Download citation
Download citation
link to html
In the two compounds (borohydrido)(1,4,7,10,13,16-hexa­oxacyclo­octa­decane-κ6O)potassium, [K(BH4)(C12H24O6)], (I), and (borohydrido)(1,4,7,10,13,16-hexa­oxa-2,3:11,12-di­benzo­cyclo­octa­deca-2,11-diene-κ6O)(tetra­hydro­furan)­potassium, [K(BH4)(C4H8O)(C20H24O6)], (II), the K atom is bound to the six O atoms of the crown ether and to a tridentate borohydride group, with further coordination to a tetra­hydro­furan mol­ecule in (II). The alkali metal ion environment is thus distorted hexa­gonal–pyramidal in (I) and bipyramidal in (II).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106016507/gz3011sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016507/gz3011Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106016507/gz3011IIsup3.hkl
Contains datablock II

CCDC references: 616103; 616104

Comment top

Alkali metal borohydrides are very versatile reagents in organic and coordination chemistry, and the synthesis of their molecular complexes with donor ligands is of major interest for the determination of their structures and the control of their properties. While the crystal structures of some ether and amine adducts of LiBH4 and NaBH4 have been reported (Reger et al., 1997; Giese et al., 1999), no such compound of KBH4 has been structurally characterized to date. Here, we report the structures of two adducts of KBH4 with the crown ethers 18-crown-6 [compound (I)] and dibenzo-18-crown-6 [compound (II)].

Complex (I) presents the characteristic features of compounds containing the [K(18-crown-6)] moiety (Fig. 1). The K+ ion is located at the centre of the 18-crown-6 ligand and it is coordinated by the six O atoms. The K1—O bond lengths are in the range 2.7532 (17)–2.9135 (16) Å [mean value 2.85 (6) Å] (Table 1). The metal centre is located 0.6416 (8) Å from the O6 mean plane (r.m.s. deviation 0.19 Å). The borohydride anion is tridentate, with K1—H bond lengths in the range 2.71–2.84 Å, whereas the K1···B1—H4 angle involving the terminal uncoordinated H atom is nearly linear, with a value of 176°. The K···B distance is significantly shorter in (I) than in KBH4 (Luck & Schelter, 1999), with values of 2.947 (3) and 3.3640 (9) Å, respectively. The BH4 moiety in (I) is slightly inclined with respect to the O6 mean plane, with an angle between the K1···B1 line and the normal to the plane of 12.2°, and B1···K1—O angles of 90.12 (7), 95.44 (7), 95.30 (7)° for atoms O1, O2 and O3, and 112.47 (7), 112.54 (7) and 111.12 (7)° for atoms O4, O5 and O6, respectively. The crown ether moiety presents a usual conformation, with the gauche O—C—C—O torsion angles defining the sequence g+gg+gg+g and all the C—O—C—C torsion angles close to anti values (distorted D3d symmetry), which is commonly found in uncomplexed as well as complexed crown ethers (Fyles & Gandour, 1992).

Complex (II) is different from (I) in two respects, namely the conformation of the more rigid dibenzo-18-crown-6 molecule and the presence of an additional tetrahydrofuran (THF) ligand (Fig. 2). The K+ cation is bound to the six O atoms of the crown ether, with K1—O bond lengths in the range 2.786 (2)–2.829 (2) Å [mean value 2.806 (17) Å], significantly shorter than in (I) (Table 2). This is probably a result of the different crown ether conformation, which in (II) adopts a curved shape with two orthogonal pseudo-symmetry planes perpendicular to the mean O6 plane (r.m.s. deviation 0.11 Å), one containing atoms O3 and O6 and the other the centroids of the aromatic rings (approximate C2v point group symmetry). The shortest K1—O bond lengths involve these atoms O3 and O6, indicating a pinching of the macrocycle along the O3—O6 line. The O—C—C—O torsion angles define the sequence cg+gcg+g, with all the C—O—C—C torsion angles close to 180°. This conformation is usual for potassium complexes of dibenzo-18-crown-6, as evidenced by the structures reported in the Cambridge Structural Database (CSD, Version 5.27; Allen, 2002). The K+ ion is located 0.6189 (11) Å from the O6 mean plane, on the same side as the borohydride group. The latter is tridentate, with K1—H bond lengths in the range 2.75–2.93 Å, and the K1···B1—H4 angle is 175°. The K1···B1 distance of 2.993 (4) Å is slightly larger than in (I). The angle between the K1···B1 line and the normal to the O6 mean plane is 0.8°, and the B1···K1—O angles are in the range 99.85 (10)–106.34 (10)°. The THF molecule is located on the concave side of the crown ether, with a K1—O7 bond length of 2.686 (3) Å, in good agreement with the mean value of 2.70 (15) Å for the K—O(THF) bonds in the CSD [How many hits?]. The O7—K1···B1 angle is 176.96 (11)° and the K+ cation is thus in a distorted hexagonal–bipyramidal environment, if the BH4 group is considered as a single donor atom.

The 18-crown-6 and the dibenzo-18-crown-6 e thers thus form two stable 1:1 complexes with KBH4 in refluxing THF, which makes these two ligands effective agents for the solubilization of KBH4 in THF. Compounds (I) and (II) are new examples of crown ether complexes of alkali metal borohydrides, after [Li2(18-crown-6)(BH4)2] (Antsyshkina et al., 1994) and [Na(15-crown-5)(BH4)] (Gorbunov et al., 1985).

Experimental top

KBH4, 18-crown-6 and dibenzo-18-crown-6 were purchased from Aldrich and used without further purification. The 1H NMR spectrum was recorded with a Bruker DPX 200 instrument and referenced internally using the residual protonated solvent resonances relative to tetramethylsilane (δ = 0 p.p.m.). For compound (I), a 50 ml round-bottomed flask was charged with KBH4 (13.7 mg, 0.25 mmol), 18-crown-6 (66 mg, 0.25 mmol) and tetrathydrofuran (THF) (2 ml). The mixture was refluxed gently for 48 h and then cooled to room temperature, giving crystals of (I) which were filtered off and dried under a vacuum (78.5 mg, 98% yield). Analysis, calculated for C12H28BKO6 (318.25): C 45.29, H 8.87, B 3.40, K 12.29%; found: C 45.47, H 8.75, B 3.43, K 12.40%. 1H NMR (THF-d8, 200 MHz, 296 K, δ, p.p.m.): 3.53 (s, 24H, CH2), −0.39 [quartet, 4H, BH4, 1J(11B1H = 81 Hz)]. For compound (II), an NMR tube was charged with KBH4 (2.1 mg, 0.039 mmol), dibenzo-18-crown-6 (14 mg, 0.039 mmol) and THF (0.4 ml). The mixture was refluxed for 22 d, giving crystals of (II) in quantitative yield.

Refinement top

H atoms bound to B atoms were found in difference Fourier maps. The BH4 group in both compounds was then constrained to an ideal tetrahedral geometry and the H atoms were treated as riding atoms, with B—H bond lengths of 1.15 Å and Uiso(H) = 1.2Ueq(B). All other H atoms were introduced in calculated positions as riding atoms, with C—H bond lengths of 0.93 (CH) or 0.97 Å (CH2) and Uiso(H) = 1.2Ueq(C). Restraints on displacement parameters (ISOR) were applied for two C atoms of the coordinated THF molecule in (II).

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1998); cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1999); software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

Figures top
[Figure 1] Fig. 1. A view of compound (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of compound (II), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) (borohydrido)(1,4,7,10,13,16-hexaoxacyclooctadecane-κ6O)potassium top
Crystal data top
[K(BH4)(C12H24O6)]F(000) = 688
Mr = 318.25Dx = 1.198 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 11824 reflections
a = 8.2049 (5) Åθ = 2.8–25.7°
b = 11.9741 (8) ŵ = 0.32 mm1
c = 17.9611 (12) ÅT = 100 K
V = 1764.6 (2) Å3Parallelepiped, colourless
Z = 40.30 × 0.30 × 0.25 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2858 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.053
Graphite monochromatorθmax = 25.7°, θmin = 2.8°
ϕ scan with 2° stepsh = 1010
11824 measured reflectionsk = 1414
3290 independent reflectionsl = 2121
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083 w = 1/[σ2(Fo2) + (0.0331P)2 + 0.2179P]
where P = (Fo2 + 2Fc2)/3
S = 1.03(Δ/σ)max = 0.001
3290 reflectionsΔρmax = 0.15 e Å3
181 parametersΔρmin = 0.14 e Å3
0 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (4)
Crystal data top
[K(BH4)(C12H24O6)]V = 1764.6 (2) Å3
Mr = 318.25Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.2049 (5) ŵ = 0.32 mm1
b = 11.9741 (8) ÅT = 100 K
c = 17.9611 (12) Å0.30 × 0.30 × 0.25 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2858 reflections with I > 2σ(I)
11824 measured reflectionsRint = 0.053
3290 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.035H-atom parameters constrained
wR(F2) = 0.083Δρmax = 0.15 e Å3
S = 1.03Δρmin = 0.14 e Å3
3290 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
181 parametersAbsolute structure parameter: 0.03 (4)
0 restraints
Special details top

Experimental. crystal-to-detector distance 29 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters. The H atoms bound to B have been found on the Fourier-difference map and introduced as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. All other hydrogen atoms were introduced at calculated positions as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.62347 (6)0.46724 (4)0.93213 (3)0.03555 (13)
B10.8097 (4)0.6083 (2)0.82802 (17)0.0454 (7)
H10.86250.60820.88730.054*
H20.67930.64340.82920.054*
H30.80740.51850.80530.054*
H40.88960.66320.79020.054*
O10.8847 (2)0.31688 (11)0.93959 (8)0.0361 (3)
O20.6374 (2)0.26653 (13)0.84067 (8)0.0382 (4)
O30.3775 (2)0.41827 (14)0.83312 (9)0.0445 (4)
O40.2973 (2)0.55040 (14)0.95743 (9)0.0433 (4)
O50.5370 (2)0.58289 (13)1.06563 (10)0.0447 (4)
O60.79900 (19)0.43506 (12)1.06931 (10)0.0392 (4)
C10.8927 (3)0.2187 (2)0.89503 (13)0.0406 (5)
H1A0.84250.15650.92100.049*
H1B1.00540.19980.88470.049*
C20.8036 (3)0.2417 (2)0.82377 (14)0.0425 (6)
H2A0.85330.30440.79820.051*
H2B0.80940.17700.79140.051*
C30.5431 (3)0.2816 (3)0.77469 (14)0.0511 (7)
H3A0.54160.21290.74610.061*
H3B0.59130.33960.74410.061*
C40.3720 (4)0.3137 (2)0.79575 (14)0.0488 (6)
H4A0.30480.31950.75150.059*
H4B0.32510.25740.82810.059*
C50.2193 (3)0.4653 (3)0.84414 (15)0.0503 (6)
H5A0.15220.41440.87290.060*
H5B0.16680.47770.79650.060*
C60.2372 (3)0.5730 (2)0.88456 (15)0.0508 (7)
H6A0.31240.62140.85820.061*
H6B0.13260.61050.88760.061*
C70.3035 (4)0.6485 (2)1.00252 (16)0.0526 (7)
H7A0.19480.67891.00880.063*
H7B0.37090.70470.97880.063*
C80.3735 (3)0.6181 (2)1.07661 (15)0.0492 (6)
H8A0.37050.68211.10970.059*
H8B0.31030.55841.09900.059*
C90.6142 (4)0.5552 (2)1.13387 (13)0.0483 (6)
H9A0.56110.49101.15620.058*
H9B0.60660.61741.16830.058*
C100.7891 (3)0.5289 (2)1.11829 (14)0.0480 (6)
H10A0.84150.59311.09560.058*
H10B0.84510.51231.16450.058*
C110.9631 (3)0.4123 (2)1.04955 (14)0.0425 (6)
H11A1.02980.40781.09400.051*
H11B1.00520.47201.01850.051*
C120.9697 (3)0.3038 (2)1.00811 (14)0.0406 (6)
H12A1.08220.28320.99860.049*
H12B0.91960.24521.03750.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0340 (2)0.0351 (2)0.0376 (2)0.0005 (2)0.0027 (2)0.0020 (2)
B10.0421 (15)0.0411 (15)0.0529 (18)0.0003 (13)0.0016 (14)0.0111 (13)
O10.0388 (8)0.0343 (7)0.0353 (8)0.0010 (8)0.0037 (8)0.0002 (6)
O20.0354 (8)0.0486 (9)0.0308 (8)0.0049 (8)0.0001 (7)0.0015 (7)
O30.0345 (8)0.0552 (10)0.0437 (9)0.0035 (9)0.0041 (8)0.0002 (8)
O40.0406 (8)0.0403 (9)0.0490 (10)0.0049 (8)0.0026 (7)0.0034 (7)
O50.0459 (9)0.0422 (9)0.0459 (9)0.0064 (8)0.0011 (8)0.0047 (9)
O60.0413 (8)0.0362 (8)0.0402 (9)0.0011 (7)0.0046 (8)0.0054 (8)
C10.0380 (13)0.0378 (12)0.0462 (14)0.0010 (12)0.0055 (12)0.0029 (10)
C20.0429 (13)0.0448 (14)0.0396 (14)0.0020 (12)0.0079 (11)0.0051 (11)
C30.0498 (15)0.0696 (18)0.0339 (14)0.0031 (14)0.0049 (11)0.0057 (12)
C40.0446 (13)0.0624 (16)0.0395 (13)0.0047 (15)0.0087 (13)0.0018 (12)
C50.0350 (12)0.0644 (16)0.0516 (15)0.0017 (14)0.0094 (11)0.0116 (14)
C60.0401 (14)0.0560 (16)0.0562 (17)0.0049 (13)0.0067 (12)0.0142 (14)
C70.0478 (15)0.0379 (14)0.072 (2)0.0085 (13)0.0010 (14)0.0020 (13)
C80.0506 (14)0.0422 (12)0.0547 (16)0.0066 (14)0.0088 (15)0.0092 (12)
C90.0616 (16)0.0422 (13)0.0410 (13)0.0014 (14)0.0050 (13)0.0091 (10)
C100.0556 (15)0.0405 (13)0.0479 (15)0.0014 (13)0.0129 (12)0.0111 (12)
C110.0372 (13)0.0415 (13)0.0488 (16)0.0021 (12)0.0112 (11)0.0005 (11)
C120.0373 (13)0.0410 (14)0.0436 (14)0.0056 (12)0.0061 (11)0.0045 (11)
Geometric parameters (Å, º) top
K1—O12.8023 (16)C1—H1B0.9700
K1—O22.9135 (16)C2—H2A0.9700
K1—O32.7532 (17)C2—H2B0.9700
K1—O42.8911 (17)C3—C41.504 (4)
K1—O52.8584 (18)C3—H3A0.9700
K1—O62.8797 (17)C3—H3B0.9700
K1—H12.7097C4—H4A0.9700
K1—H32.8010C4—H4B0.9700
K1—H22.8417C5—C61.487 (4)
K1—B12.947 (3)C5—H5A0.9700
B1—H11.1500C5—H5B0.9700
B1—H21.1500C6—H6A0.9700
B1—H31.1500C6—H6B0.9700
B1—H41.1500C7—C81.494 (4)
O1—C121.423 (3)C7—H7A0.9700
O1—C11.424 (3)C7—H7B0.9700
O2—C31.427 (3)C8—H8A0.9700
O2—C21.428 (3)C8—H8B0.9700
O3—C41.421 (3)C9—C101.495 (4)
O3—C51.429 (3)C9—H9A0.9700
O4—C61.425 (3)C9—H9B0.9700
O4—C71.428 (3)C10—H10A0.9700
O5—C91.419 (3)C10—H10B0.9700
O5—C81.420 (3)C11—C121.498 (3)
O6—C111.419 (3)C11—H11A0.9700
O6—C101.430 (3)C11—H11B0.9700
C1—C21.499 (4)C12—H12A0.9700
C1—H1A0.9700C12—H12B0.9700
O3—K1—O1117.04 (5)H3A—C3—H3B108.3
O3—K1—O5117.58 (5)O3—C4—C3108.3 (2)
O1—K1—O5117.45 (5)O3—C4—H4A110.0
O3—K1—O6152.97 (5)C3—C4—H4A110.0
O1—K1—O659.38 (4)O3—C4—H4B110.0
O5—K1—O658.08 (5)C3—C4—H4B110.0
O3—K1—O459.76 (5)H4A—C4—H4B108.4
O1—K1—O4157.17 (5)O3—C5—C6108.6 (2)
O5—K1—O458.10 (5)O3—C5—H5A110.0
O6—K1—O4111.99 (5)C6—C5—H5A110.0
O3—K1—O259.26 (5)O3—C5—H5B110.0
O1—K1—O257.79 (5)C6—C5—H5B110.0
O5—K1—O2151.93 (5)H5A—C5—H5B108.3
O6—K1—O2110.64 (5)O4—C6—C5108.5 (2)
O4—K1—O2114.15 (5)O4—C6—H6A110.0
H1—B1—H2109.5C5—C6—H6A110.0
H1—B1—H3109.5O4—C6—H6B110.0
H2—B1—H3109.5C5—C6—H6B110.0
H1—B1—H4109.5H6A—C6—H6B108.4
H2—B1—H4109.5O4—C7—C8108.6 (2)
H3—B1—H4109.5O4—C7—H7A110.0
C12—O1—C1111.88 (17)C8—C7—H7A110.0
C12—O1—K1119.14 (13)O4—C7—H7B110.0
C1—O1—K1122.61 (14)C8—C7—H7B110.0
C3—O2—C2111.58 (18)H7A—C7—H7B108.4
C3—O2—K1110.05 (15)O5—C8—C7108.1 (2)
C2—O2—K1109.21 (13)O5—C8—H8A110.1
C4—O3—C5112.6 (2)C7—C8—H8A110.1
C4—O3—K1121.06 (15)O5—C8—H8B110.1
C5—O3—K1119.51 (14)C7—C8—H8B110.1
C6—O4—C7112.15 (19)H8A—C8—H8B108.4
C6—O4—K1103.99 (14)O5—C9—C10108.4 (2)
C7—O4—K1109.86 (15)O5—C9—H9A110.0
C9—O5—C8111.8 (2)C10—C9—H9A110.0
C9—O5—K1120.02 (14)O5—C9—H9B110.0
C8—O5—K1119.66 (14)C10—C9—H9B110.0
C11—O6—C10111.04 (18)H9A—C9—H9B108.4
C11—O6—K1106.64 (14)O6—C10—C9109.6 (2)
C10—O6—K1113.12 (13)O6—C10—H10A109.8
O1—C1—C2107.81 (19)C9—C10—H10A109.8
O1—C1—H1A110.1O6—C10—H10B109.8
C2—C1—H1A110.1C9—C10—H10B109.8
O1—C1—H1B110.1H10A—C10—H10B108.2
C2—C1—H1B110.1O6—C11—C12109.0 (2)
H1A—C1—H1B108.5O6—C11—H11A109.9
O2—C2—C1108.80 (19)C12—C11—H11A109.9
O2—C2—H2A109.9O6—C11—H11B109.9
C1—C2—H2A109.9C12—C11—H11B109.9
O2—C2—H2B109.9H11A—C11—H11B108.3
C1—C2—H2B109.9O1—C12—C11108.45 (19)
H2A—C2—H2B108.3O1—C12—H12A110.0
O2—C3—C4109.3 (2)C11—C12—H12A110.0
O2—C3—H3A109.8O1—C12—H12B110.0
C4—C3—H3A109.8C11—C12—H12B110.0
O2—C3—H3B109.8H12A—C12—H12B108.4
C4—C3—H3B109.8
(II) (borohydrido)(1,4,7,10,13,16-hexaoxa-2,3:11,12-dibenzocyclooctadeca- 2,11-diene-κ6O)(tetrahydrofuran)potassium top
Crystal data top
[K(BH4)(C4H8O)(C20H24O6)]F(000) = 1040
Mr = 486.44Dx = 1.290 Mg m3
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 42072 reflections
a = 9.5611 (4) Åθ = 3.0–25.7°
b = 9.9657 (5) ŵ = 0.25 mm1
c = 26.2779 (15) ÅT = 100 K
V = 2503.8 (2) Å3Platelet, colourless
Z = 40.22 × 0.22 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3880 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.060
Graphite monochromatorθmax = 25.7°, θmin = 3.0°
two ϕ and two ω scans with 2° stepsh = 1111
42072 measured reflectionsk = 1212
4737 independent reflectionsl = 3132
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129 w = 1/[σ2(Fo2) + (0.0789P)2 + 0.4778P]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max = 0.001
4737 reflectionsΔρmax = 0.37 e Å3
298 parametersΔρmin = 0.25 e Å3
12 restraintsAbsolute structure: Flack (1983), with how many Friedel pairs
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.08 (6)
Crystal data top
[K(BH4)(C4H8O)(C20H24O6)]V = 2503.8 (2) Å3
Mr = 486.44Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5611 (4) ŵ = 0.25 mm1
b = 9.9657 (5) ÅT = 100 K
c = 26.2779 (15) Å0.22 × 0.22 × 0.10 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3880 reflections with I > 2σ(I)
42072 measured reflectionsRint = 0.060
4737 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.048H-atom parameters constrained
wR(F2) = 0.129Δρmax = 0.37 e Å3
S = 1.02Δρmin = 0.25 e Å3
4737 reflectionsAbsolute structure: Flack (1983), with how many Friedel pairs
298 parametersAbsolute structure parameter: 0.08 (6)
12 restraints
Special details top

Experimental. crystal-to-detector distance 40 mm

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Structure solved by direct methods and subsequent Fourier-difference synthesis. All non-hydrogen atoms were refined with anisotropic displacement parameters, with restraints for atoms C22 and C23 in the tetrahydrofuran molecule, which behave badly, likely due to unresolved disorder. The H atoms bound to B were found on a Fourier-difference map and all the other ones were introduced at calculated positions. All H atoms were treated as riding atoms with an isotropic displacement parameter equal to 1.2 times that of the parent atom. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
K10.48320 (7)0.28874 (6)0.12717 (3)0.02955 (19)
B10.2612 (4)0.5003 (4)0.12446 (17)0.0352 (8)
H10.20500.40500.11060.042*
H20.35370.52350.09790.042*
H30.30180.48380.16520.042*
H40.18410.58890.12410.042*
O10.3288 (2)0.0601 (2)0.09697 (8)0.0304 (5)
O20.4852 (2)0.1739 (2)0.02895 (8)0.0304 (5)
O30.6682 (2)0.3849 (2)0.05380 (8)0.0316 (5)
O40.7211 (2)0.4336 (2)0.15783 (8)0.0295 (5)
O50.5908 (2)0.2893 (2)0.22632 (8)0.0307 (5)
O60.3691 (2)0.1171 (2)0.19990 (8)0.0319 (5)
O70.6876 (3)0.1048 (2)0.13417 (10)0.0439 (6)
C10.3843 (3)0.0241 (3)0.06053 (12)0.0274 (7)
C20.4704 (3)0.0372 (3)0.02361 (12)0.0275 (7)
C30.5325 (3)0.0385 (3)0.01418 (13)0.0309 (7)
H3A0.58910.00240.03840.037*
C40.5096 (4)0.1772 (3)0.01577 (13)0.0357 (8)
H4A0.55190.22900.04090.043*
C50.4233 (3)0.2374 (3)0.02030 (13)0.0350 (8)
H50.40760.32940.01900.042*
C60.3607 (4)0.1616 (3)0.05822 (13)0.0327 (8)
H60.30300.20270.08210.039*
C70.5719 (4)0.2405 (3)0.00785 (13)0.0334 (8)
H7A0.52940.23570.04130.040*
H7B0.66310.19810.00940.040*
C80.5863 (4)0.3842 (4)0.00855 (12)0.0333 (8)
H8A0.63200.43640.01780.040*
H8B0.49490.42290.01500.040*
C90.6954 (4)0.5164 (3)0.07330 (13)0.0323 (8)
H9A0.60930.55780.08490.039*
H9B0.73640.57260.04710.039*
C100.7954 (4)0.4996 (3)0.11698 (13)0.0333 (8)
H10A0.87500.44590.10650.040*
H10B0.82920.58650.12820.040*
C110.8019 (3)0.3878 (3)0.19792 (12)0.0296 (7)
C120.7325 (3)0.3071 (3)0.23376 (12)0.0289 (7)
C130.8061 (4)0.2527 (3)0.27413 (13)0.0324 (8)
H130.76120.19700.29740.039*
C140.9483 (4)0.2820 (4)0.27981 (14)0.0389 (8)
H140.99790.24700.30720.047*
C151.0152 (4)0.3630 (3)0.24470 (14)0.0378 (8)
H151.10960.38280.24880.045*
C160.9426 (3)0.4151 (3)0.20346 (13)0.0331 (8)
H160.98860.46820.17960.040*
C170.5198 (4)0.2058 (3)0.26270 (12)0.0339 (7)
H17A0.52440.24560.29640.041*
H17B0.56260.11760.26400.041*
C180.3708 (4)0.1952 (4)0.24542 (12)0.0335 (8)
H18A0.31440.15240.27150.040*
H18B0.33280.28390.23890.040*
C190.2322 (3)0.0975 (4)0.17908 (12)0.0315 (7)
H19A0.19520.18150.16610.038*
H19B0.16900.06360.20490.038*
C200.2481 (3)0.0027 (4)0.13669 (12)0.0320 (8)
H20A0.29570.08240.14890.038*
H20B0.15700.02880.12380.038*
C210.8195 (5)0.0997 (5)0.1091 (2)0.0670 (14)
H21A0.89540.11620.13280.080*
H21B0.82420.16500.08180.080*
C220.8257 (5)0.0415 (6)0.0885 (2)0.0809 (16)
H22A0.79010.04540.05400.097*
H22B0.92070.07560.08900.097*
C230.7338 (5)0.1192 (5)0.1243 (2)0.0793 (15)
H23A0.66020.16510.10580.095*
H23B0.78800.18510.14300.095*
C240.6735 (5)0.0167 (4)0.1596 (2)0.0618 (13)
H24A0.57580.03570.16660.074*
H24B0.72440.01520.19160.074*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
K10.0320 (4)0.0308 (3)0.0258 (3)0.0017 (3)0.0015 (3)0.0012 (3)
B10.036 (2)0.036 (2)0.034 (2)0.0040 (17)0.0013 (18)0.0024 (18)
O10.0369 (12)0.0290 (11)0.0252 (12)0.0062 (10)0.0038 (10)0.0001 (10)
O20.0381 (12)0.0271 (11)0.0260 (11)0.0038 (10)0.0029 (10)0.0004 (9)
O30.0383 (12)0.0279 (11)0.0285 (12)0.0048 (10)0.0016 (10)0.0011 (10)
O40.0292 (11)0.0357 (12)0.0235 (12)0.0038 (10)0.0021 (9)0.0017 (10)
O50.0290 (12)0.0365 (12)0.0266 (12)0.0044 (11)0.0007 (9)0.0019 (11)
O60.0289 (12)0.0384 (13)0.0284 (12)0.0058 (11)0.0005 (10)0.0022 (10)
O70.0442 (14)0.0381 (13)0.0496 (16)0.0042 (11)0.0109 (13)0.0008 (13)
C10.0263 (15)0.0312 (17)0.0247 (18)0.0008 (14)0.0049 (14)0.0003 (14)
C20.0289 (16)0.0285 (16)0.0251 (17)0.0023 (14)0.0032 (14)0.0013 (13)
C30.0287 (16)0.0352 (18)0.0287 (17)0.0037 (15)0.0017 (15)0.0027 (14)
C40.0369 (18)0.0343 (18)0.0358 (18)0.0025 (17)0.0024 (17)0.0067 (14)
C50.0392 (18)0.0267 (17)0.039 (2)0.0025 (15)0.0077 (16)0.0000 (15)
C60.0344 (18)0.0314 (17)0.0323 (19)0.0066 (15)0.0082 (15)0.0034 (15)
C70.0419 (18)0.0349 (19)0.0234 (17)0.0043 (15)0.0039 (14)0.0006 (14)
C80.0405 (19)0.0343 (18)0.0250 (18)0.0088 (16)0.0006 (15)0.0048 (15)
C90.0409 (18)0.0243 (16)0.0317 (19)0.0044 (15)0.0040 (15)0.0010 (14)
C100.0358 (18)0.0268 (16)0.037 (2)0.0041 (16)0.0092 (16)0.0009 (15)
C110.0289 (17)0.0301 (16)0.0299 (18)0.0034 (15)0.0016 (14)0.0045 (15)
C120.0271 (16)0.0269 (17)0.0327 (18)0.0015 (14)0.0013 (14)0.0068 (15)
C130.0381 (19)0.0297 (17)0.0294 (18)0.0046 (15)0.0006 (15)0.0024 (14)
C140.041 (2)0.0362 (18)0.040 (2)0.0077 (17)0.0070 (15)0.0036 (18)
C150.0291 (17)0.0405 (19)0.044 (2)0.0048 (16)0.0024 (17)0.0071 (16)
C160.0328 (18)0.0328 (18)0.0336 (19)0.0007 (15)0.0049 (14)0.0050 (15)
C170.0403 (18)0.0375 (17)0.0239 (16)0.0060 (18)0.0032 (15)0.0017 (14)
C180.0404 (18)0.041 (2)0.0190 (16)0.0046 (17)0.0045 (14)0.0022 (15)
C190.0289 (16)0.0399 (19)0.0258 (17)0.0045 (16)0.0024 (13)0.0004 (15)
C200.0338 (17)0.0400 (19)0.0222 (18)0.0089 (15)0.0008 (15)0.0054 (15)
C210.049 (2)0.069 (3)0.083 (3)0.014 (2)0.025 (2)0.024 (3)
C220.059 (2)0.115 (4)0.068 (3)0.035 (3)0.013 (2)0.039 (3)
C230.066 (3)0.047 (2)0.125 (4)0.007 (2)0.035 (3)0.011 (3)
C240.050 (2)0.057 (3)0.079 (4)0.005 (2)0.007 (2)0.028 (2)
Geometric parameters (Å, º) top
K1—O12.829 (2)C7—H7A0.9700
K1—O22.823 (2)C7—H7B0.9700
K1—O32.786 (2)C8—H8A0.9700
K1—O42.812 (2)C8—H8B0.9700
K1—O52.801 (2)C9—C101.503 (5)
K1—O62.787 (2)C9—H9A0.9700
K1—O72.686 (3)C9—H9B0.9700
K1—B12.993 (4)C10—H10A0.9700
K1—H12.9331C10—H10B0.9700
K1—H22.7566C11—C161.381 (5)
K1—H32.7899C11—C121.405 (5)
B1—H11.1501C12—C131.383 (5)
B1—H21.1501C13—C141.399 (5)
B1—H31.1499C13—H130.9300
B1—H41.1501C14—C151.383 (5)
O1—C11.379 (4)C14—H140.9300
O1—C201.441 (4)C15—C161.387 (5)
O2—C21.376 (4)C15—H150.9300
O2—C71.437 (4)C16—H160.9300
O3—C81.424 (4)C17—C181.499 (5)
O3—C91.431 (4)C17—H17A0.9700
O4—C111.384 (4)C17—H17B0.9700
O4—C101.446 (4)C18—H18A0.9700
O5—C121.380 (4)C18—H18B0.9700
O5—C171.438 (4)C19—C201.504 (5)
O6—C181.427 (4)C19—H19A0.9700
O6—C191.432 (4)C19—H19B0.9700
O7—C241.390 (5)C20—H20A0.9700
O7—C211.424 (5)C20—H20B0.9700
C1—C61.390 (4)C21—C221.508 (7)
C1—C21.411 (5)C21—H21A0.9700
C2—C31.381 (5)C21—H21B0.9700
C3—C41.400 (4)C22—C231.503 (7)
C3—H3A0.9300C22—H22A0.9700
C4—C51.392 (5)C22—H22B0.9700
C4—H4A0.9300C23—C241.496 (7)
C5—C61.386 (5)C23—H23A0.9700
C5—H50.9300C23—H23B0.9700
C6—H60.9300C24—H24A0.9700
C7—C81.502 (5)C24—H24B0.9700
O7—K1—O379.64 (7)O3—C9—C10106.7 (3)
O7—K1—O679.57 (7)O3—C9—H9A110.4
O3—K1—O6159.06 (7)C10—C9—H9A110.4
O7—K1—O570.75 (8)O3—C9—H9B110.4
O3—K1—O5114.18 (7)C10—C9—H9B110.4
O6—K1—O560.47 (6)H9A—C9—H9B108.6
O7—K1—O475.06 (7)O4—C10—C9107.7 (3)
O3—K1—O460.55 (6)O4—C10—H10A110.2
O6—K1—O4115.79 (6)C9—C10—H10A110.2
O5—K1—O455.62 (6)O4—C10—H10B110.2
O7—K1—O277.35 (7)C9—C10—H10B110.2
O3—K1—O260.17 (6)H10A—C10—H10B108.5
O6—K1—O2112.39 (7)C16—C11—O4124.0 (3)
O5—K1—O2148.05 (7)C16—C11—C12120.1 (3)
O4—K1—O2117.68 (7)O4—C11—C12115.8 (3)
O7—K1—O181.33 (7)O5—C12—C13123.9 (3)
O3—K1—O1114.47 (6)O5—C12—C11116.2 (3)
O6—K1—O159.59 (6)C13—C12—C11119.9 (3)
O5—K1—O1117.02 (7)C12—C13—C14119.6 (3)
O4—K1—O1156.37 (7)C12—C13—H13120.2
O2—K1—O154.59 (6)C14—C13—H13120.2
H1—B1—H2109.5C15—C14—C13120.0 (3)
H1—B1—H3109.5C15—C14—H14120.0
H2—B1—H3109.5C13—C14—H14120.0
H1—B1—H4109.5C14—C15—C16120.5 (3)
H2—B1—H4109.5C14—C15—H15119.7
H3—B1—H4109.5C16—C15—H15119.7
C1—O1—C20116.4 (2)C11—C16—C15119.7 (3)
C1—O1—K1118.93 (18)C11—C16—H16120.1
C20—O1—K1115.21 (18)C15—C16—H16120.1
C2—O2—C7116.6 (2)O5—C17—C18106.7 (3)
C2—O2—K1119.58 (18)O5—C17—H17A110.4
C7—O2—K1115.59 (17)C18—C17—H17A110.4
C8—O3—C9113.8 (3)O5—C17—H17B110.4
C8—O3—K1103.14 (17)C18—C17—H17B110.4
C9—O3—K1100.50 (18)H17A—C17—H17B108.6
C11—O4—C10116.2 (2)O6—C18—C17107.6 (3)
C11—O4—K1120.03 (18)O6—C18—H18A110.2
C10—O4—K1114.73 (18)C17—C18—H18A110.2
C12—O5—C17116.4 (2)O6—C18—H18B110.2
C12—O5—K1119.51 (18)C17—C18—H18B110.2
C17—O5—K1116.33 (17)H18A—C18—H18B108.5
C18—O6—C19113.9 (2)O6—C19—C20106.3 (3)
C18—O6—K1103.64 (17)O6—C19—H19A110.5
C19—O6—K1100.34 (18)C20—C19—H19A110.5
C24—O7—C21106.1 (3)O6—C19—H19B110.5
C24—O7—K1123.8 (2)C20—C19—H19B110.5
C21—O7—K1129.6 (2)H19A—C19—H19B108.7
O1—C1—C6124.6 (3)O1—C20—C19107.6 (3)
O1—C1—C2116.0 (3)O1—C20—H20A110.2
C6—C1—C2119.4 (3)C19—C20—H20A110.2
O2—C2—C3124.7 (3)O1—C20—H20B110.2
O2—C2—C1114.7 (3)C19—C20—H20B110.2
C3—C2—C1120.6 (3)H20A—C20—H20B108.5
C2—C3—C4119.6 (3)O7—C21—C22103.6 (4)
C2—C3—H3A120.2O7—C21—H21A111.0
C4—C3—H3A120.2C22—C21—H21A111.0
C5—C4—C3119.8 (3)O7—C21—H21B111.0
C5—C4—H4A120.1C22—C21—H21B111.0
C3—C4—H4A120.1H21A—C21—H21B109.0
C6—C5—C4120.7 (3)C23—C22—C21103.5 (4)
C6—C5—H5119.7C23—C22—H22A111.1
C4—C5—H5119.7C21—C22—H22A111.1
C5—C6—C1119.9 (3)C23—C22—H22B111.1
C5—C6—H6120.0C21—C22—H22B111.1
C1—C6—H6120.0H22A—C22—H22B109.0
O2—C7—C8107.5 (3)C24—C23—C22105.2 (4)
O2—C7—H7A110.2C24—C23—H23A110.7
C8—C7—H7A110.2C22—C23—H23A110.7
O2—C7—H7B110.2C24—C23—H23B110.7
C8—C7—H7B110.2C22—C23—H23B110.7
H7A—C7—H7B108.5H23A—C23—H23B108.8
O3—C8—C7107.1 (3)O7—C24—C23105.0 (4)
O3—C8—H8A110.3O7—C24—H24A110.7
C7—C8—H8A110.3C23—C24—H24A110.7
O3—C8—H8B110.3O7—C24—H24B110.7
C7—C8—H8B110.3C23—C24—H24B110.7
H8A—C8—H8B108.5H24A—C24—H24B108.8

Experimental details

(I)(II)
Crystal data
Chemical formula[K(BH4)(C12H24O6)][K(BH4)(C4H8O)(C20H24O6)]
Mr318.25486.44
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)100100
a, b, c (Å)8.2049 (5), 11.9741 (8), 17.9611 (12)9.5611 (4), 9.9657 (5), 26.2779 (15)
V3)1764.6 (2)2503.8 (2)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.320.25
Crystal size (mm)0.30 × 0.30 × 0.250.22 × 0.22 × 0.10
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
11824, 3290, 2858 42072, 4737, 3880
Rint0.0530.060
(sin θ/λ)max1)0.6090.610
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.035, 0.083, 1.03 0.048, 0.129, 1.02
No. of reflections32904737
No. of parameters181298
No. of restraints012
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.15, 0.140.37, 0.25
Absolute structureFlack (1983), with how many Friedel pairsFlack (1983), with how many Friedel pairs
Absolute structure parameter0.03 (4)0.08 (6)

Computer programs: COLLECT (Nonius, 1998), HKL-2000 (Otwinowski & Minor, 1997), HKL-2000, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1999), SHELXTL and PLATON (Spek, 2003).

Selected bond lengths (Å) for (I) top
K1—O12.8023 (16)K1—O42.8911 (17)
K1—O22.9135 (16)K1—O52.8584 (18)
K1—O32.7532 (17)K1—O62.8797 (17)
Selected bond lengths (Å) for (II) top
K1—O12.829 (2)K1—O52.801 (2)
K1—O22.823 (2)K1—O62.787 (2)
K1—O32.786 (2)K1—O72.686 (3)
K1—O42.812 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds