Download citation
Download citation
link to html
The inositol rings in (1S,2R,3R,4S,5S,6R,7S,8S,11S)-myo-inositol-1,2-camphor acetal {systematic name: (1R,2S,3S,4R,5S,6R)-5,6-[(1S,2S,4S)-1,7,7-trimethyl­bicyclo­[2.2.1]heptane-2,2-diyldi­oxy]cyclohexane-1,2,3,4-tetrol}, C16H26O6, and (1R,2S,3S,4R,5R,6S,7R/S,8S,11S)-myo-inositol-1,2-camphor acetal trihydrate {systematic name: (1S,2R,3R,4S,5R,6S)-5,6-[(1S,4S,6R/S)-1,7,7-trimethyl­bicyclo­[2.2.1]heptane-2,2-diyldi­oxy]cyclohexane-1,2,3,4-tetrol trihydrate}, C16H26O6·3H2O, adopt flattened chair conformations with the latter crystal containing two stereoisomers in a 0.684 (2):0.316 (2) ratio, similar to that found both in solution and by calculation. Both mol­ecules pack in the crystals in similar two-dimensional layers, utilizing strong O—H...O hydrogen bonds, with the trihydrate cell expanded to incorporate the additional hydrogen-bonded water mol­ecules.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107004416/gz3065sup1.cif
Contains datablocks global, A, B

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004416/gz3065Asup2.hkl
Contains datablock A

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107004416/gz3065Bsup3.hkl
Contains datablock B

CCDC references: 641805; 641806

Comment top

The title compounds were studied as part of a programme to prepare chiral inositol derivatives (Baars & Hoberg, 2006; Cousins et al., 2004). The structure of (I) (see scheme) was noted (Pietrusiewicz et al., 1992) but no structural parameters have been reported. Previous studies of myo-inositol derivatives as listed in the Cambridge Structural Database [Allen, 2002; CSD Version 5.27 (updated August 2006); refcodes are given in capitals] indicate that these molecules frequently show novel conformational/packing effects, e.g. molecular dynamics simulation confirming two stable conformations (XADWII; Dillen et al., 2000) and `thermosalient behaviour' (HADKIG; Steiner et al., 1993). The camphor unit (bicyclo[2.2.1]heptane) has been found to be invariant (Clegg et al., 1995). Along with the structure of (I) (crystal A), we report a novel structure containing cocrystallized (II) and (III) (crystal B) in a ratio corresponding approximately to their relative concentrations in solution as determined by NMR. In both cases, the L-camphor used in the synthesis determined the absolute configuration assigned here, since anomalous dispersion affects, as expected, were insufficient [e.g. the Flack parameter for crystal B was -0.2 (7)]. Friedel pairs in the data have been retained for future reference purposes.

The asymmetric unit in each crystal contains one independent myo-inositol-1,2-camphor acetal unit (Figs. 1–3); in crystal B, there are also three water molecules. For crystal A (I) the inositol fragment absolute configuration of C1(S), C2(R), C3(R), C4(S), C5(S), C6(R), and for crystal B the opposite [C1(R), C2(S), C3(S), C4(R), C5(R), C6(S)], was determined from the chemical synthesis based on L-camphor. In both crystals, the acetal linkages to the myo-inositol unit are similar to those observed previously [TEKPUU (Spiers et al., 1996), NOZCIO (Spiers et al., 1997), PINMEE and PINMII (Chung et al., 1994)]. For (I) the five-membered link stereochemistry (O1/C1/C2/O2/C7) to the L-camphor unit is simlar to that reported for the dihydroxybutanedioic acid dimethyl ester (NAFWEW; Mikolajczyk et al., 1996).

The L-camphor unit is present in crystal B in two sites corresponding to the two alternative configurations of attachment at the C7 atoms [(II) and (III) in the scheme]; the two are distinguished by primed and unprimed labels (Figs. 2 and 3). An initial refinement of the primed and unprimed atoms with one common isotropic U factor and freely refined occupancies indicated unambiguously that only these two related stereoisomers were present; the two sets were then grouped and refined to a final stereoisomer ratio of 0.685 (2):0.315 (2). The four C7,C7'—O1,O2 distances were refined to a common dimension, giving the results in Table 3 (see Experimental). The observed ratio in solution from NMR was 75:25 in DMSO-d6. We determined the relative electronic energies (gas phase) using the Amsterdam Density Functional program system (SCM, 2006) [with VWN local density approximation (Vosko et al., 1980)] optimizing the structures and starting from the X-ray coordinate positions. The difference between the stereoisomers (II) and (III) was 0.45 kcal mol-1, in good agreement with both solid state and solution observations. Compound (I) was estimated to be less stable than (II) by 11 kcal mol-1, somewhat larger than expected.

In all structures, the inositol ring adopts a slightly flattened chair conformation, as shown by the Cremer & Pople (1975) parameters (Table 5). In (I), the best `arms' of the chair are atoms C1, C6, C3 and C4 [the mean out-of-plane distance is 0.014 (2) Å], with atoms C2 and C5 lying 0.528 (4) and -0.727 (5) Å from the plane; for crystal B [(II) and (III)], the corresponding best parameters are C2, C3, C5 and C6 [0.0193 (8) Å], with C1 and C4 at 0.513 (2) and -0.696 (2) Å. The five-membered rings O1/C1/C2/O2/C7(C7') (rings 2A and 2B; Table 5) adopt twist conformations (Evans & Boeyens, 1989). The L-camphor fused rings adopt envelope or boat configurations for the five- and six-membered rings, respectively, as expected (Clegg et al., 1995).

The cystal packing (Tables 2 and 4) can be described as similar two-dimensional layers normal to the c axis (Figs. 4 and 5). These layers are formed from strong O—H···O hydrogen interactions involving all inositol O atoms in A, and both inositol and water O atoms in crystal B as acceptors. The L-camphor rings pack `head-to-head' separating the layers. The close C—H···O interactions in crystal B (not listed in Table 4) are regarded as fortuitous [even though they fulfil the normal criteria (Desiraju & Steiner, 1999)], because of their location and the availability of the acceptor O atoms (Fig. 5). There is also a fortuitous short contact (O—H4···H6O 1.99 Å) in (I) between two H atoms involved in strong hydrogen bonds (Table 2).

Related literature top

For related literature, see: Allen (2002); Baars & Hoberg (2006); Chung et al. (1994); Clegg et al. (1995); Cousins et al. (2004); Cremer & Pople (1975); Desiraju & Steiner (1999); Dillen et al. (2000); Evans & Boeyens (1989); Flack (1983); Flack & Bernardinelli (2000); Lindberg et al. (2002); Mikolajczyk et al. (1996); Pietrusiewicz et al. (1992); SCM (2006); Sheldrick (1997); Spiers et al. (1996, 1997); Steiner et al. (1993); Vosko et al. (1980).

Experimental top

The mixed acetals were prepared by the method of Lindberg et al.(2002).

Refinement top

All the L-camphor atoms in (II) and (III) (C7, C8–C16 and their H atoms) were freely refined in two sets, each with one common occupancy factor restrained so that the sum of the two was unity. The final occupancies were 0.685 (2)/0.315 (2). The final difference maps showed no significant discrepancies, justifying this choice of disorder modelling. The four C7,C7'—O1,O2 distances were restrained to a common dimension (with an su of 0.01, using the SHEXL97 SADI option; Sheldrick, 1997).

All H atoms bound to carbon were constrained to their expected geometries (C—H = 0.98–1.00 Å). H atoms on inositol O atoms were restrained to tetrahedral positions with O—H distances of 0.84 (s.u.?) Å (AFIX 87). Positions of water H atoms were restrained to O—H distances of 0.84 Å (DFIX). All methyl, tertiary and hydroxyl H atoms were refined with Uiso(H) values of, respectively, 1.5, 1.2 and 1.5 times Ueq of the parent atom. In the absence of significant anomalous scattering, the values of the Flack (1983) parameter were indeterminate (Flack & Bernardinelli, 2000).

Computing details top

For both compounds, data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT and SADABS (Sheldrick, 2003); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. Molecular structure of (I) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Molecular structure of (II) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 3] Fig. 3. Molecular structure of (III) (Farrugia, 1997); displacement ellipsoids are shown at the 30% probability level.
[Figure 4] Fig. 4. The packing of crystal A, viewed down the b axis. Only H atoms involved in selected hydrogen bonds (dashed lines) are shown. For symmetry designations see Table 2.
[Figure 5] Fig. 5. The packing of crystal B, viewed down the b axis. Only the major stereoisomer (II) and H atoms involved in selected hydrogen bonds (dashed lines) are shown for clarity. For symmetry designations see Table 4.
(A) 5,6-(1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyldioxy)benzene-1,2,3,4-tetrol top
Crystal data top
C16H26O6F(000) = 680
Mr = 314.37Dx = 1.341 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 2866 reflections
a = 12.700 (3) Åθ = 2.3–24.2°
b = 6.9721 (17) ŵ = 0.10 mm1
c = 18.422 (5) ÅT = 169 K
β = 107.275 (3)°Hexagonal, colourless
V = 1557.7 (7) Å30.47 × 0.33 × 0.03 mm
Z = 4
Data collection top
Bruker-Nonius APEX2 CCD area-detector
diffractometer
2953 independent reflections
Radiation source: fine-focus sealed tube2026 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
Detector resolution: 8.192 pixels mm-1θmax = 26.5°, θmin = 2.3°
ϕ and ω scansh = 1115
Absorption correction: multi-scan
(Blessing, 1995)
k = 88
Tmin = 0.796, Tmax = 0.997l = 2222
8809 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.057Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.113H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.0452P)2 + 0.8396P]
where P = (Fo2 + 2Fc2)/3
2953 reflections(Δ/σ)max = 0.009
206 parametersΔρmax = 0.27 e Å3
1 restraintΔρmin = 0.26 e Å3
Crystal data top
C16H26O6V = 1557.7 (7) Å3
Mr = 314.37Z = 4
Monoclinic, C2Mo Kα radiation
a = 12.700 (3) ŵ = 0.10 mm1
b = 6.9721 (17) ÅT = 169 K
c = 18.422 (5) Å0.47 × 0.33 × 0.03 mm
β = 107.275 (3)°
Data collection top
Bruker-Nonius APEX2 CCD area-detector
diffractometer
2953 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2026 reflections with I > 2σ(I)
Tmin = 0.796, Tmax = 0.997Rint = 0.055
8809 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0571 restraint
wR(F2) = 0.113H-atom parameters constrained
S = 1.08Δρmax = 0.27 e Å3
2953 reflectionsΔρmin = 0.26 e Å3
206 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.34056 (17)0.3160 (3)0.23347 (11)0.0229 (5)
O20.19305 (17)0.5175 (4)0.18530 (11)0.0237 (6)
O30.2618 (2)0.7930 (3)0.08317 (17)0.0461 (8)
H3O0.29950.89230.09800.069*
O40.4747 (2)0.7149 (4)0.06925 (15)0.0388 (7)
H4O0.46700.80720.09650.058*
O50.54279 (19)0.3208 (4)0.07593 (12)0.0300 (6)
H5O0.60780.34530.10200.045*
O60.44603 (19)0.0562 (3)0.15623 (13)0.0295 (6)
H6O0.51000.05280.15200.044*
C10.2974 (3)0.2772 (5)0.15264 (17)0.0208 (8)
H10.24140.17210.14350.025*
C20.2408 (3)0.4688 (5)0.12480 (18)0.0215 (8)
H20.18200.45270.07520.026*
C30.3228 (3)0.6276 (5)0.11944 (19)0.0269 (9)
H30.36750.66400.17210.032*
C40.4016 (3)0.5614 (5)0.0750 (2)0.0257 (9)
H40.35710.52230.02260.031*
C50.4670 (3)0.3877 (5)0.11557 (19)0.0247 (8)
H50.50920.42420.16870.030*
C60.3889 (3)0.2242 (5)0.11751 (18)0.0198 (8)
H60.35200.18610.06360.024*
C70.2503 (3)0.4057 (5)0.25293 (17)0.0211 (8)
C80.2928 (3)0.5323 (5)0.32573 (17)0.0243 (8)
C90.1908 (3)0.6561 (5)0.32850 (19)0.0262 (8)
H9A0.21320.75810.36740.031*
H9B0.15510.71600.27850.031*
C100.1116 (3)0.5099 (6)0.3496 (2)0.0311 (9)
H10A0.09870.54420.39840.037*
H10B0.03990.50330.30940.037*
C110.1755 (3)0.3176 (6)0.35615 (17)0.0245 (8)
H110.15080.21600.38580.029*
C120.1712 (3)0.2572 (5)0.27395 (17)0.0235 (9)
H12A0.09540.26720.23890.028*
H12B0.19820.12430.27280.028*
C130.3966 (3)0.6486 (6)0.3315 (2)0.0341 (10)
H13A0.45530.56260.32690.051*
H13B0.42020.71410.38080.051*
H13C0.38090.74380.29060.051*
C140.2977 (3)0.3814 (5)0.39083 (17)0.0231 (8)
C150.3820 (3)0.2177 (5)0.39846 (18)0.0282 (9)
H15A0.45640.27170.41000.042*
H15B0.36490.14600.35060.042*
H15C0.37820.13130.43960.042*
C160.3210 (3)0.4756 (6)0.47065 (18)0.0316 (9)
H16A0.31420.37880.50750.047*
H16B0.26770.57880.46830.047*
H16C0.39590.52860.48630.047*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0165 (12)0.0351 (14)0.0170 (11)0.0003 (12)0.0050 (9)0.0001 (11)
O20.0170 (13)0.0387 (14)0.0178 (12)0.0029 (12)0.0087 (10)0.0028 (11)
O30.0566 (18)0.0216 (15)0.078 (2)0.0085 (15)0.0469 (16)0.0085 (16)
O40.0503 (17)0.0269 (15)0.0533 (19)0.0105 (14)0.0370 (15)0.0104 (13)
O50.0118 (12)0.0505 (16)0.0291 (13)0.0041 (14)0.0082 (10)0.0096 (13)
O60.0219 (14)0.0330 (15)0.0316 (14)0.0029 (13)0.0050 (12)0.0075 (12)
C10.0173 (18)0.030 (2)0.0147 (17)0.0046 (17)0.0048 (14)0.0011 (15)
C20.021 (2)0.027 (2)0.0182 (17)0.0049 (17)0.0090 (15)0.0003 (15)
C30.034 (2)0.028 (2)0.025 (2)0.0021 (19)0.0175 (17)0.0031 (16)
C40.032 (2)0.024 (2)0.0259 (18)0.0060 (18)0.0156 (16)0.0006 (17)
C50.022 (2)0.033 (2)0.0199 (18)0.0008 (17)0.0083 (15)0.0015 (16)
C60.0153 (18)0.0243 (19)0.0196 (18)0.0023 (17)0.0049 (14)0.0035 (15)
C70.0150 (18)0.0302 (19)0.0180 (17)0.0057 (16)0.0045 (14)0.0053 (15)
C80.021 (2)0.032 (2)0.0205 (17)0.0065 (18)0.0076 (15)0.0026 (17)
C90.024 (2)0.035 (2)0.0201 (18)0.0011 (19)0.0064 (15)0.0008 (17)
C100.021 (2)0.050 (2)0.0225 (18)0.004 (2)0.0073 (15)0.0023 (18)
C110.0182 (18)0.038 (2)0.0205 (17)0.0042 (19)0.0105 (14)0.0015 (17)
C120.0199 (19)0.029 (2)0.0199 (18)0.0019 (17)0.0031 (15)0.0032 (15)
C130.031 (2)0.045 (2)0.029 (2)0.014 (2)0.0129 (17)0.0080 (19)
C140.0114 (18)0.039 (2)0.0183 (17)0.0019 (17)0.0031 (14)0.0010 (15)
C150.021 (2)0.042 (2)0.0212 (19)0.0016 (19)0.0068 (15)0.0024 (17)
C160.024 (2)0.048 (3)0.0245 (19)0.002 (2)0.0084 (16)0.0013 (17)
Geometric parameters (Å, º) top
O1—C71.441 (4)C8—C131.524 (5)
O1—C11.451 (4)C8—C91.570 (5)
O2—C21.458 (4)C8—C141.582 (5)
O2—C71.466 (4)C9—C101.560 (5)
O3—C31.438 (4)C9—H9A0.9900
O3—H3O0.8400C9—H9B0.9900
O4—C41.441 (4)C10—C111.553 (5)
O4—H4O0.8400C10—H10A0.9900
O5—C51.447 (4)C10—H10B0.9900
O5—H5O0.8400C11—C121.557 (4)
O6—C61.449 (4)C11—C141.558 (5)
O6—H6O0.8400C11—H111.0000
C1—C21.531 (5)C12—H12A0.9900
C1—C61.534 (4)C12—H12B0.9900
C1—H11.0000C13—H13A0.9800
C2—C31.543 (5)C13—H13B0.9800
C2—H21.0000C13—H13C0.9800
C3—C41.541 (5)C14—C151.542 (5)
C3—H31.0000C14—C161.557 (4)
C4—C51.532 (5)C15—H15A0.9800
C4—H41.0000C15—H15B0.9800
C5—C61.518 (5)C15—H15C0.9800
C5—H51.0000C16—H16A0.9800
C6—H61.0000C16—H16B0.9800
C7—C81.562 (5)C16—H16C0.9800
C7—C121.569 (4)
C7—O1—C1104.5 (2)C13—C8—C14117.5 (3)
C2—O2—C7108.2 (2)C7—C8—C14101.6 (3)
C3—O3—H3O109.5C9—C8—C14100.9 (3)
C4—O4—H4O109.5C10—C9—C8104.4 (3)
C5—O5—H5O109.5C10—C9—H9A110.9
C6—O6—H6O109.5C8—C9—H9A110.9
O1—C1—C2100.2 (2)C10—C9—H9B110.9
O1—C1—C6112.0 (2)C8—C9—H9B110.9
C2—C1—C6114.1 (3)H9A—C9—H9B108.9
O1—C1—H1110.0C11—C10—C9102.9 (3)
C2—C1—H1110.0C11—C10—H10A111.2
C6—C1—H1110.0C9—C10—H10A111.2
O2—C2—C1102.0 (2)C11—C10—H10B111.2
O2—C2—C3108.9 (3)C9—C10—H10B111.2
C1—C2—C3112.9 (3)H10A—C10—H10B109.1
O2—C2—H2110.9C10—C11—C12107.0 (3)
C1—C2—H2110.9C10—C11—C14102.7 (3)
C3—C2—H2110.9C12—C11—C14102.6 (2)
O3—C3—C4109.8 (3)C10—C11—H11114.4
O3—C3—C2109.0 (3)C12—C11—H11114.4
C4—C3—C2112.1 (3)C14—C11—H11114.4
O3—C3—H3108.6C11—C12—C7102.8 (2)
C4—C3—H3108.6C11—C12—H12A111.2
C2—C3—H3108.6C7—C12—H12A111.2
O4—C4—C5110.8 (3)C11—C12—H12B111.2
O4—C4—C3110.5 (3)C7—C12—H12B111.2
C5—C4—C3108.7 (3)H12A—C12—H12B109.1
O4—C4—H4108.9C8—C13—H13A109.5
C5—C4—H4108.9C8—C13—H13B109.5
C3—C4—H4108.9H13A—C13—H13B109.5
O5—C5—C6107.9 (3)C8—C13—H13C109.5
O5—C5—C4110.7 (3)H13A—C13—H13C109.5
C6—C5—C4110.0 (3)H13B—C13—H13C109.5
O5—C5—H5109.4C15—C14—C16107.1 (3)
C6—C5—H5109.4C15—C14—C11114.0 (3)
C4—C5—H5109.4C16—C14—C11113.2 (3)
O6—C6—C5112.6 (3)C15—C14—C8115.6 (3)
O6—C6—C1108.6 (2)C16—C14—C8112.9 (3)
C5—C6—C1114.3 (3)C11—C14—C893.9 (2)
O6—C6—H6107.0C14—C15—H15A109.5
C5—C6—H6107.0C14—C15—H15B109.5
C1—C6—H6107.0H15A—C15—H15B109.5
O1—C7—O2104.4 (2)C14—C15—H15C109.5
O1—C7—C8111.2 (3)H15A—C15—H15C109.5
O2—C7—C8112.8 (3)H15B—C15—H15C109.5
O1—C7—C12113.0 (3)C14—C16—H16A109.5
O2—C7—C12111.6 (3)C14—C16—H16B109.5
C8—C7—C12104.1 (2)H16A—C16—H16B109.5
C13—C8—C7115.6 (3)C14—C16—H16C109.5
C13—C8—C9114.2 (3)H16A—C16—H16C109.5
C7—C8—C9105.1 (3)H16B—C16—H16C109.5
C7—O1—C1—C245.5 (3)O2—C7—C8—C1376.8 (4)
C7—O1—C1—C6166.8 (3)C12—C7—C8—C13162.0 (3)
C7—O2—C2—C119.2 (3)O1—C7—C8—C9167.0 (3)
C7—O2—C2—C3100.3 (3)O2—C7—C8—C950.1 (3)
O1—C1—C2—O239.0 (3)C12—C7—C8—C971.1 (3)
C6—C1—C2—O2158.9 (3)O1—C7—C8—C1488.3 (3)
O1—C1—C2—C377.7 (3)O2—C7—C8—C14154.8 (2)
C6—C1—C2—C342.2 (4)C12—C7—C8—C1433.7 (3)
O2—C2—C3—O375.4 (3)C13—C8—C9—C10161.2 (3)
C1—C2—C3—O3172.1 (3)C7—C8—C9—C1071.0 (3)
O2—C2—C3—C4162.9 (3)C14—C8—C9—C1034.3 (3)
C1—C2—C3—C450.4 (4)C8—C9—C10—C110.4 (3)
O3—C3—C4—O457.1 (4)C9—C10—C11—C1271.8 (3)
C2—C3—C4—O4178.4 (3)C9—C10—C11—C1435.8 (3)
O3—C3—C4—C5178.9 (3)C10—C11—C12—C771.5 (3)
C2—C3—C4—C559.8 (4)C14—C11—C12—C736.1 (3)
O4—C4—C5—O558.1 (4)O1—C7—C12—C11121.7 (3)
C3—C4—C5—O5179.7 (3)O2—C7—C12—C11120.9 (3)
O4—C4—C5—C6177.2 (2)C8—C7—C12—C111.0 (3)
C3—C4—C5—C661.2 (4)C10—C11—C14—C15175.8 (3)
O5—C5—C6—O659.9 (3)C12—C11—C14—C1564.9 (3)
C4—C5—C6—O6179.2 (2)C10—C11—C14—C1661.4 (3)
O5—C5—C6—C1175.7 (2)C12—C11—C14—C16172.3 (3)
C4—C5—C6—C154.8 (4)C10—C11—C14—C855.6 (3)
O1—C1—C6—O658.8 (3)C12—C11—C14—C855.3 (3)
C2—C1—C6—O6171.8 (2)C13—C8—C14—C1562.1 (4)
O1—C1—C6—C567.7 (3)C7—C8—C14—C1565.0 (3)
C2—C1—C6—C545.3 (4)C9—C8—C14—C15173.1 (3)
C1—O1—C7—O234.2 (3)C13—C8—C14—C1661.6 (4)
C1—O1—C7—C8156.0 (3)C7—C8—C14—C16171.2 (3)
C1—O1—C7—C1287.3 (3)C9—C8—C14—C1663.1 (3)
C2—O2—C7—O18.2 (3)C13—C8—C14—C11178.9 (3)
C2—O2—C7—C8129.0 (3)C7—C8—C14—C1153.9 (3)
C2—O2—C7—C12114.2 (3)C9—C8—C14—C1154.1 (3)
O1—C7—C8—C1340.1 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O6—H60···O2i0.842.233.034 (3)159
O5—H5O···O3i0.842.122.752 (4)132
O4—H4O···O6ii0.842.112.951 (4)175
O3—H3O···O6ii0.842.182.964 (4)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z.
(B) 5,6-(1,7,7-trimethylbicyclo[2.2.1]heptane-2,2-diyldioxy)benzene-1,2,3,4-tetrol top
Crystal data top
C16H26O6·3(H2O)F(000) = 800
Mr = 368.42Dx = 1.301 Mg m3
Monoclinic, C2Mo Kα radiation, λ = 0.71073 Å
Hall symbol: C 2yCell parameters from 4457 reflections
a = 13.1708 (17) Åθ = 3.0–26.3°
b = 6.9513 (9) ŵ = 0.11 mm1
c = 20.737 (3) ÅT = 163 K
β = 97.899 (2)°Plate, colourless
V = 1880.5 (4) Å30.73 × 0.40 × 0.12 mm
Z = 4
Data collection top
Bruker P4 CCD area-detector
diffractometer
3205 independent reflections
Radiation source: fine-focus sealed tube2697 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.021
Detector resolution: 8.192 pixels mm-1θmax = 26.4°, θmin = 2.0°
ϕ and ω scansh = 1616
Absorption correction: multi-scan
(Blessing, 1995)
k = 84
Tmin = 0.795, Tmax = 0.987l = 2525
11666 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.96 w = 1/[σ2(Fo2) + (0.0383P)2]
where P = (Fo2 + 2Fc2)/3
3205 reflections(Δ/σ)max = 0.001
345 parametersΔρmax = 0.15 e Å3
13 restraintsΔρmin = 0.14 e Å3
Crystal data top
C16H26O6·3(H2O)V = 1880.5 (4) Å3
Mr = 368.42Z = 4
Monoclinic, C2Mo Kα radiation
a = 13.1708 (17) ŵ = 0.11 mm1
b = 6.9513 (9) ÅT = 163 K
c = 20.737 (3) Å0.73 × 0.40 × 0.12 mm
β = 97.899 (2)°
Data collection top
Bruker P4 CCD area-detector
diffractometer
3205 independent reflections
Absorption correction: multi-scan
(Blessing, 1995)
2697 reflections with I > 2σ(I)
Tmin = 0.795, Tmax = 0.987Rint = 0.021
11666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.02713 restraints
wR(F2) = 0.059H atoms treated by a mixture of independent and constrained refinement
S = 0.96Δρmax = 0.15 e Å3
3205 reflectionsΔρmin = 0.14 e Å3
345 parameters
Special details top

Experimental. Crystal decay was monitored by repeating the initial 10 frames at the end of the data collection and analyzing duplicate reflections. The standard 0.8 mm diameter collimator was used.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
O10.54094 (8)0.23695 (17)0.70402 (5)0.0285 (3)
O20.54811 (8)0.53515 (16)0.75079 (5)0.0303 (3)
O30.71153 (8)0.70282 (16)0.84148 (5)0.0295 (3)
H3O0.65730.76500.83040.044*
O40.67077 (8)0.48980 (16)0.95355 (5)0.0272 (3)
H4O0.65940.60640.96050.041*
O50.55353 (8)0.15423 (17)0.93618 (5)0.0271 (3)
H5O0.49560.20680.93190.041*
O60.55170 (8)0.04662 (17)0.81492 (5)0.0295 (3)
H6O0.50520.08800.83520.044*
O70.63963 (8)0.84532 (17)0.99827 (5)0.0296 (3)
H7A0.6964 (9)0.901 (3)1.0114 (9)0.044*
H7B0.6048 (13)0.933 (2)0.9767 (8)0.044*
O80.37384 (8)0.35812 (18)0.91942 (5)0.0288 (3)
H8A0.3232 (10)0.303 (3)0.8995 (8)0.043*
H8B0.3628 (14)0.368 (3)0.9577 (5)0.043*
O90.41424 (9)0.75506 (18)0.88054 (6)0.0368 (3)
H9OA0.4117 (15)0.782 (3)0.9196 (5)0.055*
H9OB0.4040 (15)0.6344 (15)0.8791 (9)0.055*
C10.61071 (11)0.2303 (2)0.76358 (7)0.0243 (3)
H10.67070.14650.75830.029*
C20.64377 (11)0.4384 (2)0.77078 (7)0.0255 (4)
H20.69270.46790.73930.031*
C30.68969 (11)0.5021 (2)0.83842 (7)0.0245 (4)
H30.75680.43380.84870.029*
C40.62357 (10)0.4388 (2)0.88919 (7)0.0218 (3)
H4A0.55500.50240.88010.026*
C50.60975 (10)0.2223 (2)0.88655 (7)0.0223 (3)
H50.67930.16200.89380.027*
C60.55645 (11)0.1571 (2)0.81982 (7)0.0228 (3)
H60.48480.20840.81370.027*
C70.4845 (2)0.4129 (5)0.70284 (15)0.0259 (8)0.685 (2)
C80.47401 (17)0.4977 (4)0.63322 (10)0.0258 (6)0.685 (2)
C90.4309 (3)0.3324 (6)0.58610 (19)0.0322 (9)0.685 (2)
H9A0.43330.36840.54010.039*0.685 (2)
H9B0.47010.21190.59590.039*0.685 (2)
C100.31869 (19)0.3094 (4)0.59976 (12)0.0359 (7)0.685 (2)
H10A0.26950.33480.56010.043*0.685 (2)
H10B0.30640.17870.61590.043*0.685 (2)
C110.30961 (17)0.4628 (4)0.65262 (11)0.0315 (6)0.685 (2)
H110.23760.50140.65660.038*0.685 (2)
C120.3703 (5)0.3898 (12)0.7158 (5)0.0294 (12)0.685 (2)
H12A0.35390.25370.72380.035*0.685 (2)
H12B0.35650.46850.75340.035*0.685 (2)
C130.5711 (4)0.5890 (8)0.6159 (3)0.0374 (12)0.685 (2)
H13A0.59450.68900.64780.056*0.685 (2)
H13B0.55730.64670.57240.056*0.685 (2)
H13C0.62440.49050.61610.056*0.685 (2)
C140.37751 (18)0.6291 (4)0.63260 (11)0.0308 (6)0.685 (2)
C150.3888 (4)0.7969 (6)0.6808 (3)0.0369 (11)0.685 (2)
H15A0.44330.88300.67060.055*0.685 (2)
H15B0.40630.74720.72510.055*0.685 (2)
H15C0.32410.86800.67750.055*0.685 (2)
C160.3384 (2)0.7162 (5)0.56494 (12)0.0435 (7)0.685 (2)
H16A0.27020.77170.56550.065*0.685 (2)
H16B0.33470.61510.53180.065*0.685 (2)
H16C0.38570.81700.55470.065*0.685 (2)
C7'0.5189 (5)0.4433 (9)0.6893 (3)0.029 (2)0.315 (2)
C8'0.4036 (4)0.4928 (8)0.6737 (2)0.0281 (14)0.315 (2)
C9'0.3924 (10)0.7122 (13)0.6795 (7)0.043 (3)0.315 (2)
H910.42890.75880.72150.052*0.315 (2)
H920.31930.74870.67650.052*0.315 (2)
C10'0.4409 (5)0.7981 (9)0.6216 (3)0.054 (2)0.315 (2)
H1010.50100.87960.63690.065*0.315 (2)
H1020.39040.87400.59220.065*0.315 (2)
C11'0.4726 (5)0.6114 (9)0.5882 (3)0.0425 (17)0.315 (2)
H1110.48260.62920.54170.051*0.315 (2)
C12'0.5639 (11)0.5294 (17)0.6303 (5)0.038 (3)0.315 (2)
H1210.61480.63110.64440.046*0.315 (2)
H1220.59720.42850.60680.046*0.315 (2)
C13'0.3375 (11)0.374 (3)0.7124 (12)0.054 (5)0.315 (2)
H1310.35070.23730.70600.081*0.315 (2)
H1320.26520.40230.69770.081*0.315 (2)
H1330.35380.40600.75870.081*0.315 (2)
C14'0.3861 (5)0.4695 (10)0.5982 (2)0.0375 (15)0.315 (2)
C15'0.4012 (8)0.2650 (14)0.5748 (5)0.046 (3)0.315 (2)
H1510.34730.18180.58760.069*0.315 (2)
H1520.46840.21730.59450.069*0.315 (2)
H1530.39770.26440.52730.069*0.315 (2)
C16'0.2782 (5)0.5321 (10)0.5663 (3)0.0512 (18)0.315 (2)
H1610.27620.53580.51890.077*0.315 (2)
H1620.26290.66030.58220.077*0.315 (2)
H1630.22720.44000.57770.077*0.315 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0331 (6)0.0281 (7)0.0229 (5)0.0047 (5)0.0009 (4)0.0038 (5)
O20.0378 (6)0.0273 (7)0.0229 (5)0.0084 (5)0.0059 (4)0.0041 (5)
O30.0259 (5)0.0234 (7)0.0377 (6)0.0035 (5)0.0013 (4)0.0010 (5)
O40.0327 (6)0.0228 (7)0.0242 (5)0.0021 (5)0.0026 (4)0.0029 (5)
O50.0256 (5)0.0286 (7)0.0279 (5)0.0034 (5)0.0060 (4)0.0046 (5)
O60.0318 (6)0.0230 (7)0.0341 (6)0.0027 (5)0.0061 (4)0.0023 (5)
O70.0279 (6)0.0248 (7)0.0347 (6)0.0009 (5)0.0013 (5)0.0022 (5)
O80.0237 (6)0.0346 (8)0.0281 (6)0.0026 (5)0.0035 (5)0.0049 (5)
O90.0383 (6)0.0298 (8)0.0441 (7)0.0039 (6)0.0126 (5)0.0012 (6)
C10.0232 (7)0.0253 (10)0.0237 (8)0.0040 (7)0.0013 (6)0.0020 (7)
C20.0256 (8)0.0272 (10)0.0244 (8)0.0023 (7)0.0065 (6)0.0012 (7)
C30.0202 (7)0.0225 (10)0.0301 (8)0.0025 (6)0.0010 (6)0.0017 (7)
C40.0197 (7)0.0243 (9)0.0205 (7)0.0020 (6)0.0010 (6)0.0017 (6)
C50.0195 (7)0.0234 (9)0.0238 (7)0.0036 (7)0.0025 (5)0.0018 (6)
C60.0214 (7)0.0187 (9)0.0280 (8)0.0021 (7)0.0018 (6)0.0012 (7)
C70.0258 (18)0.0316 (18)0.0210 (16)0.0061 (13)0.0060 (12)0.0075 (12)
C80.0245 (12)0.0299 (16)0.0223 (12)0.0039 (11)0.0015 (9)0.0009 (11)
C90.039 (2)0.035 (3)0.0218 (17)0.0014 (18)0.0013 (15)0.0016 (16)
C100.0344 (14)0.0357 (18)0.0344 (13)0.0042 (12)0.0070 (11)0.0036 (12)
C110.0247 (12)0.0390 (17)0.0293 (12)0.0000 (11)0.0014 (9)0.0010 (11)
C120.036 (3)0.027 (2)0.0256 (19)0.002 (2)0.005 (2)0.0023 (14)
C130.0357 (18)0.048 (3)0.029 (3)0.006 (2)0.0091 (16)0.0106 (17)
C140.0326 (13)0.0321 (17)0.0260 (13)0.0019 (11)0.0024 (10)0.0000 (13)
C150.042 (2)0.035 (3)0.0316 (17)0.012 (2)0.0031 (13)0.002 (3)
C160.0512 (16)0.0413 (19)0.0348 (14)0.0068 (14)0.0056 (11)0.0037 (12)
C7'0.027 (4)0.045 (5)0.017 (3)0.012 (3)0.012 (3)0.009 (3)
C8'0.038 (3)0.020 (3)0.022 (2)0.005 (2)0.011 (2)0.005 (2)
C9'0.045 (4)0.032 (7)0.046 (5)0.011 (5)0.017 (3)0.010 (6)
C10'0.070 (4)0.030 (4)0.053 (4)0.009 (3)0.026 (3)0.006 (3)
C11'0.062 (4)0.033 (4)0.030 (3)0.008 (3)0.002 (3)0.008 (3)
C12'0.066 (6)0.035 (7)0.014 (4)0.020 (5)0.005 (4)0.003 (4)
C13'0.059 (10)0.063 (8)0.041 (6)0.002 (8)0.012 (8)0.013 (5)
C14'0.054 (4)0.029 (4)0.026 (3)0.002 (3)0.005 (2)0.002 (3)
C15'0.058 (6)0.036 (6)0.040 (4)0.010 (4)0.011 (4)0.002 (4)
C16'0.056 (4)0.046 (5)0.041 (3)0.011 (3)0.030 (3)0.004 (3)
Geometric parameters (Å, º) top
O1—C71.430 (3)C11—C121.524 (8)
O1—C11.4352 (16)C11—C141.553 (4)
O1—C7'1.487 (6)C11—H111.0000
O2—C7'1.431 (6)C12—H12A0.9900
O2—C21.4380 (18)C12—H12B0.9900
O2—C71.477 (3)C13—H13A0.9800
O3—C31.425 (2)C13—H13B0.9800
O3—H3O0.8400C13—H13C0.9800
O4—C41.4370 (16)C14—C151.530 (5)
O4—H4O0.8400C14—C161.550 (3)
O5—C51.4286 (17)C15—H15A0.9800
O5—H5O0.8400C15—H15B0.9800
O6—C61.420 (2)C15—H15C0.9800
O6—H6O0.8400C16—H16A0.9800
O7—H7A0.852 (10)C16—H16B0.9800
O7—H7B0.852 (10)C16—H16C0.9800
O8—H8A0.827 (9)C7'—C8'1.547 (8)
O8—H8B0.830 (9)C7'—C12'1.552 (11)
O9—H9OA0.837 (9)C8'—C13'1.51 (2)
O9—H9OB0.849 (10)C8'—C9'1.538 (10)
C1—C21.512 (2)C8'—C14'1.560 (7)
C1—C61.536 (2)C9'—C10'1.553 (15)
C1—H11.0000C9'—H910.9900
C2—C31.515 (2)C9'—H920.9900
C2—H21.0000C10'—C11'1.555 (9)
C3—C41.5204 (19)C10'—H1010.9900
C3—H31.0000C10'—H1020.9900
C4—C51.516 (2)C11'—C12'1.498 (15)
C4—H4A1.0000C11'—C14'1.542 (9)
C5—C61.532 (2)C11'—H1111.0000
C5—H51.0000C12'—H1210.9900
C6—H61.0000C12'—H1220.9900
C7—C81.548 (4)C13'—H1310.9800
C7—C121.572 (7)C13'—H1320.9800
C8—C131.515 (5)C13'—H1330.9800
C8—C141.564 (3)C14'—C15'1.523 (11)
C8—C91.564 (4)C14'—C16'1.544 (8)
C9—C101.550 (5)C15'—H1510.9800
C9—H9A0.9900C15'—H1520.9800
C9—H9B0.9900C15'—H1530.9800
C10—C111.545 (4)C16'—H1610.9800
C10—H10A0.9900C16'—H1620.9800
C10—H10B0.9900C16'—H1630.9800
C7—O1—C1108.18 (15)C10—C11—H11114.2
C1—O1—C7'106.9 (3)C14—C11—H11114.2
C7'—O2—C299.5 (3)C11—C12—C7102.7 (5)
C2—O2—C7108.57 (16)C11—C12—H12A111.2
C3—O3—H3O109.5C7—C12—H12A111.2
C4—O4—H4O109.5C11—C12—H12B111.2
C5—O5—H5O109.5C7—C12—H12B111.2
C6—O6—H6O109.5H12A—C12—H12B109.1
H7A—O7—H7B103.2 (19)C15—C14—C16106.5 (3)
H8A—O8—H8B106.4 (18)C15—C14—C11113.7 (3)
H9OA—O9—H9OB103 (2)C16—C14—C11113.7 (2)
O1—C1—C2101.29 (12)C15—C14—C8115.7 (3)
O1—C1—C6110.76 (11)C16—C14—C8113.8 (2)
C2—C1—C6113.56 (13)C11—C14—C893.5 (2)
O1—C1—H1110.3O2—C7'—O1103.1 (4)
C2—C1—H1110.3O2—C7'—C8'102.8 (4)
C6—C1—H1110.3O1—C7'—C8'114.6 (5)
O2—C2—C1100.94 (12)O2—C7'—C12'116.5 (6)
O2—C2—C3110.66 (12)O1—C7'—C12'116.7 (6)
C1—C2—C3116.33 (13)C8'—C7'—C12'102.7 (7)
O2—C2—H2109.5C13'—C8'—C9'115.6 (11)
C1—C2—H2109.5C13'—C8'—C7'112.9 (8)
C3—C2—H2109.5C9'—C8'—C7'107.9 (6)
O3—C3—C2112.31 (12)C13'—C8'—C14'117.4 (10)
O3—C3—C4112.57 (12)C9'—C8'—C14'100.3 (6)
C2—C3—C4111.28 (12)C7'—C8'—C14'101.1 (4)
O3—C3—H3106.7C8'—C9'—C10'105.5 (8)
C2—C3—H3106.7C8'—C9'—H91110.6
C4—C3—H3106.7C10'—C9'—H91110.6
O4—C4—C5108.22 (12)C8'—C9'—H92110.6
O4—C4—C3110.85 (11)C10'—C9'—H92110.6
C5—C4—C3109.84 (12)H91—C9'—H92108.8
O4—C4—H4A109.3C9'—C10'—C11'100.8 (5)
C5—C4—H4A109.3C9'—C10'—H101111.6
C3—C4—H4A109.3C11'—C10'—H101111.6
O5—C5—C4111.99 (12)C9'—C10'—H102111.6
O5—C5—C6109.52 (12)C11'—C10'—H102111.6
C4—C5—C6111.37 (12)H101—C10'—H102109.4
O5—C5—H5107.9C12'—C11'—C14'103.2 (6)
C4—C5—H5107.9C12'—C11'—C10'107.5 (7)
C6—C5—H5107.9C14'—C11'—C10'103.0 (5)
O6—C6—C5111.72 (12)C12'—C11'—H111114.0
O6—C6—C1107.25 (12)C14'—C11'—H111114.0
C5—C6—C1112.62 (12)C10'—C11'—H111114.0
O6—C6—H6108.4C11'—C12'—C7'104.0 (9)
C5—C6—H6108.4C11'—C12'—H121110.9
C1—C6—H6108.4C7'—C12'—H121110.9
O1—C7—O2103.6 (2)C11'—C12'—H122110.9
O1—C7—C8108.7 (2)C7'—C12'—H122110.9
O2—C7—C8112.3 (2)H121—C12'—H122109.0
O1—C7—C12114.6 (4)C8'—C13'—H131109.5
O2—C7—C12114.3 (4)C8'—C13'—H132109.5
C8—C7—C12103.5 (4)H131—C13'—H132109.5
C13—C8—C7114.3 (3)C8'—C13'—H133109.5
C13—C8—C14117.7 (3)H131—C13'—H133109.5
C7—C8—C14101.43 (18)H132—C13'—H133109.5
C13—C8—C9113.9 (3)C15'—C14'—C11'115.0 (7)
C7—C8—C9106.3 (2)C15'—C14'—C16'106.3 (6)
C14—C8—C9101.5 (2)C11'—C14'—C16'114.5 (5)
C10—C9—C8103.6 (3)C15'—C14'—C8'114.1 (6)
C10—C9—H9A111.0C11'—C14'—C8'93.3 (4)
C8—C9—H9A111.0C16'—C14'—C8'113.6 (5)
C10—C9—H9B111.0C14'—C15'—H151109.5
C8—C9—H9B111.0C14'—C15'—H152109.5
H9A—C9—H9B109.0H151—C15'—H152109.5
C11—C10—C9103.1 (2)C14'—C15'—H153109.5
C11—C10—H10A111.1H151—C15'—H153109.5
C9—C10—H10A111.1H152—C15'—H153109.5
C11—C10—H10B111.1C14'—C16'—H161109.5
C9—C10—H10B111.1C14'—C16'—H162109.5
H10A—C10—H10B109.1H161—C16'—H162109.5
C12—C11—C10107.3 (4)C14'—C16'—H163109.5
C12—C11—C14102.9 (3)H161—C16'—H163109.5
C10—C11—C14102.73 (19)H162—C16'—H163109.5
C12—C11—H11114.2
C7—O1—C1—C237.82 (18)C8—C7—C12—C110.2 (6)
C7'—O1—C1—C212.9 (3)C12—C11—C14—C1564.1 (5)
C7—O1—C1—C682.95 (19)C10—C11—C14—C15175.5 (3)
C7'—O1—C1—C6107.9 (3)C12—C11—C14—C16173.9 (4)
C7'—O2—C2—C152.8 (3)C10—C11—C14—C1662.5 (3)
C7—O2—C2—C130.02 (18)C12—C11—C14—C856.0 (4)
C7'—O2—C2—C3176.6 (3)C10—C11—C14—C855.4 (2)
C7—O2—C2—C3153.79 (17)C13—C8—C14—C1561.9 (4)
O1—C1—C2—O240.49 (13)C7—C8—C14—C1563.6 (3)
C6—C1—C2—O278.29 (14)C9—C8—C14—C15173.1 (3)
O1—C1—C2—C3160.26 (11)C13—C8—C14—C1661.9 (4)
C6—C1—C2—C341.49 (17)C7—C8—C14—C16172.6 (2)
O2—C2—C3—O361.31 (16)C9—C8—C14—C1663.1 (3)
C1—C2—C3—O3175.70 (12)C13—C8—C14—C11179.7 (3)
O2—C2—C3—C465.91 (17)C7—C8—C14—C1154.8 (2)
C1—C2—C3—C448.48 (17)C9—C8—C14—C1154.7 (2)
O3—C3—C4—O456.34 (15)C2—O2—C7'—O144.4 (4)
C2—C3—C4—O4176.58 (13)C7—O2—C7'—O170.3 (7)
O3—C3—C4—C5175.89 (11)C2—O2—C7'—C8'163.8 (3)
C2—C3—C4—C557.03 (15)C7—O2—C7'—C8'49.1 (7)
O4—C4—C5—O555.12 (14)C2—O2—C7'—C12'84.8 (7)
C3—C4—C5—O5176.26 (10)C7—O2—C7'—C12'160.5 (13)
O4—C4—C5—C6178.15 (11)C7—O1—C7'—O277.7 (7)
C3—C4—C5—C660.71 (14)C1—O1—C7'—O219.1 (4)
O5—C5—C6—O661.00 (15)C7—O1—C7'—C8'33.3 (6)
C4—C5—C6—O6174.57 (11)C1—O1—C7'—C8'130.0 (4)
O5—C5—C6—C1178.22 (12)C7—O1—C7'—C12'153.3 (13)
C4—C5—C6—C153.78 (16)C1—O1—C7'—C12'109.9 (7)
O1—C1—C6—O680.25 (15)O2—C7'—C8'—C13'76.3 (12)
C2—C1—C6—O6166.57 (11)O1—C7'—C8'—C13'34.8 (12)
O1—C1—C6—C5156.44 (12)C12'—C7'—C8'—C13'162.3 (12)
C2—C1—C6—C543.26 (17)O2—C7'—C8'—C9'52.7 (7)
C1—O1—C7—O219.5 (2)O1—C7'—C8'—C9'163.7 (6)
C7'—O1—C7—O271.4 (8)C12'—C7'—C8'—C9'68.7 (8)
C1—O1—C7—C8139.02 (18)O2—C7'—C8'—C14'157.4 (4)
C7'—O1—C7—C848.1 (7)O1—C7'—C8'—C14'91.5 (5)
C1—O1—C7—C12105.7 (4)C12'—C7'—C8'—C14'36.1 (7)
C7'—O1—C7—C12163.4 (10)C13'—C8'—C9'—C10'163.7 (10)
C7'—O2—C7—O178.8 (8)C7'—C8'—C9'—C10'68.9 (8)
C2—O2—C7—O17.9 (2)C14'—C8'—C9'—C10'36.4 (8)
C7'—O2—C7—C838.3 (8)C8'—C9'—C10'—C11'1.2 (9)
C2—O2—C7—C8109.2 (2)C9'—C10'—C11'—C12'73.3 (8)
C7'—O2—C7—C12155.8 (10)C9'—C10'—C11'—C14'35.3 (7)
C2—O2—C7—C12133.4 (4)C14'—C11'—C12'—C7'34.7 (9)
O1—C7—C8—C1375.0 (4)C10'—C11'—C12'—C7'73.8 (8)
O2—C7—C8—C1339.0 (4)O2—C7'—C12'—C11'112.8 (7)
C12—C7—C8—C13162.7 (5)O1—C7'—C12'—C11'124.9 (8)
O1—C7—C8—C14157.3 (2)C8'—C7'—C12'—C11'1.3 (9)
O2—C7—C8—C1488.7 (2)C12'—C11'—C14'—C15'63.3 (8)
C12—C7—C8—C1435.0 (4)C10'—C11'—C14'—C15'175.2 (6)
O1—C7—C8—C951.6 (3)C12'—C11'—C14'—C16'173.1 (7)
O2—C7—C8—C9165.6 (2)C10'—C11'—C14'—C16'61.3 (6)
C12—C7—C8—C970.7 (4)C12'—C11'—C14'—C8'55.2 (8)
C13—C8—C9—C10162.7 (3)C10'—C11'—C14'—C8'56.6 (5)
C7—C8—C9—C1070.6 (3)C13'—C8'—C14'—C15'58.9 (12)
C14—C8—C9—C1035.1 (3)C9'—C8'—C14'—C15'175.0 (8)
C8—C9—C10—C110.1 (3)C7'—C8'—C14'—C15'64.4 (7)
C9—C10—C11—C1272.7 (4)C13'—C8'—C14'—C11'178.2 (10)
C9—C10—C11—C1435.4 (3)C9'—C8'—C14'—C11'55.7 (7)
C10—C11—C12—C772.2 (5)C7'—C8'—C14'—C11'55.0 (5)
C14—C11—C12—C735.8 (6)C13'—C8'—C14'—C16'63.2 (11)
O1—C7—C12—C11118.1 (4)C9'—C8'—C14'—C16'62.9 (8)
O2—C7—C12—C11122.5 (5)C7'—C8'—C14'—C16'173.6 (5)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O6i0.841.912.7294 (16)167
O4—H4O···O70.841.872.6908 (16)165
O5—H5O···O80.841.912.7394 (16)172
O6—H6O···O9ii0.841.952.7762 (17)166
O7—H7A···O4iii0.85 (2)1.90 (1)2.7490 (16)172 (2)
O7—H7B···O5i0.85 (2)1.84 (2)2.6746 (16)168 (2)
O8—H8A···O3iv0.83 (2)1.90 (2)2.7199 (16)170 (2)
O8—H8B···O4v0.83 (1)2.13 (1)2.9236 (15)161 (2)
O9—H9OA···O7v0.84 (1)1.97 (1)2.7754 (17)162 (2)
O9—H9OB···O80.85 (1)2.15 (1)2.9436 (18)155 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y+1/2, z+2; (iv) x1/2, y1/2, z; (v) x+1, y, z+2.

Experimental details

(A)(B)
Crystal data
Chemical formulaC16H26O6C16H26O6·3(H2O)
Mr314.37368.42
Crystal system, space groupMonoclinic, C2Monoclinic, C2
Temperature (K)169163
a, b, c (Å)12.700 (3), 6.9721 (17), 18.422 (5)13.1708 (17), 6.9513 (9), 20.737 (3)
β (°) 107.275 (3) 97.899 (2)
V3)1557.7 (7)1880.5 (4)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.100.11
Crystal size (mm)0.47 × 0.33 × 0.030.73 × 0.40 × 0.12
Data collection
DiffractometerBruker-Nonius APEX2 CCD area-detector
diffractometer
Bruker P4 CCD area-detector
diffractometer
Absorption correctionMulti-scan
(Blessing, 1995)
Multi-scan
(Blessing, 1995)
Tmin, Tmax0.796, 0.9970.795, 0.987
No. of measured, independent and
observed [I > 2σ(I)] reflections
8809, 2953, 2026 11666, 3205, 2697
Rint0.0550.021
(sin θ/λ)max1)0.6270.626
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.057, 0.113, 1.08 0.027, 0.059, 0.96
No. of reflections29533205
No. of parameters206345
No. of restraints113
H-atom treatmentH-atom parameters constrainedH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.27, 0.260.15, 0.14

Computer programs: SMART (Siemens, 1996), SAINT (Siemens, 1996), SAINT and SADABS (Sheldrick, 2003), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 (Farrugia, 1997) and PLUTON (Spek, 2003), SHELXL97 and PLATON (Spek, 2003).

Selected geometric parameters (Å, º) for (A) top
O1—C71.441 (4)O2—C71.466 (4)
O1—C11.451 (4)C1—C21.531 (5)
O2—C21.458 (4)C7—C81.562 (5)
C7—O1—C1104.5 (2)O1—C1—C6112.0 (2)
C2—O2—C7108.2 (2)O2—C7—C8112.8 (3)
O1—C1—C2100.2 (2)O1—C7—C12113.0 (3)
C7—O2—C2—C119.2 (3)C2—O2—C7—C12114.2 (3)
Hydrogen-bond geometry (Å, º) for (A) top
D—H···AD—HH···AD···AD—H···A
O6—H60···O2i0.842.233.034 (3)159
O5—H5O···O3i0.842.122.752 (4)132
O4—H4O···O6ii0.842.112.951 (4)175
O3—H3O···O6ii0.842.182.964 (4)156
Symmetry codes: (i) x+1/2, y1/2, z; (ii) x, y+1, z.
Selected geometric parameters (Å, º) for (B) top
O1—C71.430 (3)O2—C21.4380 (18)
O1—C11.4352 (16)O2—C71.477 (3)
O1—C7'1.487 (6)O4—C41.4370 (16)
O2—C7'1.431 (6)O6—C61.420 (2)
C7—O1—C1108.18 (15)C1—O1—C7'106.9 (3)
C7—O1—C1—C237.82 (18)C8—C9—C10—C110.1 (3)
C7'—O1—C1—C212.9 (3)C7—O1—C7'—C12'153.3 (13)
C1—O1—C7—C12105.7 (4)C8'—C9'—C10'—C11'1.2 (9)
Hydrogen-bond geometry (Å, º) for (B) top
D—H···AD—HH···AD···AD—H···A
O3—H3O···O6i0.841.912.7294 (16)167
O4—H4O···O70.841.872.6908 (16)165
O5—H5O···O80.841.912.7394 (16)172
O6—H6O···O9ii0.841.952.7762 (17)166
O7—H7A···O4iii0.853 (15)1.903 (14)2.7490 (16)172 (2)
O7—H7B···O5i0.852 (15)1.836 (15)2.6746 (16)168 (2)
O8—H8A···O3iv0.829 (16)1.900 (16)2.7199 (16)170 (2)
O8—H8B···O4v0.829 (11)2.127 (14)2.9236 (15)161 (2)
O9—H9OA···O7v0.837 (12)1.967 (14)2.7754 (17)162 (2)
O9—H9OB···O80.849 (11)2.153 (13)2.9436 (18)155 (2)
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z; (iii) x+3/2, y+1/2, z+2; (iv) x1/2, y1/2, z; (v) x+1, y, z+2.
Cremer &amp; Pople (1975) parameters for rings (Å, °) (PLATON; Spek, 2003) top
SourceaRing#bQθϕConformation
I10.550 (4)13.8 (4)190.2 (17)Distorted Chair 2C5
II,III10.5276 (14)165.87 (15)17.8 (6)Distorted Chairc 1C4
I2A0.429 (3)na206.1 (5)Twist, 2T1
II2A0.392 (2)na46.2 (3)Twist, 2T3
III2B0.492 (3)na92.8 (4)Twist, 3T4
I3A0.999 (4)89.5 (2)59.9 (2)Boat B2,5
II3A0.990 (4)89.2 (3)59.9 (2)Boat B2,5
III3B0.981 (8)89.1 (6)57.0 (5)Boat B2,5
I4A0.590 (4)na253.1 (4)Envelope on 3E
II4A0.593 (5)na252.0 (5)Envelope 3E
III4B0.588 (8)na250.2 (8)Envelope 3E
I5A0.594 (4)na323.7 (3)Envelope 5E
II5A0.592 (3)na324.3 (3)Envelope 5E
III5B0.601 (9)na324.6 (8)Envelope on 5E
Notes: (a) Structure.

(b) (1) C1–C6, (2A) O1/C1/C2/O2/C7, (2B) O1/C1/C2/O2/C7', (3A) C7–C12, (3B) C7'–C12', (4A) C7/C8/C14/C11/C12, (4B) C7'/C8'/C14'/C11'/C12', (5A) C8–C11/C14, (5B) C8'–C11'/C14'.

(c) Note: opposite absolute confguration: 180-θ, 180 + ϕ.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds