Download citation
Download citation
link to html
The crystal structure of the title compound, (C4H15N3)2[Mo5O15(HPO4)2]·4H2O, is made up of [Mo5O15(HPO4)2]4− clusters, iminodiethylenediammonium cations and solvent water mol­ecules. The [Mo5O15(HPO4)2]4− cluster, with approximate C2 symmetry, can be considered as a ring formed by five distorted edge- and corner-sharing MoO6 octa­hedra, capped on both poles by a hydro­phosphate tetra­hedron. There exist N—H...O, O—H...N and C—H...O hydrogen bonds between the organic ammonium groups and the clusters, with inter­atomic N...O distances ranging from 2.675 (3) to 2.999 (3) Å, and C...O distances ranging from 3.139 (5) to 3.460 (5) Å.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106023092/gz3012sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106023092/gz3012Isup2.hkl
Contains datablock I

CCDC reference: 618606

Comment top

Over the past few decades, polyoxometalates have been found to be extremely versatile inorganic building blocks for the construction of organic–inorganic hybrid materials, owing to the wide range of their topological properties and potential applications in catalysis, photochemistry, electrochromism and magnetism (Braun et al., 1999). An important class of metal oxide cluster based on molybdenum phosphate anions has been attracting much attention owing to their novel structures and unusual properties (Guo & Liu, 2003). Typical examples include (NH4)2[(CH3)4N]2[Fe2Mo12O30(H2PO4)6(HPO4)2] (Meyer & Haushalter, 1993), (H2en)3[P2Mo5O23]·6H2O (en is ethylenediamine; Aranzabe et al., 1997), [H2en]2[{Cu(en)(H2O)}Mo5P2O23]·4H2O (Lu et al., 1998), (H2en)10(H3O)3(H5O2)Na2[MnMo12O24(OH)6(PO4)4(HPO4)4][MnMo12O24(OH)6(PO4)6(HPO4)2]·9H2O (Xu et al. 1999), (C4H12N2)0.5[Co(en)3][(Mo5O15)(HPO4)2] (He et al., 2004), [{Cu(bpy)2}{Cu(bpy)(H2O)}(Mo5O15){O3P(CH2)4PO3}] (bpy is 2,2'-bipyridine; Finn et al., 2001) and (H2bpy)0.5{[Ni(H2O)5][Ni(Hbpy)(H2O)4[Mo5P2O23]} (Lu et al. 2005). Compared with ethylenediamine or pyridine templates, the hybrid materials containing diethylenetriamine (tren) or its ammonium analog remain largely unexplored (Lin et al., 2003). We report here the hydrothermal synthesis and crystal structure of the title novel organic–inorganic hybrid, viz. (H2tren)2[Mo5O15(HPO4)2]·4H2O, (I).

The crystal structure of (I) is made up of [Mo5O15(HPO4)2]4− anionic clusters, (H2tren)2+ cations and solvent water molecules. As shown in Fig. 1, the [Mo5O15(HPO4)2]4− cluster has approximate C2 symmetry, with atoms Mo4 and O12 lying on the axis. The five MoO6 octahedra in the cluster aggregate in a compact edge-sharing or corner-sharing arrangement to form a ring with two PO4 tetrahedra coordinated above and below the ring. The Mo5 ring is nearly planar, with a mean least-squares deviation of 0.2238 Å, and the interatomic distance between atoms P1 and P2 is 3.8024 (11) Å, the orientation of the P1···P2 vector to the ring being 84.5 (2)°. Each hydrophosphate subunit has one terminal OH group, and three bridging O atoms shared with the molybdenum ring, where one of these oxo-groups adopts the µ2-bridging mode, linking one molybdenum and one phosphorus site, and the other two adopt the µ3-bridging mode, linking two molybdenum sites and one phosphorus sit. The five MoO6 octahedra can be classified into two groups, viz. (1) the corner-sharing octahedra around Mo1 and Mo2, each of which has two terminal oxygen atoms (Ot), two Ob atoms shared by two molybdenum sites, one Oµ2 atom and one Oµ3 atom, and (2) the edge-sharing octahedra surrounding atoms Mo3, Mo4 and Mo5, each of which has two Ot, two Ob and two Oµ3 atoms. Different types of O atoms have different Mo—O bond distances [Mo—Ot = 1.706 (2)–1.734 (2) Å, Mo—Ob = 1.914 (2)–1.960 (2) Å, Mo—Oµ2 = 2.216 (2)–2.217 (2) Å and Mo—Oµ3 = 2.183 (2)–2.440 (2) Å; Table 1]. These bond distances are in accordance with those observed in (C6H11NH3)5H(P2Mo5O23)·4H2O (Wang et al., 2004) and (H2bpy)0.5{[Ni(H2O)5][Ni(Hbpy)(H2O)4][Mo5P2O23]} (Lu et al. 2005). The PO4 tetrahedra exhibit distorted geometry, with P—O bond distances ranging from 1.514 (2) to 1.568 (2) Å and the O—P—O bond angles are between 106.32 (12) and 110.99 (12)°, which are in agreement with those previously reported (Aranzabe et al. 1997). Valence sum calculations (Brown & Altermatt, 1985) demonstrated that all Mo atoms in (I) have valence sums ranging from 5.835 to 5.987, with an average value of 5.925, very close to the ideal value of six for MoVI. Atoms O17 and O20 have valence sums of 1.208 and 1.225, respectively, which suggests that both of the terminal O atoms of PO4 tetrahedra are protonated.

The arrangement of the [Mo5O15(HPO4)2]4− clusters, the (H2tren)2+ cations and the solvent water molecules in the crystal structure of (I) along the b axis is demonstrated in Fig. 2, which shows the extensive hydrogen bonding. As listed in Table 2, the N—H···O and O—H···N hydrogen bonds between the organic ammonium groups and the clusters have N···O interatomic distances ranging from 2.675 (3) to 2.999 (3) Å and hydrogen-bond angles from 124 to 173°. There also exist C—H···O hydrogen bonds between the CH groups of the organic cations and the O atoms from the clusters, with C···O distances between 3.139 (5) and 3.460 (5) Å and hydrogen-bond angles between 122 and 160°. These hydrogen bonds hold the [Mo5O15(HPO4)2]4− clusters and the (H2tren)2+ cations in (I) together into a three-dimensional supramolecular network, completed by the solvent water molecules, which form N —H···O and O—H···O hydrogen bonds with the geometric parameters 2.890 (4)–3.113 (5) Å and 118 (3)–175 (5)°.

Experimental top

Compound (I) was hydrothermally synthesized under autogenous pressure in a 17 ml Teflon-lined stainless steel autoclave with a fill factor of approximate 40%. A mixture of (NH4)6Mo7O24·4H2O, Nd2O3, H3PO4, diethylenetriamine and water in the molar ratio of 1:1:2.8:1.15:333 was heated at 393 K for 6 d. After slow cooling to ambient temperature, colorless block-shaped crystals of (I) were obtained. The crystals were filtered off, washed with distilled water and dried in a desiccator at ambient temperature (yield ca 60% based on molybdenum). The pH value of the reactive system increased from 3.42 before heating to 3.68 at the end of the reaction. The strong band at 952 cm−1 in the IR spectrum is assigned to the Mo—Ot stretching vibrations, and the bands at 892, 775 and 676 cm−1 are related to the Mo—O—Mo vibrations, while the characteristic bands at 1091 and 1025 cm−1 are attributed to the P—O vibrations. Bands ranging from 1330 to 1268 cm−1 are characteristic of C—N and C—C bonds of the organic groups. Analysis calculated for C8H40Mo5N6O27P2: C 8.13, H 3.27, N 6.98, P 5.20, Mo 40.11%; found: C 8.05, H 3.36, N 7.12, P 5.08, Mo 40.03%.

Refinement top

While the H atoms attached to C, N and hydroxy O atoms were placed in calculated positions, those on water molecules were located in a difference Fourier map and then refined with the O—H distances restrained to 0.96 (s.u.?) Å and the H—O—H angles to 104 (s.u.?)°. All H atoms were included in the refinement with Uiso (H) values of 1.2Ueq(parent atom).

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1987); cell refinement: TEXSAN (Molecular Structure Corporation, 1987); data reduction: TEXSAN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Sheldrick, 2000); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The asymmetric unit in (I), showing the atom-labeling scheme and 50% probability displacement ellipsoids.
[Figure 2] Fig. 2. A packing view of (I) along the b axis, showing the arrangement of the [Mo5O15(HPO4)2]4− clusters (polyhedron), the (H2tren)2+ cations and the solvent water molecules in the crystal structure. The dashed lines denote the hydrogen-bonding interactions, and H atoms not involved in such interactions have been omitted for clarity.
Bis(aminodiethylammonium) di-µ5-hydrogenphosphato-pentamolybdate(VI) tetrahydrate top
Crystal data top
(C4H15N3)2[Mo5O15(HPO4)2]·4H2OZ = 2
Mr = 1194.10F(000) = 1172
Triclinic, P1Dx = 2.415 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71069 Å
a = 10.3497 (14) ÅCell parameters from 100 reflections
b = 10.9934 (15) Åθ = 10–15°
c = 15.751 (2) ŵ = 2.06 mm1
α = 95.650 (6)°T = 294 K
β = 95.734 (6)°Block, colorless
γ = 111.408 (5)°0.16 × 0.12 × 0.08 mm
V = 1642.4 (4) Å3
Data collection top
Rigaku AFC-5R
diffractometer
6371 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.038
Graphite monochromatorθmax = 26.5°, θmin = 1.3°
ω–2θ scansh = 1212
Absorption correction: ψ scan
(North et al., 1968)
k = 1313
Tmin = 0.734, Tmax = 0.852l = 1919
25131 measured reflections3 standard reflections every 150 reflections
6733 independent reflections intensity decay: 0.2%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.035Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03 w = 1/[σ2(Fo2) + (0.0569P)2 + 0.165P]
where P = (Fo2 + 2Fc2)/3
6733 reflections(Δ/σ)max = 0.009
462 parametersΔρmax = 0.92 e Å3
12 restraintsΔρmin = 0.93 e Å3
Crystal data top
(C4H15N3)2[Mo5O15(HPO4)2]·4H2Oγ = 111.408 (5)°
Mr = 1194.10V = 1642.4 (4) Å3
Triclinic, P1Z = 2
a = 10.3497 (14) ÅMo Kα radiation
b = 10.9934 (15) ŵ = 2.06 mm1
c = 15.751 (2) ÅT = 294 K
α = 95.650 (6)°0.16 × 0.12 × 0.08 mm
β = 95.734 (6)°
Data collection top
Rigaku AFC-5R
diffractometer
6371 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.038
Tmin = 0.734, Tmax = 0.8523 standard reflections every 150 reflections
25131 measured reflections intensity decay: 0.2%
6733 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03512 restraints
wR(F2) = 0.092H atoms treated by a mixture of independent and constrained refinement
S = 1.03Δρmax = 0.92 e Å3
6733 reflectionsΔρmin = 0.93 e Å3
462 parameters
Special details top

Experimental. crystal coated in epoxy glue

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Mo10.39089 (3)0.60436 (2)0.187695 (16)0.01835 (8)
Mo20.39619 (3)0.93892 (2)0.170885 (16)0.01941 (9)
Mo30.08717 (3)0.92692 (3)0.233543 (17)0.02224 (9)
Mo40.02956 (3)0.67519 (3)0.346595 (16)0.01979 (9)
Mo50.16309 (3)0.48620 (2)0.326644 (16)0.01805 (8)
P10.08070 (7)0.62918 (7)0.14843 (4)0.01494 (15)
P20.32796 (7)0.81964 (7)0.35333 (4)0.01582 (15)
O10.4171 (2)0.5272 (2)0.09538 (15)0.0292 (5)
O20.5434 (2)0.6303 (3)0.25490 (16)0.0328 (5)
O30.5588 (2)1.0639 (2)0.18883 (15)0.0333 (6)
O40.3428 (3)0.9340 (2)0.06257 (15)0.0304 (5)
O50.0010 (3)0.9455 (3)0.14158 (18)0.0392 (6)
O60.0765 (3)1.0418 (3)0.31249 (19)0.0409 (6)
O70.0382 (3)0.7693 (3)0.43927 (15)0.0369 (6)
O80.1921 (2)0.5460 (2)0.32637 (16)0.0300 (5)
O90.2713 (2)0.4698 (2)0.41132 (15)0.0296 (5)
O100.0234 (2)0.3365 (2)0.30439 (16)0.0304 (5)
O110.2604 (2)0.45430 (19)0.23219 (13)0.0203 (4)
O120.4357 (2)0.7804 (2)0.16154 (14)0.0220 (4)
O130.2812 (2)1.0261 (2)0.21756 (15)0.0276 (5)
O140.0617 (2)0.7712 (2)0.25721 (14)0.0218 (4)
O150.0864 (2)0.5900 (2)0.39737 (12)0.0211 (4)
O160.1854 (2)0.5772 (2)0.11471 (13)0.0191 (4)
O170.0519 (2)0.5879 (2)0.08146 (13)0.0232 (4)
H170.06400.51750.05240.028*
O180.1560 (2)0.7830 (2)0.16668 (13)0.0197 (4)
O190.0402 (2)0.5724 (2)0.23316 (13)0.0195 (4)
O200.3823 (2)0.8342 (2)0.44894 (13)0.0236 (4)
H200.38210.90320.47390.028*
O210.3106 (2)0.6805 (2)0.30710 (13)0.0189 (4)
O220.4326 (2)0.9231 (2)0.30974 (13)0.0209 (4)
O230.1838 (2)0.8348 (2)0.34041 (14)0.0197 (4)
N10.7558 (3)0.2197 (3)0.53723 (19)0.0330 (6)
H1C0.80100.18820.59060.040*
H1D0.81600.22700.50240.040*
H1E0.68900.29870.53680.040*
N20.6906 (3)0.0415 (3)0.42076 (18)0.0249 (6)
H2C0.61820.00480.37900.030*
N30.7133 (4)0.3401 (3)0.43811 (19)0.0370 (7)
H3C0.67410.39530.42120.044*
H3D0.80060.38620.46420.044*
H3E0.66360.29250.47470.044*
N40.6934 (3)0.5308 (3)0.1352 (2)0.0351 (7)
H4C0.68970.57640.18420.042*
H4D0.64040.54440.09200.042*
H4E0.78180.55730.12480.042*
N50.7826 (3)0.3060 (3)0.04549 (17)0.0259 (6)
H5C0.77510.25980.00650.031*
N61.0854 (3)0.2982 (3)0.06579 (18)0.0274 (6)
H6C1.07810.31120.01090.033*
H6D1.15470.26970.07710.033*
H6E1.10370.37370.09990.033*
C10.6938 (5)0.1316 (5)0.5082 (3)0.0538 (11)
H1A0.69420.07220.55810.065*
H1B0.59650.18340.48480.065*
C20.7577 (5)0.0516 (5)0.4438 (3)0.0548 (13)
H2A0.75250.10980.39200.066*
H2B0.85610.00160.46550.066*
C30.7838 (4)0.1552 (4)0.3825 (2)0.0322 (7)
H3A0.80820.12170.32970.039*
H3B0.86990.20120.42240.039*
C40.7159 (4)0.2518 (3)0.3628 (2)0.0293 (7)
H4A0.76570.30520.32210.035*
H4B0.62030.20240.33500.035*
C50.6415 (4)0.3897 (4)0.1427 (2)0.0337 (8)
H5A0.54710.36260.15710.040*
H5B0.70030.37550.18950.040*
C60.6403 (3)0.3050 (4)0.0609 (2)0.0287 (7)
H6A0.60140.33490.01230.034*
H6B0.57850.21470.06270.034*
C70.8490 (4)0.2511 (4)0.1132 (2)0.0363 (8)
H7A0.89630.32010.16180.044*
H7B0.77600.18080.13350.044*
C80.9521 (4)0.1983 (3)0.0814 (3)0.0408 (9)
H8A0.97370.14680.12330.049*
H8B0.90780.13870.02810.049*
O240.5736 (3)0.5450 (3)0.42094 (18)0.0452 (7)
H24A0.486 (2)0.556 (5)0.423 (2)0.054*
H24B0.592 (4)0.554 (4)0.3631 (10)0.054*
O250.6979 (4)0.8112 (5)0.0987 (3)0.0886 (13)
H25A0.6025 (17)0.794 (6)0.107 (4)0.106*
H25B0.752 (5)0.862 (6)0.152 (2)0.106*
O260.3961 (4)0.2774 (3)0.3115 (2)0.0548 (8)
H26A0.358 (5)0.334 (3)0.284 (3)0.066*
H26B0.353 (4)0.1935 (19)0.275 (2)0.066*
O270.2840 (4)0.1898 (4)0.0668 (4)0.0885 (14)
H27A0.290 (8)0.162 (5)0.0083 (14)0.106*
H27B0.268 (7)0.113 (3)0.094 (3)0.106*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Mo10.01619 (14)0.02517 (15)0.01985 (15)0.01276 (11)0.00666 (10)0.00809 (11)
Mo20.02075 (15)0.02089 (15)0.01756 (14)0.00743 (11)0.00433 (10)0.00754 (10)
Mo30.02221 (15)0.02244 (15)0.02690 (16)0.01346 (11)0.00258 (11)0.00691 (11)
Mo40.01618 (14)0.02705 (15)0.02116 (15)0.01186 (11)0.00679 (10)0.00791 (11)
Mo50.01914 (15)0.02189 (15)0.01862 (14)0.01157 (11)0.00579 (10)0.01017 (10)
P10.0136 (3)0.0188 (3)0.0158 (3)0.0085 (3)0.0037 (3)0.0069 (3)
P20.0145 (3)0.0219 (4)0.0149 (3)0.0099 (3)0.0040 (3)0.0067 (3)
O10.0291 (12)0.0420 (14)0.0263 (12)0.0207 (11)0.0118 (10)0.0134 (10)
O20.0286 (12)0.0482 (15)0.0355 (13)0.0257 (11)0.0124 (10)0.0180 (11)
O30.0273 (12)0.0321 (13)0.0270 (12)0.0043 (10)0.0029 (10)0.0041 (10)
O40.0390 (13)0.0316 (13)0.0238 (12)0.0151 (10)0.0060 (10)0.0102 (10)
O50.0367 (14)0.0350 (14)0.0463 (16)0.0153 (11)0.0032 (12)0.0107 (12)
O60.0417 (15)0.0404 (15)0.0494 (16)0.0263 (12)0.0108 (12)0.0004 (12)
O70.0372 (14)0.0613 (17)0.0249 (12)0.0298 (13)0.0133 (11)0.0121 (12)
O80.0190 (11)0.0325 (13)0.0327 (13)0.0027 (9)0.0047 (9)0.0049 (10)
O90.0318 (12)0.0357 (13)0.0297 (12)0.0204 (11)0.0054 (10)0.0126 (10)
O100.0319 (13)0.0261 (12)0.0335 (13)0.0095 (10)0.0076 (10)0.0088 (10)
O110.0254 (11)0.0164 (10)0.0230 (11)0.0104 (8)0.0081 (8)0.0075 (8)
O120.0200 (10)0.0283 (11)0.0235 (11)0.0122 (9)0.0100 (8)0.0113 (9)
O130.0235 (11)0.0295 (12)0.0309 (12)0.0106 (9)0.0041 (9)0.0080 (10)
O140.0183 (10)0.0178 (10)0.0334 (12)0.0095 (8)0.0045 (9)0.0111 (9)
O150.0264 (11)0.0341 (12)0.0122 (9)0.0197 (9)0.0084 (8)0.0084 (8)
O160.0176 (10)0.0229 (10)0.0213 (10)0.0113 (8)0.0061 (8)0.0066 (8)
O170.0199 (10)0.0350 (12)0.0203 (10)0.0156 (9)0.0034 (8)0.0085 (9)
O180.0197 (10)0.0192 (10)0.0199 (10)0.0066 (8)0.0037 (8)0.0037 (8)
O190.0208 (10)0.0277 (11)0.0164 (10)0.0139 (9)0.0064 (8)0.0097 (8)
O200.0271 (11)0.0276 (11)0.0177 (10)0.0126 (9)0.0010 (8)0.0040 (8)
O210.0167 (10)0.0250 (11)0.0185 (10)0.0097 (8)0.0080 (8)0.0075 (8)
O220.0203 (10)0.0248 (11)0.0191 (10)0.0084 (9)0.0045 (8)0.0091 (8)
O230.0150 (10)0.0206 (10)0.0259 (11)0.0089 (8)0.0017 (8)0.0076 (8)
N10.0421 (17)0.0305 (15)0.0306 (15)0.0186 (13)0.0057 (13)0.0042 (12)
N20.0237 (13)0.0240 (13)0.0289 (14)0.0105 (11)0.0064 (11)0.0038 (11)
N30.054 (2)0.0380 (17)0.0256 (15)0.0221 (15)0.0116 (14)0.0098 (13)
N40.0229 (14)0.0373 (16)0.0481 (19)0.0149 (12)0.0104 (13)0.0010 (14)
N50.0282 (14)0.0372 (15)0.0195 (13)0.0184 (12)0.0069 (11)0.0100 (11)
N60.0250 (14)0.0344 (15)0.0244 (14)0.0144 (12)0.0005 (11)0.0032 (11)
C10.061 (3)0.062 (3)0.058 (3)0.041 (2)0.015 (2)0.023 (2)
C20.061 (3)0.071 (3)0.068 (3)0.052 (3)0.034 (2)0.042 (3)
C30.0248 (16)0.0376 (19)0.0366 (19)0.0111 (14)0.0096 (14)0.0138 (15)
C40.0412 (19)0.0264 (16)0.0214 (16)0.0136 (14)0.0048 (14)0.0059 (13)
C50.0319 (18)0.046 (2)0.0322 (18)0.0225 (16)0.0128 (15)0.0098 (16)
C60.0216 (15)0.0381 (18)0.0271 (16)0.0121 (13)0.0040 (13)0.0048 (14)
C70.0354 (19)0.046 (2)0.036 (2)0.0186 (16)0.0105 (15)0.0250 (17)
C80.0276 (18)0.0221 (17)0.071 (3)0.0075 (14)0.0035 (17)0.0099 (17)
O240.0421 (15)0.0584 (18)0.0346 (15)0.0171 (14)0.0040 (12)0.0147 (13)
O250.051 (2)0.113 (4)0.093 (3)0.023 (2)0.015 (2)0.002 (3)
O260.068 (2)0.0374 (16)0.061 (2)0.0224 (15)0.0170 (17)0.0004 (14)
O270.057 (2)0.072 (3)0.158 (5)0.039 (2)0.027 (3)0.051 (3)
Geometric parameters (Å, º) top
Mo1—O11.706 (2)N2—C31.497 (4)
Mo1—O21.723 (2)N2—H2C0.9000
Mo1—O121.916 (2)N3—C41.466 (4)
Mo1—O111.956 (2)N3—H3C0.8900
Mo1—O162.216 (2)N3—H3D0.8900
Mo1—O212.332 (2)N3—H3E0.8900
Mo2—O31.715 (2)N4—C51.466 (5)
Mo2—O41.729 (2)N4—H4C0.8900
Mo2—O121.925 (2)N4—H4D0.8900
Mo2—O131.936 (2)N4—H4E0.8900
Mo2—O222.217 (2)N5—C71.502 (4)
Mo2—O182.440 (2)N5—C61.512 (4)
Mo3—O51.703 (3)N5—H5C0.8999
Mo3—O61.724 (3)N6—C81.478 (4)
Mo3—O141.939 (2)N6—H6C0.8900
Mo3—O131.960 (2)N6—H6D0.8900
Mo3—O182.183 (2)N6—H6E0.8900
Mo3—O232.366 (2)C1—C21.458 (6)
Mo4—O71.733 (3)C1—H1A0.9700
Mo4—O81.734 (2)C1—H1B0.9700
Mo4—O141.914 (2)C2—H2A0.9700
Mo4—O151.932 (2)C2—H2B0.9700
Mo4—O232.283 (2)C3—C41.511 (5)
Mo4—O192.334 (2)C3—H3A0.9700
Mo5—O91.721 (2)C3—H3B0.9700
Mo5—O101.723 (2)C4—H4A0.9700
Mo5—O151.940 (2)C4—H4B0.9700
Mo5—O111.951 (2)C5—C61.511 (5)
Mo5—O212.198 (2)C5—H5A0.9700
Mo5—O192.338 (2)C5—H5B0.9700
P1—O161.514 (2)C6—H6A0.9700
P1—O171.538 (2)C6—H6B0.9700
P1—O191.559 (2)C7—C81.492 (5)
P1—O181.564 (2)C7—H7A0.9700
P2—O201.525 (2)C7—H7B0.9700
P2—O221.530 (2)C8—H8A0.9700
P2—O231.557 (2)C8—H8B0.9700
P2—O211.568 (2)O24—H24A0.96 (2)
O17—H170.8200O24—H24B0.96 (2)
O20—H200.8200O25—H25A0.96 (4)
N1—C11.429 (5)O25—H25B0.96 (4)
N1—H1C0.8900O26—H26A0.96 (4)
N1—H1D0.8900O26—H26B0.96 (2)
N1—H1E0.8900O27—H27A0.94 (4)
N2—C21.484 (5)O27—H27B0.95 (4)
O1—Mo1—O2101.04 (11)P1—O18—Mo2134.96 (12)
O1—Mo1—O12101.36 (10)Mo3—O18—Mo294.57 (7)
O2—Mo1—O1298.53 (11)P1—O19—Mo4125.67 (12)
O1—Mo1—O11100.93 (10)P1—O19—Mo5128.63 (11)
O2—Mo1—O1199.97 (10)Mo4—O19—Mo592.63 (7)
O12—Mo1—O11147.57 (9)P2—O20—H20109.5
O1—Mo1—O1685.40 (10)P2—O21—Mo5127.82 (11)
O2—Mo1—O16173.41 (10)P2—O21—Mo1135.19 (11)
O12—Mo1—O1681.40 (8)Mo5—O21—Mo196.29 (8)
O11—Mo1—O1677.23 (8)P2—O22—Mo2122.97 (12)
O1—Mo1—O21168.93 (9)P2—O23—Mo4126.11 (12)
O2—Mo1—O2187.52 (10)P2—O23—Mo3130.50 (12)
O12—Mo1—O2184.10 (8)Mo4—O23—Mo392.34 (7)
O11—Mo1—O2170.39 (8)C1—N1—H1C109.5
O16—Mo1—O2185.92 (7)C1—N1—H1D109.5
O3—Mo2—O4102.49 (12)H1C—N1—H1D109.5
O3—Mo2—O12104.02 (11)C1—N1—H1E109.5
O4—Mo2—O1297.88 (10)H1C—N1—H1E109.5
O3—Mo2—O13101.94 (12)H1D—N1—H1E109.5
O4—Mo2—O1398.16 (11)C2—N2—C3113.4 (3)
O12—Mo2—O13145.57 (9)C2—N2—H2C105.8
O3—Mo2—O2286.04 (10)C3—N2—H2C106.1
O4—Mo2—O22171.42 (10)C4—N3—H3C109.5
O12—Mo2—O2280.70 (8)C4—N3—H3D109.5
O13—Mo2—O2278.94 (9)H3C—N3—H3D109.5
O3—Mo2—O18169.88 (10)C4—N3—H3E109.5
O4—Mo2—O1883.62 (10)H3C—N3—H3E109.5
O12—Mo2—O1882.86 (8)H3D—N3—H3E109.5
O13—Mo2—O1868.95 (8)C5—N4—H4C109.5
O22—Mo2—O1887.81 (7)C5—N4—H4D109.5
O5—Mo3—O6105.04 (13)H4C—N4—H4D109.5
O5—Mo3—O1496.60 (11)C5—N4—H4E109.5
O6—Mo3—O1499.11 (12)H4C—N4—H4E109.5
O5—Mo3—O13100.40 (11)H4D—N4—H4E109.5
O6—Mo3—O1396.67 (12)C7—N5—C6113.7 (3)
O14—Mo3—O13152.91 (9)C7—N5—H5C109.0
O5—Mo3—O1893.45 (11)C6—N5—H5C109.7
O6—Mo3—O18160.76 (11)C8—N6—H6C109.5
O14—Mo3—O1883.69 (8)C8—N6—H6D109.5
O13—Mo3—O1874.41 (9)H6C—N6—H6D109.5
O5—Mo3—O23162.72 (10)C8—N6—H6E109.5
O6—Mo3—O2389.85 (11)H6C—N6—H6E109.5
O14—Mo3—O2371.98 (8)H6D—N6—H6E109.5
O13—Mo3—O2386.24 (8)N1—C1—C2117.6 (4)
O18—Mo3—O2372.82 (8)N1—C1—H1A107.9
O7—Mo4—O8103.78 (12)C2—C1—H1A107.9
O7—Mo4—O14103.00 (11)N1—C1—H1B107.9
O8—Mo4—O1497.38 (10)C2—C1—H1B107.9
O7—Mo4—O1598.69 (10)H1A—C1—H1B107.2
O8—Mo4—O15101.04 (11)C1—C2—N2113.8 (3)
O14—Mo4—O15147.18 (9)C1—C2—H2A108.8
O7—Mo4—O2388.05 (11)N2—C2—H2A108.8
O8—Mo4—O23166.99 (10)C1—C2—H2B108.8
O14—Mo4—O2374.36 (8)N2—C2—H2B108.8
O15—Mo4—O2382.15 (8)H2A—C2—H2B107.7
O7—Mo4—O19166.14 (10)N2—C3—C4112.7 (3)
O8—Mo4—O1988.90 (10)N2—C3—H3A109.0
O14—Mo4—O1980.49 (8)C4—C3—H3A109.0
O15—Mo4—O1973.00 (7)N2—C3—H3B109.0
O23—Mo4—O1979.92 (8)C4—C3—H3B109.0
O9—Mo5—O10105.04 (11)H3A—C3—H3B107.8
O9—Mo5—O1594.76 (10)N3—C4—C3114.8 (3)
O10—Mo5—O15101.10 (11)N3—C4—H4A108.6
O9—Mo5—O1199.11 (10)C3—C4—H4A108.6
O10—Mo5—O1196.31 (10)N3—C4—H4B108.6
O15—Mo5—O11154.08 (9)C3—C4—H4B108.6
O9—Mo5—O2194.75 (10)H4A—C4—H4B107.5
O10—Mo5—O21159.07 (10)N4—C5—C6112.7 (3)
O15—Mo5—O2183.66 (8)N4—C5—H5A109.1
O11—Mo5—O2173.50 (8)C6—C5—H5A109.1
O9—Mo5—O19162.97 (10)N4—C5—H5B109.1
O10—Mo5—O1989.05 (10)C6—C5—H5B109.1
O15—Mo5—O1972.78 (8)H5A—C5—H5B107.8
O11—Mo5—O1988.58 (8)C5—C6—N5114.7 (3)
O21—Mo5—O1972.77 (8)C5—C6—H6A108.6
O16—P1—O17110.55 (12)N5—C6—H6A108.6
O16—P1—O19109.07 (11)C5—C6—H6B108.6
O17—P1—O19109.43 (12)N5—C6—H6B108.6
O16—P1—O18106.32 (12)H6A—C6—H6B107.6
O17—P1—O18110.79 (12)C8—C7—N5113.2 (3)
O19—P1—O18110.63 (12)C8—C7—H7A108.9
O20—P2—O22110.62 (12)N5—C7—H7A108.9
O20—P2—O23110.99 (12)C8—C7—H7B108.9
O22—P2—O23109.12 (12)N5—C7—H7B108.9
O20—P2—O21109.86 (12)H7A—C7—H7B107.7
O22—P2—O21107.23 (12)N6—C8—C7115.7 (3)
O23—P2—O21108.94 (12)N6—C8—H8A108.3
Mo5—O11—Mo1119.50 (10)C7—C8—H8A108.3
Mo1—O12—Mo2148.20 (12)N6—C8—H8B108.3
Mo2—O13—Mo3121.65 (12)C7—C8—H8B108.3
Mo4—O14—Mo3121.06 (11)H8A—C8—H8B107.4
Mo4—O15—Mo5121.52 (10)H24A—O24—H24B105 (3)
P1—O16—Mo1124.87 (12)H25A—O25—H25B104 (3)
P1—O17—H17109.5H26A—O26—H26B104 (3)
P1—O18—Mo3128.59 (12)H27A—O27—H27B105 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17···N5i0.822.272.906 (4)135
O20—H20···N2ii0.822.022.675 (3)137
N1—H1C···O6ii0.892.042.868 (4)154
N1—H1D···O7iii0.891.902.784 (4)173
N1—H1E···O9iv0.892.272.867 (4)124
N2—H2C···O22v0.901.952.822 (3)162
N3—H3C···O240.892.253.107 (4)163
N3—H3D···O15ii0.892.312.996 (4)134
N3—H3E···O20ii0.891.892.731 (4)157
N4—H4C···O20.892.182.930 (4)142
N4—H4D···O10.892.262.851 (4)124
N4—H4E···O17vi0.891.842.720 (4)168
N5—H5C···O4vii0.902.082.778 (4)134
N6—H6D···O27vi0.891.862.726 (5)163
N6—H6E···O11vi0.892.382.999 (3)127
N6—H6E···O16vi0.892.062.852 (4)147
N6—H6C···O17vii0.891.972.792 (3)153
C1—H1B···O20v0.972.313.139 (5)142
C3—H3B···O7ii0.972.563.460 (5)154
C4—H4B···O3v0.972.523.157 (4)123
C4—H4A···O8vi0.972.513.150 (4)123
C5—H5B···O8vi0.972.573.186 (4)122
C6—H6A···O1vii0.972.423.349 (4)160
C7—H7B···O3v0.972.443.371 (4)160
C7—H7A···O10vi0.972.443.214 (5)136
C8—H8A···O5iii0.972.363.205 (4)145
O24—H24A···O90.96 (2)2.06 (2)2.914 (4)148 (4)
O24—H24B···O20.96 (2)2.07 (2)2.890 (4)143 (3)
O24—H24B···O8vi0.96 (2)2.39 (3)2.967 (4)118 (3)
O25—H25A···O120.96 (4)1.97 (4)2.896 (5)162 (5)
O26—H26A···O110.96 (4)2.11 (5)3.072 (4)175 (5)
O26—H26B···O13v0.96 (2)1.82 (2)2.771 (4)173 (3)
O27—H27A···O25vii0.94 (4)1.75 (3)2.632 (7)151 (5)
O27—H27B···O13v0.95 (4)2.26 (3)3.113 (5)148 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+1, y, z; (vii) x+1, y+1, z.

Experimental details

Crystal data
Chemical formula(C4H15N3)2[Mo5O15(HPO4)2]·4H2O
Mr1194.10
Crystal system, space groupTriclinic, P1
Temperature (K)294
a, b, c (Å)10.3497 (14), 10.9934 (15), 15.751 (2)
α, β, γ (°)95.650 (6), 95.734 (6), 111.408 (5)
V3)1642.4 (4)
Z2
Radiation typeMo Kα
µ (mm1)2.06
Crystal size (mm)0.16 × 0.12 × 0.08
Data collection
DiffractometerRigaku AFC-5R
diffractometer
Absorption correctionψ scan
(North et al., 1968)
Tmin, Tmax0.734, 0.852
No. of measured, independent and
observed [I > 2σ(I)] reflections
25131, 6733, 6371
Rint0.038
(sin θ/λ)max1)0.628
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.092, 1.03
No. of reflections6733
No. of parameters462
No. of restraints12
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.92, 0.93

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1987), TEXSAN (Molecular Structure Corporation, 1987), TEXSAN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Sheldrick, 2000), SHELXL97.

Selected geometric parameters (Å, º) top
Mo1—O11.706 (2)Mo3—O131.960 (2)
Mo1—O21.723 (2)Mo3—O182.183 (2)
Mo1—O121.916 (2)Mo3—O232.366 (2)
Mo1—O111.956 (2)Mo4—O71.733 (3)
Mo1—O162.216 (2)Mo4—O81.734 (2)
Mo1—O212.332 (2)Mo5—O91.721 (2)
Mo2—O31.715 (2)Mo5—O101.723 (2)
Mo2—O41.729 (2)P1—O161.514 (2)
Mo3—O51.703 (3)P1—O171.538 (2)
Mo3—O61.724 (3)P1—O191.559 (2)
Mo3—O141.939 (2)P1—O181.564 (2)
O12—Mo1—O11147.57 (9)O16—P1—O17110.55 (12)
O12—Mo2—O13145.57 (9)O16—P1—O18106.32 (12)
O14—Mo3—O13152.91 (9)O17—P1—O18110.79 (12)
O14—Mo4—O15147.18 (9)O20—P2—O22110.62 (12)
O15—Mo5—O11154.08 (9)O20—P2—O23110.99 (12)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O17—H17···N5i0.822.272.906 (4)134.5
O20—H20···N2ii0.822.022.675 (3)136.8
N1—H1C···O6ii0.892.042.868 (4)154.2
N1—H1D···O7iii0.891.902.784 (4)173.1
N1—H1E···O9iv0.892.272.867 (4)123.7
N2—H2C···O22v0.901.952.822 (3)162.2
N3—H3C···O240.892.253.107 (4)162.8
N3—H3D···O15ii0.892.312.996 (4)133.6
N3—H3E···O20ii0.891.892.731 (4)156.5
N4—H4C···O20.892.182.930 (4)141.7
N4—H4D···O10.892.262.851 (4)124.1
N4—H4E···O17vi0.891.842.720 (4)167.7
N5—H5C···O4vii0.902.082.778 (4)133.6
N6—H6D···O27vi0.891.862.726 (5)163.3
N6—H6E···O11vi0.892.382.999 (3)126.7
N6—H6E···O16vi0.892.062.852 (4)147.3
N6—H6C···O17vii0.891.972.792 (3)153.0
O24—H24A···O90.96 (2)2.06 (2)2.914 (4)148 (4)
O24—H24B···O20.96 (2)2.07 (2)2.890 (4)143 (3)
O24—H24B···O8vi0.96 (2)2.39 (3)2.967 (4)118 (3)
O25—H25A···O120.96 (4)1.97 (4)2.896 (5)162 (5)
O26—H26A···O110.96 (4)2.11 (5)3.072 (4)175 (5)
O26—H26B···O13v0.96 (2)1.82 (2)2.771 (4)173 (3)
O27—H27A···O25vii0.94 (4)1.75 (3)2.632 (7)151 (5)
O27—H27B···O13v0.95 (4)2.26 (3)3.113 (5)148 (5)
Symmetry codes: (i) x1, y, z; (ii) x+1, y+1, z+1; (iii) x+1, y1, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x+1, y, z; (vii) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds