C15120.6 (2)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Co1—O1—C2169.72 (16)Co1—O1—C2—C30.1 (3)
O6—Co1—O1—C293.39 (16)Co1—O1—C2—C1179.23 (14)
O3—Co1—O1—C282.56 (16)O1—C2—C3—C44.6 (4)
O2—Co1—O1—C25.17 (17)C1—C2—C3—C4174.6 (2)
O6—Co1—O2—C496.40 (16)Co1—O2—C4—C36.2 (3)
O3—Co1—O2—C480.02 (16)Co1—O2—C4—C5175.26 (14)
O4—Co1—O2—C4176.80 (16)C2—C3—C4—O21.1 (4)
O1—Co1—O2—C48.09 (17)C2—C3—C4—C5177.4 (2)
O5—Co1—O3—C783.88 (17)Co1—O3—C7—C82.1 (3)
O4—Co1—O3—C74.59 (17)Co1—O3—C7—C6179.18 (15)
O2—Co1—O3—C792.06 (17)O3—C7—C8—C92.5 (4)
O1—Co1—O3—C7171.48 (17)C6—C7—C8—C9176.2 (2)
O5—Co1—O4—C982.65 (17)Co1—O4—C9—C81.4 (3)
O6—Co1—O4—C9179.55 (17)Co1—O4—C9—C10178.69 (14)
O3—Co1—O4—C94.28 (17)C7—C8—C9—O42.9 (4)
O2—Co1—O4—C991.93 (17)C7—C8—C9—C10177.0 (2)
O6—Co1—O5—C125.86 (19)Co1—O5—C12—C132.6 (4)
O3—Co1—O5—C12177.47 (19)Co1—O5—C12—C11176.22 (17)
O4—Co1—O5—C1280.71 (18)O5—C12—C13—C142.6 (5)
O1—Co1—O5—C1294.06 (19)C11—C12—C13—C14178.6 (3)
O5—Co1—O6—C146.03 (19)Co1—O6—C14—C133.0 (4)
O4—Co1—O6—C1482.39 (18)Co1—O6—C14—C15178.31 (17)
O2—Co1—O6—C14170.21 (18)C12—C13—C14—O62.4 (5)
O1—Co1—O6—C1493.35 (18)C12—C13—C14—C15176.2 (3)
(Id) α-Tris(pentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H7O2)3]F(000) = 744
Mr = 356.25Dx = 1.471 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 6515 reflections
a = 13.6927 (6) Åθ = 1.5–27.5°
b = 7.3920 (3) ŵ = 1.09 mm1
c = 16.0641 (6) ÅT = 150 K
β = 98.499 (2)°Hexagonal plate, dark green
V = 1608.11 (11) Å30.23 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3698 independent reflections
Radiation source: rotating anode2812 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.043
258 ϕ and 231 ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.47, Tmax = 0.95k = 99
18370 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.080H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.8216P]
where P = (Fo2 + 2Fc2)/3
3698 reflections(Δ/σ)max < 0.001
205 parametersΔρmax = 0.31 e Å3
0 restraintsΔρmin = 0.42 e Å3
Crystal data top
[Co(C5H7O2)3]V = 1608.11 (11) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6927 (6) ŵ = 1.09 mm1
b = 7.3920 (3) ÅT = 150 K
c = 16.0641 (6) Å0.23 × 0.15 × 0.05 mm
β = 98.499 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3698 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
2812 reflections with I > 2σ(I)
Tmin = 0.47, Tmax = 0.95Rint = 0.043
18370 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0350 restraints
wR(F2) = 0.080H-atom parameters constrained
S = 1.03Δρmax = 0.31 e Å3
3698 reflectionsΔρmin = 0.42 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.24183 (2)0.27053 (4)0.468420 (17)0.02031 (9)
O10.25312 (10)0.50561 (19)0.51531 (9)0.0238 (3)
O20.36763 (10)0.18808 (19)0.51824 (9)0.0236 (3)
O30.30189 (11)0.35818 (19)0.37823 (9)0.0250 (3)
O40.21668 (10)0.03447 (19)0.42615 (9)0.0246 (3)
O50.12086 (11)0.3444 (2)0.40745 (9)0.0277 (3)
O60.19170 (11)0.1917 (2)0.56505 (9)0.0251 (3)
C10.32341 (18)0.7560 (3)0.59119 (15)0.0317 (5)
H1A0.29450.83460.54490.047*
H1B0.38930.80050.61420.047*
H1C0.28130.75650.63550.047*
C20.33132 (16)0.5659 (3)0.55892 (13)0.0223 (4)
C30.41933 (16)0.4704 (3)0.57908 (14)0.0273 (5)
H30.47410.53300.60910.033*
C40.43300 (15)0.2901 (3)0.55851 (13)0.0233 (5)
C50.53088 (16)0.2009 (3)0.58720 (15)0.0326 (5)
H5A0.52650.12800.63750.049*
H5B0.58180.29390.60060.049*
H5C0.54810.12280.54230.049*
C60.35804 (18)0.3607 (3)0.24726 (14)0.0322 (5)
H6A0.36860.48810.26290.048*
H6B0.31610.35280.19240.048*
H6C0.42180.30300.24400.048*
C70.30842 (15)0.2662 (3)0.31230 (13)0.0230 (4)
C80.27564 (16)0.0887 (3)0.29740 (13)0.0256 (5)
H80.28210.03680.24440.031*
C90.23437 (15)0.0174 (3)0.35418 (13)0.0223 (4)
C100.20612 (17)0.2112 (3)0.33361 (14)0.0288 (5)
H10A0.23450.28940.38020.043*
H10B0.23140.24740.28210.043*
H10C0.13400.22260.32510.043*
C110.04953 (19)0.3780 (4)0.37037 (17)0.0474 (7)
H11A0.03230.48700.34100.071*
H11B0.10510.40450.40050.071*
H11C0.06820.28130.32940.071*
C120.03809 (17)0.3185 (3)0.43229 (15)0.0312 (5)
C130.02394 (17)0.2396 (4)0.50809 (16)0.0398 (6)
H130.04200.22260.51830.048*
C140.09980 (17)0.1839 (3)0.57006 (14)0.0299 (5)
C150.0771 (2)0.1108 (4)0.65245 (16)0.0446 (7)
H15A0.12400.01430.67210.067*
H15B0.00980.06220.64470.067*
H15C0.08270.20830.69420.067*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.02347 (15)0.02090 (15)0.01648 (14)0.00277 (12)0.00273 (11)0.00085 (12)
O10.0280 (8)0.0214 (7)0.0219 (8)0.0043 (6)0.0032 (7)0.0028 (6)
O20.0234 (8)0.0229 (8)0.0242 (8)0.0035 (6)0.0026 (6)0.0010 (6)
O30.0332 (8)0.0231 (8)0.0196 (8)0.0001 (7)0.0071 (6)0.0009 (6)
O40.0315 (8)0.0229 (8)0.0195 (8)0.0008 (7)0.0041 (6)0.0016 (6)
O50.0281 (8)0.0312 (9)0.0223 (8)0.0036 (7)0.0012 (6)0.0007 (7)
O60.0261 (8)0.0290 (8)0.0206 (8)0.0033 (7)0.0046 (6)0.0012 (6)
C10.0449 (14)0.0228 (12)0.0277 (12)0.0024 (10)0.0069 (10)0.0038 (10)
C20.0327 (12)0.0206 (11)0.0145 (10)0.0018 (9)0.0071 (9)0.0001 (8)
C30.0237 (11)0.0297 (12)0.0279 (12)0.0033 (10)0.0017 (9)0.0022 (10)
C40.0224 (10)0.0299 (11)0.0186 (10)0.0007 (9)0.0067 (8)0.0031 (9)
C50.0235 (11)0.0412 (14)0.0331 (13)0.0044 (10)0.0041 (10)0.0002 (11)
C60.0395 (13)0.0347 (13)0.0233 (12)0.0051 (11)0.0071 (10)0.0005 (10)
C70.0220 (10)0.0279 (11)0.0185 (10)0.0059 (9)0.0006 (8)0.0022 (9)
C80.0326 (12)0.0267 (12)0.0172 (11)0.0027 (9)0.0026 (9)0.0045 (9)
C90.0198 (10)0.0236 (11)0.0209 (11)0.0053 (9)0.0053 (8)0.0021 (9)
C100.0328 (12)0.0241 (11)0.0277 (12)0.0010 (10)0.0015 (10)0.0042 (9)
C110.0356 (14)0.0624 (19)0.0398 (16)0.0128 (13)0.0094 (12)0.0094 (14)
C120.0268 (12)0.0373 (14)0.0274 (12)0.0042 (10)0.0030 (10)0.0095 (10)
C130.0230 (12)0.0620 (18)0.0347 (13)0.0020 (12)0.0054 (10)0.0039 (13)
C140.0301 (12)0.0345 (13)0.0262 (12)0.0054 (10)0.0076 (10)0.0053 (10)
C150.0411 (15)0.0596 (18)0.0355 (15)0.0093 (13)0.0133 (12)0.0057 (13)
Geometric parameters (Å, º) top
Co1—O51.8766 (15)C6—C71.500 (3)
Co1—O61.8801 (14)C6—H6A0.9800
Co1—O31.8835 (14)C6—H6B0.9800
Co1—O41.8856 (14)C6—H6C0.9800
Co1—O21.8899 (14)C7—C81.396 (3)
Co1—O11.8912 (14)C8—C91.385 (3)
O1—C21.271 (2)C8—H80.9500
O2—C41.272 (3)C9—C101.507 (3)
O3—C71.273 (2)C10—H10A0.9800
O4—C91.275 (2)C10—H10B0.9800
O5—C121.270 (3)C10—H10C0.9800
O6—C141.274 (3)C11—C121.506 (3)
C1—C21.507 (3)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.389 (3)
C2—C31.393 (3)C13—C141.391 (3)
C3—C41.392 (3)C13—H130.9500
C3—H30.9500C14—C151.504 (3)
C4—C51.503 (3)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Co1—O696.85 (6)C7—C6—H6A109.5
O5—Co1—O387.16 (7)C7—C6—H6B109.5
O6—Co1—O3174.78 (7)H6A—C6—H6B109.5
O5—Co1—O488.93 (7)C7—C6—H6C109.5
O6—Co1—O486.63 (6)H6A—C6—H6C109.5
O3—Co1—O496.81 (6)H6B—C6—H6C109.5
O5—Co1—O2173.63 (6)O3—C7—C8125.76 (19)
O6—Co1—O288.37 (6)O3—C7—C6115.20 (19)
O3—Co1—O287.84 (6)C8—C7—C6119.03 (19)
O4—Co1—O287.74 (6)C9—C8—C7124.84 (19)
O5—Co1—O187.38 (6)C9—C8—H8117.6
O6—Co1—O188.52 (6)C7—C8—H8117.6
O3—Co1—O188.34 (6)O4—C9—C8125.29 (19)
O4—Co1—O1173.51 (6)O4—C9—C10114.05 (19)
O2—Co1—O196.42 (6)C8—C9—C10120.66 (19)
C2—O1—Co1123.68 (13)C9—C10—H10A109.5
C4—O2—Co1123.59 (14)C9—C10—H10B109.5
C7—O3—Co1123.28 (14)H10A—C10—H10B109.5
C9—O4—Co1123.77 (14)C9—C10—H10C109.5
C12—O5—Co1123.49 (15)H10A—C10—H10C109.5
C14—O6—Co1123.42 (15)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3125.46 (19)O5—C12—C13125.8 (2)
O1—C2—C1114.78 (19)O5—C12—C11114.1 (2)
C3—C2—C1119.8 (2)C13—C12—C11120.0 (2)
C4—C3—C2124.9 (2)C12—C13—C14124.4 (2)
C4—C3—H3117.6C12—C13—H13117.8
C2—C3—H3117.6C14—C13—H13117.8
O2—C4—C3125.4 (2)O6—C14—C13125.6 (2)
O2—C4—C5115.12 (19)O6—C14—C15114.0 (2)
C3—C4—C5119.5 (2)C13—C14—C15120.4 (2)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Co1—O1—C2169.72 (16)Co1—O1—C2—C30.3 (3)
O6—Co1—O1—C293.35 (16)Co1—O1—C2—C1179.10 (13)
O3—Co1—O1—C282.49 (16)O1—C2—C3—C44.0 (4)
O2—Co1—O1—C25.15 (16)C1—C2—C3—C4174.8 (2)
O6—Co1—O2—C496.53 (16)Co1—O2—C4—C36.6 (3)
O3—Co1—O2—C479.87 (16)Co1—O2—C4—C5175.32 (14)
O4—Co1—O2—C4176.78 (16)C2—C3—C4—O20.4 (4)
O1—Co1—O2—C48.21 (16)C2—C3—C4—C5177.5 (2)
O5—Co1—O3—C784.05 (16)Co1—O3—C7—C81.9 (3)
O4—Co1—O3—C74.53 (16)Co1—O3—C7—C6179.43 (14)
O2—Co1—O3—C791.99 (16)O3—C7—C8—C92.8 (3)
O1—Co1—O3—C7171.52 (16)C6—C7—C8—C9175.8 (2)
O5—Co1—O4—C982.81 (16)Co1—O4—C9—C81.2 (3)
O6—Co1—O4—C9179.74 (16)Co1—O4—C9—C10178.82 (13)
O3—Co1—O4—C94.20 (16)C7—C8—C9—O43.2 (3)
O2—Co1—O4—C991.76 (16)C7—C8—C9—C10176.8 (2)
O6—Co1—O5—C126.13 (18)Co1—O5—C12—C132.6 (3)
O3—Co1—O5—C12177.21 (18)Co1—O5—C12—C11176.09 (16)
O4—Co1—O5—C1280.34 (17)O5—C12—C13—C142.9 (4)
O1—Co1—O5—C1294.32 (18)C11—C12—C13—C14178.5 (2)
O5—Co1—O6—C146.55 (18)Co1—O6—C14—C133.4 (3)
O4—Co1—O6—C1481.96 (17)Co1—O6—C14—C15178.05 (16)
O2—Co1—O6—C14169.79 (17)C12—C13—C14—O62.4 (4)
O1—Co1—O6—C1493.74 (17)C12—C13—C14—C15176.0 (2)
(Ie) α-Tris(pentane-2,4-dionato-κ2O,O')cobalt(III) top
Crystal data top
[Co(C5H7O2)3]F(000) = 744
Mr = 356.25Dx = 1.483 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10583 reflections
a = 13.6376 (5) Åθ = 1.5–27.5°
b = 7.3758 (3) ŵ = 1.10 mm1
c = 16.0446 (9) ÅT = 110 K
β = 98.594 (2)°Hexagonal plate, dark green
V = 1595.78 (12) Å30.23 × 0.15 × 0.05 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
3656 independent reflections
Radiation source: rotating anode3018 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
431 ϕ and 323 ω scansθmax = 27.5°, θmin = 1.5°
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
h = 1717
Tmin = 0.57, Tmax = 0.95k = 99
27696 measured reflectionsl = 2020
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.029Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.065H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0257P)2 + 0.9857P]
where P = (Fo2 + 2Fc2)/3
3656 reflections(Δ/σ)max = 0.001
205 parametersΔρmax = 0.32 e Å3
0 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Co(C5H7O2)3]V = 1595.78 (12) Å3
Mr = 356.25Z = 4
Monoclinic, P21/cMo Kα radiation
a = 13.6376 (5) ŵ = 1.10 mm1
b = 7.3758 (3) ÅT = 110 K
c = 16.0446 (9) Å0.23 × 0.15 × 0.05 mm
β = 98.594 (2)°
Data collection top
Nonius KappaCCD
diffractometer
3656 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2002)
3018 reflections with I > 2σ(I)
Tmin = 0.57, Tmax = 0.95Rint = 0.040
27696 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0290 restraints
wR(F2) = 0.065H-atom parameters constrained
S = 1.06Δρmax = 0.32 e Å3
3656 reflectionsΔρmin = 0.37 e Å3
205 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co10.241815 (17)0.27167 (3)0.468196 (14)0.01426 (7)
O10.25340 (9)0.50735 (16)0.51508 (7)0.0173 (3)
O20.36822 (9)0.18839 (16)0.51789 (7)0.0170 (3)
O30.30183 (9)0.35948 (16)0.37758 (7)0.0179 (3)
O40.21613 (9)0.03514 (16)0.42586 (7)0.0175 (3)
O50.12013 (9)0.34613 (17)0.40741 (8)0.0200 (3)
O60.19172 (9)0.19233 (16)0.56511 (7)0.0180 (3)
C10.32419 (14)0.7581 (2)0.59136 (12)0.0230 (4)
H1A0.29400.83640.54520.034*
H1B0.39050.80350.61360.034*
H1C0.28280.75820.63630.034*
C20.33220 (13)0.5676 (2)0.55906 (10)0.0162 (3)
C30.42066 (13)0.4720 (2)0.57912 (11)0.0196 (4)
H30.47580.53450.60920.024*
C40.43412 (12)0.2907 (2)0.55826 (11)0.0170 (3)
C50.53249 (13)0.2013 (3)0.58689 (12)0.0244 (4)
H5A0.52800.12660.63670.037*
H5B0.58350.29450.60110.037*
H5C0.55020.12460.54150.037*
C60.35897 (14)0.3609 (3)0.24652 (11)0.0227 (4)
H6A0.36890.48900.26180.034*
H6B0.31750.35150.19130.034*
H6C0.42340.30380.24410.034*
C70.30856 (12)0.2664 (2)0.31169 (10)0.0164 (3)
C80.27562 (13)0.0890 (2)0.29670 (11)0.0190 (4)
H80.28210.03690.24370.023*
C90.23383 (12)0.0175 (2)0.35377 (11)0.0163 (3)
C100.20524 (13)0.2117 (2)0.33317 (11)0.0202 (4)
H10A0.23170.28960.38070.030*
H10B0.23270.24960.28290.030*
H10C0.13280.22210.32250.030*
C110.05123 (15)0.3801 (3)0.37053 (13)0.0347 (5)
H11A0.03370.48860.34070.052*
H11B0.10660.40810.40090.052*
H11C0.07070.28290.32980.052*
C120.03699 (14)0.3199 (3)0.43237 (12)0.0236 (4)
C130.02286 (14)0.2398 (3)0.50824 (13)0.0288 (4)
H130.04330.22210.51840.035*
C140.09955 (14)0.1838 (2)0.57015 (12)0.0216 (4)
C150.07695 (16)0.1089 (3)0.65256 (13)0.0331 (5)
H15A0.12490.01360.67240.050*
H15B0.00980.05810.64450.050*
H15C0.08150.20640.69450.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01652 (12)0.01502 (12)0.01115 (11)0.00205 (9)0.00182 (8)0.00067 (9)
O10.0196 (6)0.0166 (6)0.0151 (6)0.0032 (5)0.0011 (5)0.0022 (5)
O20.0174 (6)0.0172 (6)0.0165 (6)0.0029 (5)0.0020 (5)0.0017 (5)
O30.0234 (6)0.0169 (6)0.0139 (6)0.0004 (5)0.0047 (5)0.0007 (5)
O40.0215 (6)0.0164 (6)0.0148 (6)0.0005 (5)0.0029 (5)0.0010 (5)
O50.0204 (6)0.0227 (6)0.0156 (6)0.0031 (5)0.0012 (5)0.0012 (5)
O60.0189 (6)0.0212 (6)0.0141 (6)0.0020 (5)0.0027 (5)0.0009 (5)
C10.0329 (10)0.0173 (9)0.0192 (9)0.0014 (8)0.0055 (8)0.0028 (7)
C20.0239 (9)0.0160 (8)0.0099 (8)0.0010 (7)0.0067 (7)0.0015 (6)
C30.0177 (8)0.0217 (9)0.0188 (9)0.0027 (7)0.0006 (7)0.0018 (7)
C40.0168 (8)0.0228 (9)0.0125 (8)0.0013 (7)0.0056 (6)0.0033 (7)
C50.0184 (9)0.0299 (10)0.0248 (10)0.0050 (8)0.0027 (7)0.0003 (8)
C60.0275 (10)0.0265 (10)0.0147 (9)0.0027 (8)0.0051 (7)0.0002 (7)
C70.0149 (8)0.0213 (9)0.0123 (8)0.0038 (7)0.0003 (6)0.0006 (7)
C80.0239 (9)0.0205 (9)0.0123 (9)0.0019 (7)0.0019 (7)0.0034 (7)
C90.0139 (8)0.0181 (8)0.0151 (9)0.0041 (6)0.0035 (6)0.0016 (7)
C100.0230 (9)0.0175 (8)0.0188 (9)0.0002 (7)0.0015 (7)0.0024 (7)
C110.0255 (10)0.0458 (13)0.0293 (12)0.0089 (9)0.0079 (9)0.0071 (10)
C120.0201 (9)0.0275 (10)0.0214 (10)0.0035 (7)0.0029 (7)0.0069 (8)
C130.0157 (9)0.0453 (13)0.0256 (10)0.0009 (9)0.0037 (7)0.0004 (9)
C140.0225 (9)0.0235 (10)0.0197 (9)0.0032 (7)0.0057 (7)0.0031 (7)
C150.0309 (11)0.0440 (13)0.0261 (11)0.0064 (9)0.0096 (9)0.0048 (9)
Geometric parameters (Å, º) top
Co1—O51.8770 (12)C6—C71.505 (2)
Co1—O61.8827 (12)C6—H6A0.9800
Co1—O41.8859 (12)C6—H6B0.9800
Co1—O31.8865 (12)C6—H6C0.9800
Co1—O21.8906 (12)C7—C81.393 (2)
Co1—O11.8913 (12)C8—C91.392 (2)
O1—C21.274 (2)C8—H80.9500
O2—C41.274 (2)C9—C101.508 (2)
O3—C71.275 (2)C10—H10A0.9800
O4—C91.277 (2)C10—H10B0.9800
O5—C121.272 (2)C10—H10C0.9800
O6—C141.273 (2)C11—C121.507 (3)
C1—C21.507 (2)C11—H11A0.9800
C1—H1A0.9800C11—H11B0.9800
C1—H1B0.9800C11—H11C0.9800
C1—H1C0.9800C12—C131.392 (3)
C2—C31.393 (2)C13—C141.393 (3)
C3—C41.397 (2)C13—H130.9500
C3—H30.9500C14—C151.507 (3)
C4—C51.504 (2)C15—H15A0.9800
C5—H5A0.9800C15—H15B0.9800
C5—H5B0.9800C15—H15C0.9800
C5—H5C0.9800
O5—Co1—O696.79 (5)C7—C6—H6A109.5
O5—Co1—O488.93 (5)C7—C6—H6B109.5
O6—Co1—O486.52 (5)H6A—C6—H6B109.5
O5—Co1—O387.18 (5)C7—C6—H6C109.5
O6—Co1—O3174.88 (5)H6A—C6—H6C109.5
O4—Co1—O396.81 (5)H6B—C6—H6C109.5
O5—Co1—O2173.67 (5)O3—C7—C8125.98 (16)
O6—Co1—O288.35 (5)O3—C7—C6115.06 (15)
O4—Co1—O287.70 (5)C8—C7—C6118.95 (15)
O3—Co1—O287.90 (5)C9—C8—C7124.76 (16)
O5—Co1—O187.28 (5)C9—C8—H8117.6
O6—Co1—O188.64 (5)C7—C8—H8117.6
O4—Co1—O1173.46 (5)O4—C9—C8125.15 (16)
O3—Co1—O188.33 (5)O4—C9—C10114.19 (15)
O2—Co1—O196.55 (5)C8—C9—C10120.66 (16)
C2—O1—Co1123.67 (11)C9—C10—H10A109.5
C4—O2—Co1123.46 (11)C9—C10—H10B109.5
C7—O3—Co1123.19 (11)H10A—C10—H10B109.5
C9—O4—Co1123.89 (11)C9—C10—H10C109.5
C12—O5—Co1123.52 (12)H10A—C10—H10C109.5
C14—O6—Co1123.46 (12)H10B—C10—H10C109.5
C2—C1—H1A109.5C12—C11—H11A109.5
C2—C1—H1B109.5C12—C11—H11B109.5
H1A—C1—H1B109.5H11A—C11—H11B109.5
C2—C1—H1C109.5C12—C11—H11C109.5
H1A—C1—H1C109.5H11A—C11—H11C109.5
H1B—C1—H1C109.5H11B—C11—H11C109.5
O1—C2—C3125.50 (16)O5—C12—C13125.87 (17)
O1—C2—C1114.66 (15)O5—C12—C11114.15 (18)
C3—C2—C1119.83 (16)C13—C12—C11119.97 (18)
C2—C3—C4124.72 (16)C12—C13—C14124.20 (17)
C2—C3—H3117.6C12—C13—H13117.9
C4—C3—H3117.6C14—C13—H13117.9
O2—C4—C3125.52 (16)O6—C14—C13125.68 (17)
O2—C4—C5115.14 (15)O6—C14—C15114.02 (16)
C3—C4—C5119.31 (16)C13—C14—C15120.28 (17)
C4—C5—H5A109.5C14—C15—H15A109.5
C4—C5—H5B109.5C14—C15—H15B109.5
H5A—C5—H5B109.5H15A—C15—H15B109.5
C4—C5—H5C109.5C14—C15—H15C109.5
H5A—C5—H5C109.5H15A—C15—H15C109.5
H5B—C5—H5C109.5H15B—C15—H15C109.5
O5—Co1—O1—C2170.08 (13)Co1—O1—C2—C30.2 (2)
O6—Co1—O1—C293.05 (13)Co1—O1—C2—C1178.96 (11)
O3—Co1—O1—C282.82 (13)O1—C2—C3—C44.3 (3)
O2—Co1—O1—C24.87 (13)C1—C2—C3—C4174.81 (16)
O6—Co1—O2—C496.58 (13)Co1—O2—C4—C36.7 (2)
O4—Co1—O2—C4176.84 (13)Co1—O2—C4—C5175.31 (11)
O3—Co1—O2—C479.94 (13)C2—C3—C4—O20.4 (3)
O1—Co1—O2—C48.14 (13)C2—C3—C4—C5177.50 (17)
O5—Co1—O3—C784.60 (13)Co1—O3—C7—C81.3 (2)
O4—Co1—O3—C73.99 (13)Co1—O3—C7—C6179.94 (11)
O2—Co1—O3—C791.42 (13)O3—C7—C8—C93.1 (3)
O1—Co1—O3—C7171.96 (13)C6—C7—C8—C9175.65 (16)
O5—Co1—O4—C983.14 (13)Co1—O4—C9—C81.1 (2)
O6—Co1—O4—C9179.99 (13)Co1—O4—C9—C10178.91 (10)
O3—Co1—O4—C93.90 (13)C7—C8—C9—O43.2 (3)
O2—Co1—O4—C991.50 (13)C7—C8—C9—C10176.84 (16)
O6—Co1—O5—C126.25 (14)Co1—O5—C12—C132.4 (3)
O4—Co1—O5—C1280.11 (14)Co1—O5—C12—C11176.12 (12)
O3—Co1—O5—C12176.99 (14)O5—C12—C13—C143.2 (3)
O1—Co1—O5—C1294.55 (14)C11—C12—C13—C14178.37 (19)
O5—Co1—O6—C146.88 (14)Co1—O6—C14—C133.7 (3)
O4—Co1—O6—C1481.62 (14)Co1—O6—C14—C15177.58 (13)
O2—Co1—O6—C14169.42 (14)C12—C13—C14—O62.4 (3)
O1—Co1—O6—C1493.98 (14)C12—C13—C14—C15176.19 (19)

Experimental details

(Ia)(Ib)(Ic)(Id)
Crystal data
Chemical formula[Co(C5H7O2)3][Co(C5H7O2)3][Co(C5H7O2)3][Co(C5H7O2)3]
Mr356.25356.25356.25356.25
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)240210180150
a, b, c (Å)13.8094 (7), 7.4331 (4), 16.1484 (9)13.7708 (8), 7.4195 (3), 16.1242 (7)13.7338 (6), 7.4070 (3), 16.0959 (7)13.6927 (6), 7.3920 (3), 16.0641 (6)
β (°) 98.430 (3) 98.455 (2) 98.467 (1) 98.499 (2)
V3)1639.66 (15)1629.54 (14)1619.53 (12)1608.11 (11)
Z4444
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)1.071.081.081.09
Crystal size (mm)0.23 × 0.15 × 0.050.23 × 0.15 × 0.050.23 × 0.15 × 0.050.23 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Multi-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.47, 0.950.52, 0.950.51, 0.950.47, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
18651, 3762, 2578 18555, 3741, 2680 18433, 3713, 2765 18370, 3698, 2812
Rint0.0440.0420.0390.043
(sin θ/λ)max1)0.6490.6500.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.091, 1.04 0.039, 0.087, 1.07 0.036, 0.079, 1.04 0.035, 0.080, 1.03
No. of reflections3762374137133698
No. of parameters205205205205
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.28, 0.330.28, 0.350.29, 0.350.31, 0.42


(Ie)
Crystal data
Chemical formula[Co(C5H7O2)3]
Mr356.25
Crystal system, space groupMonoclinic, P21/c
Temperature (K)110
a, b, c (Å)13.6376 (5), 7.3758 (3), 16.0446 (9)
β (°) 98.594 (2)
V3)1595.78 (12)
Z4
Radiation typeMo Kα
µ (mm1)1.10
Crystal size (mm)0.23 × 0.15 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2002)
Tmin, Tmax0.57, 0.95
No. of measured, independent and
observed [I > 2σ(I)] reflections
27696, 3656, 3018
Rint0.040
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.029, 0.065, 1.06
No. of reflections3656
No. of parameters205
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.32, 0.37

Computer programs: COLLECT (Nonius, 1999), PEAKREF (Schreurs, 2005), EVALCCD (Duisenberg et al., 2003) and SADABS (Sheldrick, 2002), coordinates taken from α-Al(acac)3 (von Chrzanowski et al., 2007), coordinates taken from Ia, coordinates taken from Ib, coordinates taken from Ic, coordinates taken from Id, PLATON (Spek, 2003), manual editing of SHELXL97 (Sheldrick, 1997) output.

Table 1 Cell parameters (Å, °) of the known room-temperature Co(acac)3 crystal structure determinations top
abcβref.
14.1607.48016.43098.68Padmanabhan (1958)
14.25 (3)7.50 (2)16.38 (3)99 (1)Shkol'nikova (1959)
13.951 (9)7.470 (5)16.222 (11)98.48 (8)Hon & Pfluger, (1973)
13.90 (7)7.47 (4)16.21 (7)98.4 (1)Krüger & Reynhardt (1974)
13.8663 (15)7.4599 (5)16.1874 (9)98.409 (5)Present study
Table 2 Tensor components of the thermal expansion (10 -6K-1). Standard uncertainties are underestimated, because calculated θ values were used (see text) top
T (K)α11α22α33α12α13α23
290-27080.79 (3)76.54 (4)53.01 (17)0-4.34 (12)0
270-25094.35 (2)75.41 (3)57.17 (13)0-3.63 (9)0
250-23094.51 (3)75.45 (4)53.85 (17)0-4.30 (11)0
230-210101.56 (2)72.40 (3)59.04 (13)05.25 (9)0
210-19089.56 (3)67.08 (4)49.23 (18)02.46 (12)0
190-170107.55 (2)52.85 (3)56.87 (14)010.89 (10)0
170-150100.83 (2)74.01 (3)57.90 (12)05.32 (8)0
150-130108.88 (2)50.06 (3)52.58 (10)09.17 (7)0
130-11096.35 (2)61.16 (3)47.50 (11)07.34 (7)0
Table 3 Eigenvalues (10 -6K-1) and eigenvectors of the thermal expansion tensor top
T (K)Principal axisEigenvalueEigenvector
290-270α152.30.151300.9885
α276.501.00
α381.5-0.98860.00.1508
270-250α156.80.09650.00.9953
α275.401.00
α394.7-0.995400.0960
250-230α153.40.104300.9945
α275.501.00
α395.0-0.994600.1039
230-210α158.4-0.121100.9926
α272.40-1.00
α3102.20.992700.1207
210-190α149.1-0.061000.9981
α267.10-1.00
α389.70.998200.0606
190-170α152.80-1.00
α254.6-0.201900.9794
α3109.80.979500.2015
170-150α157.3-0.121500.9926
α274.00-1.00
α3101.50.992600.1211
150-130α150.10-1.00
α251.1-0.157000.9876
α3110.30.987600.1567
130-110α146.4-0.145600.9893
α261.20-1.00
α397.40.989400.1453
Table 4 Hydrogen bond geometry (Å, °) for I(a) (240K) - I(e) (110K) top
D—H···AD—HH···AD···AD—H···A
I(a) at 240KC1—H1A···O4i0.972.543.513 (3)178.1
I(b) at 210KC1—H1A···O4i0.972.543.512 (3)178.8
I(c) at 180KC1—H1A···O4i0.982.533.507 (3)178.1
I(d) at 150KC1—H1A···O4i0.982.523.501 (3)178.8
I(e) at 110KC1—H1A···O4i0.982.523.497 (2)179.5
I(a) at 240KC6—H6B···O6ii0.972.533.492 (3)171.5
I(b) at 210KC6—H6B···O6ii0.972.523.478 (3)171.7
I(c) at 180KC6—H6B···O6ii0.982.503.467 (3)171.5
I(d) at 150KC6—H6B···O6ii0.982.483.455 (3)171.2
I(e) at 110KC6—H6B···O6ii0.982.473.442 (2)170.5
I(a) at 240KC11—H11B···O1iii0.972.783.743 (4)175.3
I(b) at 210KC11—H11B···O1iii0.972.753.716 (4)175.2
I(c) at 180KC11—H11B···O1iii0.982.713.690 (3)174.4
I(d) at 150KC11—H11B···O1iii0.982.683.660 (3)177.0
I(e) at 110KC11—H11B···O1iii0.982.653.629 (2)178.3
Symmetry codes: (i) x, y+1, z; (ii) x, -y+1/2, z-1/2; (iii) -x, -y + 1, -z+1.
Table 5 Co—O bond lengths (Å) for I(a) (240K)–I(e) (110K) top
Co—OI(a) at 240KI(b) at 210KI(c) at 180KI(d) at 150KI(e) at 110K
Co1—O51.8746 (18)1.8748 (17)1.8762 (16)1.8766 (15)1.8770 (12)
Co1—O61.8798 (17)1.8815 (16)1.8813 (15)1.8801 (14)1.8827 (12)
Co1—O31.8826 (17)1.8834 (16)1.8851 (15)1.8835 (14)1.8859 (12)
Co1—O41.8841 (17)1.8846 (16)1.8853 (15)1.8856 (14)1.8865 (12)
Co1—O21.8872 (17)1.8878 (16)1.8893 (15)1.8899 (14)1.8906 (12)
Co1—O11.8892 (17)1.8884 (16)1.8902 (15)1.8912 (14)1.8913 (12)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds