Download citation
Download citation
link to html
L-Histidinium dihydrogen arsenate orthoarsenic acid (LHAS) crystals were grown by the slow evaporation method. Single-crystal X-ray diffraction confirms monoclinic structure. The growth rates of various planes of LHAS crystals were estimated by morphological study. Hirshfeld surface and fingerprint plots were analyzed to investigate the intermolecular interactions at 0.002 a.u. present in the crystal structure. The functional groups and phase behavior of the compound are studied by FTIR spectroscopy and differential scanning calorimetry (DSC). A ferroelectric to paraelectric phase transition at 307 K was observed in dielectric studies. The piezoelectric charge coefficients of the grown crystal were found to be 2 pC/N. The values of coercive field (Ec), remnant polarization (Pr) and spontaneous polarization (Ps) in the hysteresis loop are found to be 5.236 kV cm−1, 0.654 µC cm−2 and 2.841 µC cm−2, respectively. Piezoelectricity and ferroelectricity are reported for the first time in LHAS crystals. The mechanical strength was confirmed from microhardness study and void volume. Due to the low value of the dielectric constant, and good piezoelectric and ferroelectric properties, LHAS crystals can be used in microelectronics, sensors and advanced electronic devices.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S2052520616007629/gw5042sup1.cif
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S2052520616007629/gw5042Isup2.hkl
Contains datablock I

CCDC reference: 1478587

Computing details top

Program(s) used to refine structure: SHELXL2013 (Sheldrick, 2013).

(I) top
Crystal data top
C6H10N3O2·AsH3O4·AsH2O4F(000) = 436
Mr = 439.05Dx = 2.123 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
a = 9.2196 (6) ÅCell parameters from 2792 reflections
b = 8.9077 (6) Åθ = 3.3–29.1°
c = 8.8300 (6) ŵ = 4.92 mm1
β = 108.690 (7)°T = 303 K
V = 686.93 (8) Å3Prism
Z = 20.5 × 0.25 × 0.25 mm
Data collection top
Xcalibur, Sapphire3
diffractometer
2706 reflections with I > 2σ(I)
ω scansRint = 0.062
Absorption correction: multi-scan
CrysAlisPro Agilent Technologies
θmax = 30.0°, θmin = 3.3°
Tmin = 0.238, Tmax = 0.292h = 1111
5060 measured reflectionsk = 1211
3979 independent reflectionsl = 1012
Refinement top
Refinement on F2H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.144P)2]
where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.069(Δ/σ)max = 0.005
wR(F2) = 0.203Δρmax = 0.24 e Å3
S = 1.12Δρmin = 0.50 e Å3
2819 reflectionsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
191 parametersExtinction coefficient: 0.32 (3)
1 restraintAbsolute structure: Flack x determined using 1009 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons and Flack (2004), Acta Cryst. A60, s61).
Hydrogen site location: inferred from neighbouring sitesAbsolute structure parameter: 0.04 (3)
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O80.6583 (10)0.1581 (13)0.6293 (11)0.030 (2)
H80.69680.22870.59640.039*
O70.4163 (13)0.3328 (13)0.6255 (12)0.036 (3)
H70.32310.34240.59980.054*
O40.8156 (10)0.3251 (13)0.5050 (11)0.0281 (19)
O50.3931 (10)0.1644 (14)0.3653 (9)0.0254 (19)
O60.4048 (12)0.0218 (14)0.6397 (11)0.034 (3)
H60.31120.01950.61470.051*
O21.0800 (13)0.1467 (15)0.5549 (18)0.055 (4)
H111.11240.14300.60180.082*
O31.0292 (13)0.3048 (17)0.7882 (12)0.042 (3)
H100.99050.29840.83930.064*
O11.1233 (11)0.4477 (12)0.5655 (11)0.027 (2)
C20.9725 (15)0.1868 (16)1.1331 (13)0.023 (3)
H20.97040.08261.12730.028*
C10.8464 (14)0.2798 (12)1.0775 (12)0.016 (2)
N20.9071 (12)0.4246 (12)1.1183 (11)0.020 (2)
H2A0.85420.50611.09990.023*
N11.1042 (15)0.2744 (14)1.1996 (13)0.028 (3)
H11.19640.24181.23900.033*
C50.6757 (14)0.2520 (13)0.9951 (12)0.017 (2)
H5A0.66450.15430.94410.021*
H5B0.63910.32610.91100.021*
C40.5691 (14)0.2565 (12)1.0996 (11)0.016 (2)
H40.58680.35051.16050.019*
C31.0599 (16)0.4175 (17)1.1905 (14)0.026 (3)
H31.12410.49931.22790.031*
O90.3260 (12)0.3582 (10)0.9401 (11)0.028 (2)
H90.23550.33890.89410.042*
O100.3326 (13)0.1158 (11)1.0025 (13)0.033 (2)
N30.6140 (12)0.1309 (12)1.2111 (11)0.024 (2)
H3A0.68740.07251.20840.023*
H3B0.56700.11521.27940.023*
C60.3938 (15)0.2416 (15)1.0061 (14)0.019 (2)
As10.45832 (13)0.17047 (11)0.55164 (11)0.0172 (4)
As21.00811 (13)0.31294 (13)0.60006 (13)0.0189 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O80.011 (4)0.045 (5)0.030 (4)0.003 (4)0.002 (3)0.014 (4)
O70.023 (6)0.050 (7)0.032 (5)0.006 (5)0.005 (4)0.016 (5)
O40.012 (4)0.045 (5)0.027 (4)0.006 (4)0.006 (3)0.011 (4)
O50.012 (4)0.054 (5)0.007 (3)0.004 (5)0.000 (3)0.000 (4)
O60.017 (6)0.058 (6)0.022 (4)0.004 (5)0.002 (4)0.015 (4)
O20.015 (6)0.047 (7)0.097 (11)0.003 (5)0.001 (6)0.032 (7)
O30.018 (5)0.085 (8)0.019 (4)0.016 (6)0.002 (4)0.019 (5)
O10.008 (5)0.039 (5)0.029 (5)0.008 (4)0.001 (4)0.009 (4)
C20.010 (6)0.040 (7)0.016 (4)0.002 (6)0.001 (4)0.001 (5)
C10.010 (6)0.025 (5)0.009 (4)0.003 (4)0.002 (4)0.003 (3)
N20.006 (5)0.030 (5)0.020 (4)0.003 (4)0.001 (4)0.000 (4)
N10.015 (6)0.045 (7)0.020 (5)0.013 (5)0.001 (4)0.000 (4)
C50.012 (6)0.028 (5)0.009 (4)0.000 (5)0.000 (4)0.002 (4)
C40.016 (7)0.022 (5)0.005 (4)0.003 (5)0.003 (4)0.000 (3)
C30.012 (7)0.042 (7)0.019 (5)0.004 (6)0.004 (4)0.002 (5)
O90.013 (5)0.033 (4)0.027 (5)0.002 (4)0.008 (4)0.009 (3)
O100.021 (6)0.032 (5)0.035 (5)0.007 (4)0.008 (4)0.008 (4)
N30.012 (5)0.036 (6)0.019 (4)0.011 (4)0.001 (3)0.000 (3)
C60.009 (6)0.035 (6)0.014 (5)0.003 (5)0.005 (4)0.002 (4)
As10.0079 (7)0.0316 (7)0.0097 (5)0.0003 (5)0.0005 (4)0.0018 (4)
As20.0069 (7)0.0251 (6)0.0203 (6)0.0008 (5)0.0018 (5)0.0026 (4)
Geometric parameters (Å, º) top
O8—As11.753 (8)C1—N21.407 (15)
O7—As11.682 (11)C1—C51.528 (16)
O4—As21.706 (9)N2—C31.349 (17)
O5—As11.561 (7)N1—C31.33 (2)
O6—As11.687 (11)C5—C41.549 (16)
O2—As21.720 (12)C4—N31.460 (14)
O3—As21.611 (9)C4—C61.567 (17)
O1—As21.694 (9)O9—C61.255 (16)
C2—C11.383 (17)O10—C61.251 (17)
C2—N11.404 (17)
C1—C2—N1109.4 (12)O9—C6—C4116.8 (11)
C2—C1—N2103.8 (10)O5—As1—O7112.3 (6)
C2—C1—C5133.8 (10)O5—As1—O6112.8 (6)
N2—C1—C5122.4 (10)O7—As1—O6111.0 (5)
C3—N2—C1110.3 (11)O5—As1—O8114.3 (4)
C3—N1—C2107.4 (12)O7—As1—O8104.3 (6)
C1—C5—C4117.7 (8)O6—As1—O8101.3 (5)
N3—C4—C5106.5 (10)O3—As2—O1110.0 (6)
N3—C4—C6108.2 (10)O3—As2—O4105.8 (5)
C5—C4—C6115.3 (9)O1—As2—O4118.7 (5)
N1—C3—N2109.1 (12)O3—As2—O2105.8 (8)
O10—C6—O9125.2 (13)O1—As2—O2104.9 (6)
O10—C6—C4118.0 (11)O4—As2—O2111.0 (6)
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds