Download citation
Download citation
link to html
The title compounds, trans-diaqua­bis(nitrato-κO)bis­(pyridine-4-carboxamide-κN1)copper(II), [Cu(NO3)2(C6H6N2O)2(H2O)2], (I), and trans-diaqua­tetra­kis(pyridine-4-carbox­am­ide-κN1)copper(II) bis­(perchlorate), [Cu(C6H6N2O)4(H2O)2](ClO4)2, (II), are composed of mononuclear coordination entities involving CuII ions and isonicotinamide. In (I), the centrosymmetric tetra­gonally distorted octa­hedral copper(II) environment contains trans-related isonicotinamide and water mol­ecules in the equatorial plane and two nitrate ions occupying the axial sites. In (II), the equatorial plane of the C2-symmetric distorted octa­hedron is built up of four isonicotinamide ligands, while water mol­ecules occupy the axial positions. The complex mol­ecules of (I) and (II) are linked into three-dimensional supra­molecular frameworks by O—H...O and N—H...O hydrogen bonds. The nitrate and perchlorate ions are building blocks that disturb the robust R22(8) amide supra­molecular motif commonly found in crystal structures of copper–isonicotinamide complexes.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109031989/gt3009sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109031989/gt3009Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109031989/gt3009IIsup3.hkl
Contains datablock II

CCDC references: 749695; 749696

Comment top

Amides, an essential component of living organisms, have a strong coordinating ability to various transition metal ions (Uçar et al., 2006). Isonicotinamide (pyridine-4-carboxamide, isn), a pyridine derivative with an amide group (–CONH2) in the γ-position, is known as an antitubercular, antipyretic, fibrinolytic and antibacterial medicinal agent (Ahuja & Prasad, 1976; Yurdakul et al., 2003). However, sometimes metal complexes involving a ligand possessing biological activity show enhanced properties, and from that point of view isn is a promising ligand for binding to various metal centres. Interestingly, mixed salts of isn have found extensive use as drugs in many biological and medicinal processes (Murray et al., 1990). Besides its importance in living organisms, isn and its derivatives are also interesting ligands for the construction of sophisticated hybrid organic–inorganic supramolecular networks based on organized strong covalent interactions (Bhogala et al., 2004; Lian et al., 2007; Moncol et al., 2007; Zhao & Mak, 2004) and on weak non-covalent interactions (Aakeröy et al., 2000, 2003; Moncol et al., 2007). Among weak interactions, hydrogen bonding is a general protocol for structure-directing master–key interactions.

The behaviour of pyridinecarboxamides towards biologically relevant d-block metals has been widely investigated. The structures of copper(II) complexes with picolinamide and nicotinamide have been thoroughly discussed (Brown et al., 1971; Batsanov et al., 1986; Emsley et al., 1986; Cantarero et al., 1988; Sieroń & Bukowska-Strżyzewska, 1997, 1998, 1999; Kozlevčar et al., 1999; Cakir et al., 2003; Sieroń, 2004; Uçar et al., 2004; Du et al., 2006; Valigure et al., 2006; Ruan et al., 2007; Moncol et al., 2007). Regarding isn complexes, there are a few interesting reports in the literature for the acetate (Tsintsadze et al., 1985; Zhang et al., 2005), chloroacetate (Aakeröy et al., 2003; Moncol et al., 2007), trichloroacetate (Moncol et al., 2007), formate (Tsintsadze et al., 1986), fluorobenzoate (Aakeröy et al., 2003), squarate (Uçar et al., 2005), benzenedicarboxylate (Li et al., 2005; Zhou, 2007), aspirinate (Ma & Moulton, 2007a), oxalate (Li et al., 2007), hydroxybenzoyloxybenzoate (Ma & Moulton, 2007b) and iodo (Aakeröy et al., 2000) complexes. As part of our ongoing research (Đaković & Popović, 2007;Đaković et al., 2008a,b;Đaković et al., 2008) on heteroleptic pyridinecarboxamide complexes of the late 3d-block metals, the title compounds, (I) and (II), have been synthesised and their crystal structures are reported here.

The crystal structure of (I) consists of neutral [Cu(C6H6N2O)2(H2O)2(NO3)2] molecules with the CuII ions located on a crystallographic inversion centre. The tetragonally distorted octahedral coordination is formed by two trans-related isn ligands and two H2O molecules in the equatorial plane plus two nitrate ions in the axial positions, thus constituting an N2O4 core (Fig. 1). Isn acts as a conventional ligand through the pyridine-ring N atom, while the nitrate ion exhibits its monodentate-O coordination mode, the most frequently observed in nitrate complexes of CuII [Cambridge Structural Database (CSD), Version 5.30 of 2008; Allen, 2002].

Isonicotinamide, possessing three potential donor sites, can adopt diverse coordination modes. However, due to the carboxamide group in the p-position, in most of its complexes isn is only a monodentate ligand, coordinated to the metal centre through the pyridine-ring N atom. According to the CSD, there are just five isn complexes (out of 73) where a different coordination mode is observed. In four of these, one copper(II) (Moncol et al., 2007) and three silver(I) (Zhao & Mak, 2004; Lian et al., 2007; Bhogala et al., 2004), isn bridges two metal ions over the pyridine-ring N and carboxamide O atoms, exhibiting its µ2-isn-N,O bridging function, while the monodentate isn-O coordination is found in only one structurally characterized complex, [Ca(H2O)4(isn-O)2]Cl2 (Cole & Holt, 1989).

In complex (I), the Cu1—O3 bond is significantly longer than the Cu1—O2 bond, regardless of the negative charge on the NO3- ligand (Table 1), but it still falls within the range of 2.2–2.9 Å known for axial Cu—O bond lengths (Wells, 1975). A search of the CSD revealed 31 crystal structures of six coordinated copper complexes simultaneously having H2O and NO3- in the coordination environment, and in the majority of these the O atoms of the H2O molecules and NO3- ions occupy equatorial and axial sites, respectively, as is the case in (I). Furthermore, the same feature is also observed for some other coordinated oxoanions, e.g. SO42-, PO43- and ClO4- (Cordes et al., 2006; Manna et al., 2007; Youngme et al., 2005). Interestingly, when the oxoanions are replaced by carboxylate or squarate ligands, the reverse positions of the ligands are mostly observed, i.e. O atoms from H2O molecules occupy the expected axial sites. Although, according to the Cu—O bond length, the nitrate ion is considered to be covalently bound, the presence of a strong absorption band in the IR spectrum at 1384 cm-1, and the absence of absorption in the regions 1540–1480 and 1290–1250 cm-1, suggest the presence of a free nitrate anion in (I) (Nakamoto, 1997).

In (I), the Cu1—N1 bond is somewhat shorter than in most isn copper(II) complexes with a distorted octahedral coordination of the CuII ion, regardless of the coordination mode of isn {2.046 (6) Å in [Cu(isn-N)2(CH3COO)2(H2O)2] (Tsintsadze et al., 1985); 2.034 (7) Å in [Cu(isn-N)2(HCOO)2(H2O)2] (Tsintsadze et al., 1986); 2.045 (2) Å in [Cu(isn-N)2(H2O)2(C7H4O2F)2] (Aakeröy et al., 2003); 2.003 (1) Å in [Cu(isn-N)2(H2O)2(sq)2].2H2O]n (Uçar et al., 2005)}; 2.015 (4) and 2.014 (4) Å in [Cu(ClCH2CO2)22-isn-N,O)2] (Moncol et al., 2007); 2.006 (2) Å in [Cu(CCl3CO2)22-isn-N,O)2] (Moncol et al., 2007)}. The pyridine ring of the isn ligand forms a dihedral angle of 60.8 (1)° with the equatorial plane of the CuN2O4 octahedron, thus minimizing steric repulsion between the coordinated ligands. The mean plane through the carboxamide group is not coplanar with the mean plane of the pyridine ring, but forms an angle with it of 11 (1)°, probably due to the complex hydrogen-bonding pattern in which the carboxamide group participates.

In complex (II), the substitution of NO3- with ClO4- leads to significant differences in both the molecular and crystal structures. In contrast with (I), the crystal structure of (II) consists of [Cu(isn)4(H2O)2]2+ complex cations, with ClO4- anions as counterions. The coordination CuII is best described as distorted octahedral, with the CuII ion and two O atoms lying on a twofold rotation axis at (1/2, y, 1/4). The coordination is completed by four isn-N ligands lying on a plane perpendicular to the twofold axis (Fig. 2). Each of the two symmetrically related isn ligands is slightly tilted towards the twofold axis, causing a slight tetrahedral distortion of the isn-N ligands around the metal centre. The bond angles around the CuII centre lie within the ranges 85–94 and 170–173° for the formally cis and trans pairs of N-ligating atoms, respectively (Table 3). The Cu—N and Cu—O bond lengths (Table 3) lie within the normal ranges for equatorial Cu—N and axial Cu—O bonds in CuII(isn) complexes, respectively. Interestingly, the two axial Cu—O bonds differ significantly (66σ), and this is the first example where this difference is so pronounced. To date, there are 14 structurally characterized complexes of the [CuII(L)4(H2O)2] type (L = pyridine-like ligand) in the CSD and in six of them a significant difference in axial Cu—O bonds is observed. The greatest difference reported so far was 28σ in the [Cu(py)4(H2O)2]2+ cation (py is pyridine; Holzbock et al., 1997). During the refinement process, it became apparent that the perchlorate ion in (II) was disordered. The disorder in the positions of the perchlorate atoms O5, O6, O7 and O8 (O5A, O6A, O7A and O8A) was resolved and two distinct orientations of the anion were identified.

Although isonicotinamide can be employed as a practical `supramolecular reagent', an effective tool for consistently assembling coordination complexes of CuII with widely differing geometries and ligands (Aakeröy et al., 2000, 2003; Moncol et al., 2007; Ma & Moulton, 2007b; Li et al., 2007), in (I) and (II) isn forms neither self-complementary N—H···O hydrogen bonds to yield head-to-head amide–amide dimers, designated by graph-set motif R22(8) (Bernstein et al., 1995; Etter, 1990), nor catameric-type hydrogen-bonds with a C(4) motif. In (I), the NO3- ions and H2O molecules of two additional neighbouring complex molecules enter the above-mentioned supramolecular synthon and expand the R22(8) ring into a new centrosymmetric hydrogen-bonded R46(14) motif. These rings are further fused by four more centrosymmetrical hydrogen-bond ring motifs, two R24(22) and two R22(18), forming layers in the (001) plane (Fig. 3). These layers are self-assembled into a three-dimensional supramolecular architecture through N—H···O hydrogen bonds involving the amide group and the NO3- ion. Pertinent parameters of the hydrogen-bonding geometry are presented in Table 2. In addition to hydrogen bonds, there is also one weak interaction between the NO3- ion and the π-system of the py ring of two adjacent molecules, which contributes to the overall stability of the crystal structure. The N—H···Cg distance is 3.435 (2) Å (Cg is the centroid of the N1/C1–C5 ring).

In (II), complex cations are linked together through four N—H···O hydrogen bonds to form cationic sheets parallel to the (010) planes (Fig. 4), similar to those described for [Ni(isn)4((H2O)2](ClO4)2.2H2O (Aakeröy et al., 1999). In each of these parallel sheets, two hydrogen-bonding motifs involving amide groups are formed, i.e. R44(16) and R22(28) rings. Neighbouring cationic sheets are arranged in such a way that the CuII centres of each layer sit just above the R44(16) holes of the layer below. Consequently, the H2O molecules coordinated to the CuII ions in the layers above and below the cationic sheets are involved in the constitution of more complicated R34(12) hydrogen-bonding motifs (see second scheme). Interestingly, four rings of this type are fused together, extending the two-dimensional sheets into a three-dimensional hydrogen-bonded network (Fig. 5). The bigger holes in the cationic sheets described by the R22(28) motif are only partially blocked by neighbouring sheets, providing enough space to accomodate the perchlorate ions. The details of the hydrogen-bonding geometry are listed in Table 4.

Experimental top

For the preparation of compound (I), warm aqueous solutions of Cu(NO3)2.3H2O (0.48 g, 2 mmol in 10 ml) and isonicotinamide (0.48 g, 4 mmol in 20 ml) were mixed together and stirred at room temperature. The mother liquor was left to stand and allowed to evaporate slowly for a few days, to give blue crystals of (I) suitable for X-ray analysis (yield 0.72 g, 77%). The crystals detonate without melting when warmed up to 511 K. Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3424 (s), 3185 (m), 1706 (s), 1624 (w), 1611 (m), 1554 (w), 1420 (m), 1384 (vs), 1231 (w), 1064 (w), 1027 (w), 862 (w), 846 (w), 761 (w), 720 (vw), 668 (w), 644 (w), 482 (w).

For the preparation of compound (II), a water solution of NaClO4 (0.28 g, 2 mmol in 10 ml) was added dropwise with stirring to a warm aqueous mixture of Cu(CH3COO)2.H2O (0.20 g, 1 mmol in 10 ml) and isonicotinamide (0.24 g, 2 mmol in 10 ml). The resulting dark-blue solution was left to stand in a quiet place and allowed to evaporate slowly for a few days, to give blue crystals of (II) (yield 0.28 g, 70%). The crystals detonate without melting when warmed up to 534 K. Spectroscopic analysis: IR (KBr pellet, ν, cm-1): 3424 (s), 3326 (s), 3181 (s), 1705 (vs), 1684 (s), 1624 (s), 1612 (s), 1554 (s), 1506 (m), 1491 (w), 1457 (w), 1419 (s), 1394 (s), 1224 (m), 1144 (vs), 1110 (vs), 1087 (vs), 1027 (m), 1002 (m), 941 (w), 862 (w), 847 (m), 760 (m), 668 (w), 636 (s), 627 (s), 551 (m), 482 (m).

IR spectra were recorded as KBr pellets within the range 4000–400 cm-1 using a Perkin–Elmer FT–IR spectrometer 1600 Series. Thermal measurements were performed using a simultaneous TG–DT analyser, Mettler–Toledo TGA/SDTA 850e.

Refinement top

Aromatic H atoms were fixed in geometrically calculated positions and refined using a riding model, with C—H = 0.93 Å and Uiso(H) = 1.2Ueq(C). H atoms on the carboxamide N atom of (I) and water O atoms of (I) and (II) were placed in the positions indicated by difference electron-density maps and their positions were allowed to refine together with individual isotropic displacement parameters. H atoms on the carboxamide N atoms in (II) were constrained to ride on their parent atoms at distances of 0.86 Å. The atoms of the perchlorate anion were located in a difference Fourier map and refined to an ideal tetrahedron [SADI instruction (SHELXL97; Sheldrick, 2008)]. The anisotropic displacement parameters of adjacent atoms were restrained to be similar (SIMU instruction in SHELXL97), and the main directions of movements of covalently bonded atoms were likewise restrained (DELU instruction in SHELXL97) (Müller et al., 2006). The occupancy ratio was refined freely during subsequent anisotropic least-squares refinements.

Computing details top

For both compounds, data collection: CrysAlis PRO (Oxford Diffraction, 2007); cell refinement: CrysAlis PRO (Oxford Diffraction, 2007); data reduction: CrysAlis PRO (Oxford Diffraction, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x + 1, -y + 1, -z + 1.]
[Figure 2] Fig. 2. The molecular structure of (II), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. [Symmetry code: (i) -x + 1, y, -z + 1/2.]
[Figure 3] Fig. 3. The hydrogen-bonded sheet structure of (I), viewed down the c axis. Hydrogen bonds are represented as dashed lines. For details, see Table 2.
[Figure 4] Fig. 4. Projection of the structure of (II) on the (010) plane, showing the two-dimensional cationic sheets generated by the amide N—H···O hydrogen-bonded R44(16) and R22(28) motifs. The perchlorate ions have been omitted for clarity. Hydrogen bonds are represented as dashed lines.
[Figure 5] Fig. 5. A view of the R34(12) hydrogen-bonded motif involved in the connection of the two-dimensional cationic sheets [of (II)?] to form a three-dimensional hydrogen-bonded framework. Aromatic H atoms and some isonicotinamide ligands not involved in the formation of the R34(12) motif have been omitted for clarity. Hydrogen bonds are represented as dashed lines.
(I) trans-Diaquabis(nitrato-κO)bis(pyridine-4-carboxamide- κN1)copper(II) top
Crystal data top
[Cu(NO3)2(C6H6N2O)2(H2O)2]F(000) = 478
Mr = 467.86Dx = 1.788 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 8118 reflections
a = 7.5367 (2) Åθ = 4.0–32.3°
b = 9.8819 (3) ŵ = 1.33 mm1
c = 11.7402 (4) ÅT = 296 K
β = 96.280 (3)°Prism, blue
V = 869.13 (5) Å30.59 × 0.02 × 0.01 mm
Z = 2
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
2536 independent reflections
Radiation source: Enhance (Mo) X-ray Source2188 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.013
Detector resolution: 16.3426 pixels mm-1θmax = 30.0°, θmin = 4.1°
CCD scansh = 1010
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1313
Tmin = 0.874, Tmax = 0.987l = 1615
11568 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.09 w = 1/[σ2(Fo2) + (0.040P)2 + 0.1821P]
where P = (Fo2 + 2Fc2)/3
2536 reflections(Δ/σ)max = 0.002
149 parametersΔρmax = 0.37 e Å3
0 restraintsΔρmin = 0.33 e Å3
Crystal data top
[Cu(NO3)2(C6H6N2O)2(H2O)2]V = 869.13 (5) Å3
Mr = 467.86Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.5367 (2) ŵ = 1.33 mm1
b = 9.8819 (3) ÅT = 296 K
c = 11.7402 (4) Å0.59 × 0.02 × 0.01 mm
β = 96.280 (3)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
2536 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
2188 reflections with I > 2σ(I)
Tmin = 0.874, Tmax = 0.987Rint = 0.013
11568 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.069H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.37 e Å3
2536 reflectionsΔρmin = 0.33 e Å3
149 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.500000.500000.500000.0233 (1)
O10.30452 (15)0.16759 (9)0.62031 (9)0.0368 (3)
O20.36171 (13)0.56244 (10)0.62446 (8)0.0269 (3)
O30.22364 (14)0.55983 (12)0.37130 (11)0.0443 (3)
O40.03110 (19)0.43502 (14)0.27264 (12)0.0600 (5)
O50.05722 (18)0.59372 (12)0.37737 (16)0.0637 (5)
N10.40841 (14)0.31276 (10)0.51679 (9)0.0236 (3)
N20.13123 (18)0.15006 (13)0.45228 (13)0.0383 (4)
N30.06714 (16)0.52869 (12)0.34056 (11)0.0320 (3)
C10.31556 (17)0.25377 (13)0.42638 (11)0.0273 (3)
C20.25586 (18)0.12175 (13)0.42877 (11)0.0282 (3)
C30.29348 (15)0.04659 (12)0.52803 (11)0.0231 (3)
C40.38775 (17)0.10782 (12)0.62195 (11)0.0262 (3)
C50.44300 (18)0.24101 (12)0.61363 (11)0.0268 (3)
C60.24200 (16)0.10063 (12)0.53697 (12)0.0265 (3)
H10.290300.303600.359400.0330*
H20.191300.083900.364600.0340*
H40.413800.060100.690000.0310*
H50.505900.281800.677100.0320*
H12N0.097 (3)0.231 (3)0.451 (2)0.067 (7)*
H12O0.339 (3)0.642 (2)0.6212 (16)0.043 (5)*
H22N0.097 (3)0.105 (2)0.3935 (18)0.045 (5)*
H22O0.282 (3)0.520 (2)0.629 (2)0.047 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0290 (1)0.0146 (1)0.0270 (1)0.0048 (1)0.0059 (1)0.0009 (1)
O10.0531 (6)0.0188 (4)0.0381 (5)0.0019 (4)0.0026 (5)0.0038 (4)
O20.0301 (5)0.0202 (4)0.0311 (5)0.0026 (4)0.0067 (4)0.0007 (3)
O30.0327 (5)0.0393 (6)0.0574 (7)0.0058 (5)0.0106 (5)0.0076 (5)
O40.0632 (8)0.0490 (8)0.0614 (8)0.0062 (6)0.0222 (7)0.0251 (6)
O50.0440 (6)0.0369 (6)0.1156 (13)0.0083 (5)0.0332 (7)0.0211 (7)
N10.0271 (5)0.0162 (4)0.0279 (5)0.0038 (4)0.0044 (4)0.0003 (3)
N20.0407 (7)0.0200 (5)0.0515 (8)0.0088 (5)0.0074 (6)0.0002 (5)
N30.0312 (6)0.0277 (5)0.0360 (6)0.0016 (4)0.0017 (5)0.0001 (4)
C10.0316 (6)0.0210 (5)0.0283 (6)0.0035 (4)0.0010 (5)0.0036 (4)
C20.0310 (6)0.0217 (5)0.0304 (6)0.0053 (5)0.0036 (5)0.0004 (4)
C30.0217 (5)0.0163 (5)0.0319 (6)0.0016 (4)0.0051 (4)0.0000 (4)
C40.0324 (6)0.0202 (5)0.0259 (6)0.0014 (5)0.0032 (5)0.0024 (4)
C50.0329 (6)0.0213 (5)0.0258 (6)0.0047 (5)0.0017 (5)0.0022 (4)
C60.0268 (6)0.0176 (5)0.0360 (6)0.0015 (4)0.0075 (5)0.0014 (4)
Geometric parameters (Å, º) top
Cu1—O21.984 (1)N1—C51.341 (2)
Cu1—O32.507 (1)N2—C61.320 (2)
Cu1—N11.992 (1)N2—H22N0.84 (2)
Cu1—O2i1.984 (1)N2—H12N0.84 (3)
Cu1—O3i2.507 (1)C1—C21.3813 (18)
Cu1—N1i1.992 (1)C2—C31.3848 (18)
O1—C61.231 (2)C3—C61.5123 (17)
O3—N31.234 (2)C3—C41.3840 (18)
O4—N31.233 (2)C4—C51.3871 (17)
O5—N31.252 (2)C1—H10.9300
O2—H12O0.81 (2)C2—H20.9300
O2—H22O0.74 (2)C4—H40.9300
N1—C11.339 (2)C5—H50.9300
Cu1···O1ii3.9257 (10)N2···C2xii3.3810 (19)
Cu1···O5iii3.8882 (14)N2···O4xiii2.910 (2)
Cu1···O1iv3.9257 (10)N3···C13.3895 (18)
Cu1···O5v3.8882 (14)N1···H22O2.67 (2)
Cu1···H4vi3.6700N1···H12Oi2.67 (2)
Cu1···H4vii3.6700N2···H22.5900
O1···Cu1viii3.9257 (10)N3···H12.7800
O1···O2viii2.7020 (13)N3···H12Nii2.70 (3)
O1···Cu1iv3.9257 (10)N3···H22Ov2.74 (2)
O1···N1iv3.1767 (15)C1···O43.1962 (19)
O1···C1iv3.0932 (17)C1···N33.3895 (18)
O2···O33.0398 (16)C1···O1iv3.0932 (17)
O2···N12.8119 (14)C2···N2xii3.3810 (19)
O2···C53.2400 (16)C3···N2xii3.3921 (18)
O2···O1ii2.7020 (13)C3···C3iv3.3793 (16)
O2···C1i3.1446 (16)C3···C4iv3.4822 (17)
O2···O5v2.7636 (16)C4···C3iv3.4822 (17)
O2···C4vi3.3765 (16)C4···C6iv3.5230 (18)
O2···N1i2.8109 (14)C4···O2xi3.3765 (16)
O3···N13.2090 (16)C4···O4xiv3.4021 (19)
O3···C13.1540 (18)C5···C6iv3.4066 (18)
O3···N2ii3.1229 (18)C5···O5v3.3465 (19)
O3···O23.0398 (16)C6···C5iv3.4066 (18)
O3···C5i3.1812 (17)C6···C4iv3.5230 (18)
O3···N1i3.1945 (15)C1···H12Oi2.91 (2)
O4···C4vii3.4021 (19)C2···H22N2.55 (2)
O4···C13.1962 (19)C4···H1xiv3.0900
O4···N2ix2.910 (2)C5···H22O3.03 (2)
O5···N2ii2.9880 (19)C6···H12Oviii2.80 (2)
O5···Cu1v3.8882 (14)H1···O32.5900
O5···N1v3.1817 (18)H1···O42.4700
O5···C5v3.3465 (19)H1···N32.7800
O5···Cu1x3.8882 (14)H1···C4vii3.0900
O5···O2v2.7636 (16)H2···N22.5900
O1···H12Oviii1.90 (2)H2···H22N2.0400
O1···H5xi2.6800H2···O4xiii2.6400
O1···H42.5000H2···O5xiii2.9100
O2···H4vi2.6100H4···O12.5000
O3···H12.5900H4···Cu1xi3.6700
O3···H5i2.6800H4···O2xi2.6100
O3···H12Nii2.50 (3)H4···Cu1xiv3.6700
O4···H2ix2.6400H5···O1vi2.6800
O4···H22Ov2.77 (2)H5···O3i2.6800
O4···H12.4700H12N···O3viii2.50 (3)
O4···H22Nix2.12 (2)H12N···O5viii2.21 (3)
O5···H12Nii2.21 (3)H12N···N3viii2.70 (3)
O5···H2ix2.9100H12O···O1ii1.90 (2)
O5···H22Ov2.03 (2)H12O···C6ii2.80 (2)
N1···O22.8119 (14)H12O···C1i2.91 (2)
N1···O33.2090 (16)H22N···C22.55 (2)
N1···O3i3.1945 (15)H22N···H22.0400
N1···O1iv3.1767 (15)H22N···O4xiii2.12 (2)
N1···O2i2.8109 (14)H22O···C53.03 (2)
N1···O5v3.1817 (18)H22O···O4v2.77 (2)
N2···O5viii2.9880 (19)H22O···O5v2.03 (2)
N2···C3xii3.3921 (18)H22O···N3v2.74 (2)
N2···O3viii3.1229 (18)
O2—Cu1—O384.36 (4)O3—N3—O5119.92 (13)
O2—Cu1—N190.02 (4)O3—N3—O4120.82 (13)
O2—Cu1—O2i180.00H12N—N2—H22N115 (2)
O2—Cu1—O3i95.64 (4)C6—N2—H22N122.4 (14)
O2—Cu1—N1i89.98 (4)C6—N2—H12N122.2 (16)
O3—Cu1—N190.27 (4)N1—C1—C2122.56 (12)
O2i—Cu1—O395.64 (4)C1—C2—C3119.11 (12)
O3—Cu1—O3i180.00C2—C3—C4118.42 (11)
O3—Cu1—N1i89.73 (4)C2—C3—C6122.95 (11)
O2i—Cu1—N189.98 (4)C4—C3—C6118.59 (11)
O3i—Cu1—N189.73 (4)C3—C4—C5119.38 (12)
N1—Cu1—N1i180.00N1—C5—C4121.96 (12)
O2i—Cu1—O3i84.36 (4)N2—C6—C3116.72 (12)
O2i—Cu1—N1i90.02 (4)O1—C6—N2123.72 (12)
O3i—Cu1—N1i90.27 (4)O1—C6—C3119.56 (12)
Cu1—O3—N3145.29 (10)N1—C1—H1119.00
H12O—O2—H22O113 (2)C2—C1—H1119.00
Cu1—O2—H12O113.3 (14)C1—C2—H2120.00
Cu1—O2—H22O111.9 (17)C3—C2—H2120.00
Cu1—N1—C1118.85 (8)C3—C4—H4120.00
C1—N1—C5118.56 (11)C5—C4—H4120.00
Cu1—N1—C5122.52 (8)N1—C5—H5119.00
O4—N3—O5119.25 (14)C4—C5—H5119.00
O2—Cu1—O3—N370.56 (17)Cu1—N1—C1—C2176.33 (10)
N1—Cu1—O3—N319.44 (18)C5—N1—C1—C20.68 (19)
O2i—Cu1—O3—N3109.44 (17)Cu1—N1—C5—C4175.96 (10)
N1i—Cu1—O3—N3160.56 (18)C1—N1—C5—C40.93 (19)
O2—Cu1—N1—C1120.76 (10)N1—C1—C2—C30.3 (2)
O2—Cu1—N1—C562.36 (10)C1—C2—C3—C40.93 (19)
O3—Cu1—N1—C136.39 (10)C1—C2—C3—C6176.81 (12)
O3—Cu1—N1—C5146.73 (10)C6—C3—C4—C5177.15 (11)
O2i—Cu1—N1—C159.24 (10)C2—C3—C6—O1167.95 (13)
O2i—Cu1—N1—C5117.64 (10)C2—C3—C6—N211.57 (18)
O3i—Cu1—N1—C1143.61 (10)C4—C3—C6—O19.79 (18)
O3i—Cu1—N1—C533.28 (10)C4—C3—C6—N2170.69 (12)
Cu1—O3—N3—O478.4 (2)C2—C3—C4—C50.69 (18)
Cu1—O3—N3—O5102.54 (19)C3—C4—C5—N10.3 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z; (iii) x+1, y, z; (iv) x+1, y, z+1; (v) x, y+1, z+1; (vi) x+1, y+1/2, z+3/2; (vii) x, y+1/2, z1/2; (viii) x, y1, z; (ix) x, y+1/2, z+1/2; (x) x1, y, z; (xi) x+1, y1/2, z+3/2; (xii) x, y, z+1; (xiii) x, y1/2, z+1/2; (xiv) x, y+1/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O2—H12O···O1ii0.81 (2)1.90 (2)2.702 (1)175 (2)
O2—H22O···O5v0.74 (2)2.03 (2)2.764 (2)174 (2)
N2—H12N···O3viii0.84 (3)2.50 (3)3.123 (2)132 (2)
N2—H22N···O4xiii0.84 (2)2.12 (2)2.910 (2)158 (2)
N2—H12N···O5viii0.84 (3)2.21 (3)2.988 (2)154 (2)
C1—H1···O30.932.593.154 (2)120
C1—H1···O40.932.473.196 (2)135
Symmetry codes: (ii) x, y+1, z; (v) x, y+1, z+1; (viii) x, y1, z; (xiii) x, y1/2, z+1/2.
(II) trans-Diaquatetrakis(pyridine-4-carboxamide-κN1)copper(II) bis(perchlorate) top
Crystal data top
[Cu(C6H6N2O)4(H2O)2](ClO4)2F(000) = 1612
Mr = 786.99Dx = 1.595 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 19308 reflections
a = 18.7783 (3) Åθ = 3.9–32.6°
b = 9.5648 (2) ŵ = 0.91 mm1
c = 18.2630 (2) ÅT = 296 K
β = 92.090 (1)°Block, blue
V = 3278.05 (9) Å30.60 × 0.38 × 0.30 mm
Z = 4
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
3576 independent reflections
Radiation source: Enhance (Mo) X-ray Source3224 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.019
Detector resolution: 16.3426 pixels mm-1θmax = 27.0°, θmin = 3.9°
CCD scansh = 2323
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
k = 1212
Tmin = 0.628, Tmax = 0.761l = 2323
26135 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0447P)2 + 4.2502P]
where P = (Fo2 + 2Fc2)/3
3576 reflections(Δ/σ)max = 0.008
293 parametersΔρmax = 0.55 e Å3
366 restraintsΔρmin = 0.29 e Å3
Crystal data top
[Cu(C6H6N2O)4(H2O)2](ClO4)2V = 3278.05 (9) Å3
Mr = 786.99Z = 4
Monoclinic, C2/cMo Kα radiation
a = 18.7783 (3) ŵ = 0.91 mm1
b = 9.5648 (2) ÅT = 296 K
c = 18.2630 (2) Å0.60 × 0.38 × 0.30 mm
β = 92.090 (1)°
Data collection top
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
3576 independent reflections
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
3224 reflections with I > 2σ(I)
Tmin = 0.628, Tmax = 0.761Rint = 0.019
26135 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.032366 restraints
wR(F2) = 0.089H atoms treated by a mixture of independent and constrained refinement
S = 1.05Δρmax = 0.55 e Å3
3576 reflectionsΔρmin = 0.29 e Å3
293 parameters
Special details top

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating -R-factor-obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cu10.500000.72025 (4)0.250000.0307 (1)
O10.86429 (7)0.59773 (18)0.26184 (8)0.0452 (5)
O20.51757 (8)0.7558 (2)0.13161 (8)0.0496 (5)
O30.500000.9727 (2)0.250000.0425 (7)
O40.500000.4430 (3)0.250000.0521 (8)
N10.60582 (8)0.70161 (17)0.27427 (8)0.0299 (4)
N20.86383 (10)0.7166 (3)0.36739 (12)0.0568 (7)
N30.52221 (8)0.73432 (17)0.14158 (8)0.0304 (4)
N40.62382 (10)0.8543 (2)0.10376 (10)0.0438 (6)
C10.64038 (9)0.7839 (2)0.32302 (10)0.0291 (5)
C20.71289 (9)0.7734 (2)0.33833 (10)0.0292 (5)
C30.75209 (9)0.6763 (2)0.30062 (9)0.0290 (5)
C40.71630 (10)0.5920 (2)0.24991 (12)0.0422 (6)
C50.64385 (10)0.6060 (2)0.23870 (12)0.0415 (6)
C60.83190 (9)0.6607 (2)0.30921 (10)0.0328 (5)
C70.48811 (9)0.6605 (2)0.08878 (10)0.0309 (5)
C80.49993 (10)0.6802 (2)0.01542 (10)0.0309 (5)
C90.54994 (9)0.7774 (2)0.00557 (10)0.0292 (5)
C100.58565 (10)0.8534 (2)0.04902 (10)0.0379 (6)
C110.57035 (10)0.8293 (2)0.12105 (10)0.0376 (6)
C120.56315 (10)0.7950 (2)0.08577 (10)0.0329 (5)
Cl1A0.69927 (19)0.5135 (3)0.49694 (15)0.0479 (6)0.589 (5)
O5A0.6754 (2)0.6556 (4)0.49695 (19)0.0714 (14)0.589 (5)
O6A0.6667 (6)0.4473 (8)0.4366 (4)0.134 (4)0.589 (5)
O7A0.6828 (6)0.4541 (8)0.5639 (3)0.165 (4)0.589 (5)
O8A0.7737 (2)0.5235 (8)0.4980 (5)0.125 (3)0.589 (5)
Cl10.7030 (3)0.4756 (4)0.4947 (3)0.0542 (9)0.411 (5)
O50.7303 (3)0.3427 (5)0.5109 (4)0.091 (2)0.411 (5)
O60.6567 (4)0.4681 (9)0.4335 (4)0.076 (3)0.411 (5)
O70.7585 (4)0.5677 (9)0.4841 (6)0.135 (4)0.411 (5)
O80.6623 (4)0.5193 (11)0.5543 (5)0.136 (5)0.411 (5)
H10.614600.850900.347700.0350*
H20.735000.830800.373500.0350*
H40.741200.526000.223500.0510*
H50.620300.547100.205300.0500*
H70.455200.593400.102100.0370*
H80.474500.628400.019800.0370*
H100.619500.919800.037100.0450*
H110.594400.881100.157200.0450*
H120.8414 (15)0.749 (3)0.4032 (13)0.062 (9)*
H130.9083 (10)0.719 (3)0.3694 (16)0.059 (8)*
H140.6587 (12)0.867 (3)0.0738 (13)0.057 (8)*
H150.6328 (14)0.859 (3)0.1499 (10)0.050 (7)*
H160.5343 (14)1.023 (3)0.2425 (15)0.056 (8)*
H170.4964 (18)0.386 (3)0.2185 (16)0.068 (10)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0159 (2)0.0548 (2)0.0214 (2)0.00000.0008 (1)0.0000
O10.0237 (6)0.0748 (11)0.0372 (7)0.0145 (7)0.0033 (5)0.0045 (7)
O20.0327 (7)0.0882 (12)0.0275 (7)0.0070 (7)0.0030 (6)0.0042 (7)
O30.0274 (10)0.0391 (11)0.0618 (14)0.00000.0113 (9)0.0000
O40.0618 (15)0.0460 (13)0.0479 (14)0.00000.0062 (11)0.0000
N10.0192 (7)0.0428 (9)0.0278 (7)0.0023 (6)0.0005 (5)0.0054 (6)
N20.0214 (8)0.0962 (17)0.0522 (12)0.0086 (10)0.0067 (8)0.0245 (11)
N30.0222 (7)0.0445 (9)0.0245 (7)0.0054 (6)0.0020 (5)0.0031 (6)
N40.0368 (9)0.0684 (13)0.0264 (8)0.0108 (9)0.0033 (7)0.0064 (8)
C10.0241 (8)0.0358 (9)0.0276 (8)0.0033 (7)0.0026 (6)0.0045 (7)
C20.0237 (8)0.0364 (9)0.0275 (8)0.0021 (7)0.0008 (6)0.0038 (7)
C30.0203 (8)0.0396 (10)0.0270 (8)0.0027 (7)0.0009 (6)0.0009 (7)
C40.0267 (9)0.0538 (13)0.0461 (11)0.0090 (8)0.0006 (8)0.0215 (10)
C50.0273 (9)0.0534 (12)0.0434 (11)0.0022 (8)0.0029 (8)0.0222 (10)
C60.0218 (8)0.0449 (11)0.0316 (9)0.0045 (7)0.0007 (7)0.0043 (8)
C70.0251 (8)0.0367 (10)0.0309 (9)0.0070 (7)0.0016 (7)0.0014 (7)
C80.0271 (8)0.0379 (10)0.0276 (8)0.0053 (7)0.0021 (7)0.0054 (7)
C90.0234 (8)0.0391 (10)0.0252 (8)0.0005 (7)0.0014 (6)0.0005 (7)
C100.0326 (9)0.0500 (12)0.0313 (9)0.0170 (9)0.0058 (7)0.0044 (8)
C110.0307 (9)0.0533 (12)0.0290 (9)0.0157 (8)0.0023 (7)0.0095 (8)
C120.0279 (9)0.0451 (11)0.0256 (8)0.0026 (8)0.0003 (7)0.0005 (7)
Cl1A0.0546 (9)0.0447 (14)0.0437 (8)0.0106 (9)0.0088 (6)0.0037 (8)
O5A0.087 (3)0.067 (2)0.060 (2)0.0211 (19)0.0012 (18)0.0098 (17)
O6A0.210 (8)0.096 (5)0.092 (5)0.020 (5)0.066 (5)0.036 (4)
O7A0.297 (11)0.136 (6)0.060 (3)0.091 (6)0.006 (5)0.041 (4)
O8A0.043 (2)0.170 (6)0.160 (6)0.043 (3)0.005 (3)0.030 (5)
Cl10.0466 (11)0.0420 (19)0.0734 (16)0.0042 (12)0.0078 (9)0.0150 (13)
O50.083 (4)0.071 (3)0.117 (5)0.022 (3)0.034 (3)0.014 (3)
O60.051 (3)0.085 (5)0.089 (5)0.009 (3)0.028 (3)0.012 (4)
O70.074 (5)0.162 (9)0.167 (8)0.055 (6)0.039 (5)0.082 (7)
O80.086 (5)0.193 (11)0.132 (8)0.002 (6)0.042 (5)0.089 (8)
Geometric parameters (Å, º) top
Cu1—O32.415 (2)N3—C111.345 (2)
Cu1—O42.652 (3)N4—C121.325 (3)
Cu1—N12.0280 (15)N2—H130.835 (19)
Cu1—N32.0428 (15)N2—H120.85 (3)
Cu1—N1i2.0280 (15)N4—H150.867 (19)
Cu1—N3i2.0428 (15)N4—H140.85 (2)
Cl1—O51.398 (7)C1—C21.384 (2)
Cl1—O61.393 (9)C2—C31.384 (3)
Cl1—O71.384 (9)C3—C41.384 (3)
Cl1—O81.416 (10)C3—C61.509 (2)
Cl1A—O6A1.393 (9)C4—C51.375 (3)
Cl1A—O7A1.393 (7)C7—C81.379 (3)
Cl1A—O8A1.400 (5)C8—C91.385 (3)
Cl1A—O5A1.431 (5)C9—C101.387 (3)
O1—C61.233 (2)C9—C121.504 (3)
O2—C121.234 (2)C10—C111.376 (3)
O3—H16i0.82 (3)C1—H10.9300
O3—H160.82 (3)C2—H20.9300
O4—H170.79 (3)C4—H40.9300
O4—H17i0.79 (3)C5—H50.9300
N1—C11.338 (2)C7—H70.9300
N1—C51.342 (3)C8—H80.9300
N2—C61.315 (3)C10—H100.9300
N3—C71.339 (2)C11—H110.9300
Cu1···O42.652 (3)N4···O1vi2.940 (2)
Cl1···O5ii3.295 (6)N4···O6Aix3.077 (8)
Cl1···H14iii3.10 (2)N1···H112.7400
Cl1A···H12iv3.03 (3)N1···H7i2.7700
Cl1A···H2iv3.0200N2···H22.6600
O1···O3iii2.8305 (16)N3···H52.7900
O1···O3v2.8305 (16)N3···H1i2.8100
O1···N4vi2.940 (2)N4···H102.6500
O1···C1iii3.378 (3)C1···O1xi3.378 (3)
O2···N2vii2.898 (2)C1···C7i3.177 (2)
O2···O4viii2.889 (3)C2···O5A3.210 (4)
O2···O4ix2.889 (3)C2···O73.395 (10)
O3···C113.066 (2)C5···O7Aix3.351 (6)
O3···O1x2.8305 (16)C5···C113.297 (3)
O3···N33.058 (2)C7···C1i3.177 (2)
O3···O1xi2.8305 (16)C7···O6i3.296 (8)
O3···N3i3.058 (2)C7···O5Ai3.396 (4)
O3···C11i3.066 (2)C8···C8viii3.493 (3)
O4···C53.132 (2)C8···O5Ai3.300 (4)
O4···O2xii2.889 (3)C9···O6Aix3.273 (10)
O4···N1i3.194 (3)C9···O6ix3.307 (8)
O4···O2viii2.889 (3)C10···O8Axi3.244 (6)
O4···N13.194 (3)C10···O5ix3.394 (6)
O4···C5i3.132 (2)C11···C53.297 (3)
O5···O5ii1.968 (7)C12···O6ix3.082 (8)
O5···N4iii3.171 (6)C12···O6Aix3.043 (9)
O5···Cl1ii3.295 (6)C1···H7i2.9300
O5···C10xii3.394 (6)C2···H122.66 (3)
O5A···C23.210 (4)C2···H4xi2.8200
O5A···C8i3.300 (4)C6···H16iii3.02 (3)
O5A···N2iv2.882 (4)C6···H11iii3.0600
O5A···O8Aiv3.215 (8)C6···H15vi3.013 (19)
O5A···C7i3.396 (4)C7···H1i2.9200
O6···C7i3.296 (8)C8···H8viii2.9900
O6···C9xii3.307 (8)C10···H142.68 (2)
O6···C12xii3.082 (8)C11···H162.99 (3)
O6···N4xii3.213 (9)C12···H13vii3.00 (2)
O6A···C12xii3.043 (9)H1···C7i2.9200
O6A···N4xii3.077 (8)H1···N3i2.8100
O6A···C9xii3.273 (10)H2···Cl1Aiv3.0200
O7···C23.395 (10)H2···O5Aiv2.8600
O7A···C5xii3.351 (6)H2···H122.2000
O8···N2iv2.953 (10)H2···N22.6600
O8A···O5Aiv3.215 (8)H2···O7Aiv2.7900
O8A···N4iii3.128 (7)H2···O8Aiv2.7400
O8A···C10iii3.244 (6)H2···O7iv2.7700
O1···H11iii2.6500H2···O8iv2.7100
O1···H16iii2.04 (3)H4···C2iii2.8200
O1···H42.4900H4···O12.4900
O1···H15vi2.089 (19)H5···O42.6300
O2···H13vii2.067 (19)H5···N32.7900
O2···H82.5400H5···O7Aix2.8800
O2···H17viii2.10 (3)H7···O6Ai2.7500
O3···H11i2.6500H7···O6i2.4800
O3···H112.6500H7···C1i2.9300
O4···H5i2.6300H7···N1i2.7700
O4···H52.6300H8···O5Ai2.8700
O5···H14xii2.84 (3)H8···O22.5400
O5···H14iii2.36 (2)H8···O8i2.8200
O5A···H2iv2.8600H8···C8viii2.9900
O5A···H12iv2.07 (3)H10···H142.2400
O5A···H8i2.8700H10···N42.6500
O6···H7i2.4800H10···O8Axi2.3500
O6A···H7i2.7500H10···O7xi2.7300
O7···H122.79 (3)H11···O32.6500
O7···H2iv2.7700H11···C6xi3.0600
O7···H10iii2.7300H11···N12.7400
O7A···H5xii2.8800H11···H162.3800
O7A···H2iv2.7900H11···O1xi2.6500
O8···H8i2.8200H12···Cl1Aiv3.03 (3)
O8···H12iv2.35 (3)H12···O5Aiv2.07 (3)
O8···H2iv2.7100H12···O8iv2.35 (3)
O8A···H10iii2.3500H12···O72.79 (3)
O8A···H2iv2.7400H12···C22.66 (3)
O8A···H14iii2.38 (3)H12···H22.2000
N1···O43.194 (3)H13···C12xiii3.00 (2)
N1···N32.856 (2)H13···O2xiii2.067 (19)
N1···C7i3.137 (2)H14···Cl1xi3.10 (2)
N1···C113.103 (2)H14···O8Axi2.38 (3)
N1···N3i2.917 (2)H14···C102.68 (2)
N2···O5Aiv2.882 (4)H14···H102.2400
N2···O2xiii2.898 (2)H14···O5ix2.84 (3)
N2···O8iv2.953 (10)H14···O5xi2.36 (2)
N3···C1i3.179 (2)H15···O1vi2.089 (19)
N3···N12.856 (2)H15···C6vi3.013 (19)
N3···N1i2.917 (2)H16···C6xi3.02 (3)
N3···C53.094 (3)H16···O1xi2.04 (3)
N3···O33.058 (2)H16···C112.99 (3)
N4···O5xi3.171 (6)H16···H112.3800
N4···O6ix3.213 (9)H17···O2viii2.10 (3)
N4···O8Axi3.128 (7)
O3—Cu1—O4180.00C6—N2—H12123.1 (19)
O3—Cu1—N195.04 (5)C12—N4—H15117.6 (17)
O3—Cu1—N386.22 (5)C12—N4—H14123.6 (16)
O3—Cu1—N1i95.04 (5)H14—N4—H15117 (2)
O3—Cu1—N3i86.22 (5)N1—C1—C2122.78 (17)
O4—Cu1—N184.96 (5)C1—C2—C3119.04 (17)
O4—Cu1—N393.78 (5)C2—C3—C4118.03 (16)
O4—Cu1—N1i84.96 (5)C2—C3—C6123.99 (16)
O4—Cu1—N3i93.78 (5)C4—C3—C6117.94 (16)
N1—Cu1—N389.12 (6)C3—C4—C5119.79 (18)
N1—Cu1—N1i169.91 (7)N1—C5—C4122.36 (18)
N1—Cu1—N3i91.55 (6)O1—C6—C3119.28 (16)
N1i—Cu1—N391.55 (6)N2—C6—C3117.77 (17)
N3—Cu1—N3i172.45 (7)O1—C6—N2122.95 (17)
N1i—Cu1—N3i89.12 (6)N3—C7—C8122.54 (17)
O6—Cl1—O7111.8 (6)C7—C8—C9119.69 (17)
O6—Cl1—O8107.1 (6)C8—C9—C10117.88 (17)
O7—Cl1—O8110.5 (6)C10—C9—C12123.29 (16)
O5—Cl1—O8108.1 (6)C8—C9—C12118.83 (16)
O5—Cl1—O6109.7 (5)C9—C10—C11119.15 (17)
O5—Cl1—O7109.7 (6)N3—C11—C10123.07 (17)
O5A—Cl1A—O8A104.3 (4)N4—C12—C9117.61 (17)
O6A—Cl1A—O7A113.8 (5)O2—C12—N4122.92 (18)
O6A—Cl1A—O8A116.8 (6)O2—C12—C9119.47 (17)
O7A—Cl1A—O8A105.6 (6)N1—C1—H1119.00
O5A—Cl1A—O7A107.9 (4)C2—C1—H1119.00
O5A—Cl1A—O6A107.7 (4)C1—C2—H2120.00
Cu1—O3—H16i126.0 (19)C3—C2—H2120.00
Cu1—O3—H16126.0 (19)C5—C4—H4120.00
H16—O3—H16i108 (3)C3—C4—H4120.00
Cu1—O4—H17i133 (2)N1—C5—H5119.00
Cu1—O4—H17133 (2)C4—C5—H5119.00
H17—O4—H17i93 (3)N3—C7—H7119.00
Cu1—N1—C1122.77 (12)C8—C7—H7119.00
C1—N1—C5117.97 (16)C7—C8—H8120.00
Cu1—N1—C5119.24 (13)C9—C8—H8120.00
C7—N3—C11117.65 (15)C9—C10—H10120.00
Cu1—N3—C7123.65 (12)C11—C10—H10120.00
Cu1—N3—C11118.55 (12)C10—C11—H11118.00
H12—N2—H13119 (3)N3—C11—H11118.00
C6—N2—H13118 (2)
O3—Cu1—N1—C140.63 (14)C11—N3—C7—C81.0 (3)
O3—Cu1—N1—C5137.25 (14)Cu1—N3—C11—C10175.62 (15)
O4—Cu1—N1—C1139.37 (14)N1—C1—C2—C31.6 (3)
O4—Cu1—N1—C542.75 (14)C1—C2—C3—C6176.30 (17)
N3—Cu1—N1—C1126.76 (15)C1—C2—C3—C41.1 (3)
N3—Cu1—N1—C551.12 (15)C2—C3—C4—C50.3 (3)
N3i—Cu1—N1—C145.71 (15)C4—C3—C6—N2165.3 (2)
N3i—Cu1—N1—C5136.41 (15)C2—C3—C6—O1162.21 (19)
O3—Cu1—N3—C7132.74 (15)C2—C3—C6—N217.3 (3)
O3—Cu1—N3—C1142.70 (13)C6—C3—C4—C5177.93 (18)
O4—Cu1—N3—C747.26 (15)C4—C3—C6—O115.2 (3)
O4—Cu1—N3—C11137.30 (13)C3—C4—C5—N11.5 (3)
N1—Cu1—N3—C7132.15 (15)N3—C7—C8—C91.5 (3)
N1—Cu1—N3—C1152.42 (14)C7—C8—C9—C101.0 (3)
N1i—Cu1—N3—C737.79 (15)C7—C8—C9—C12178.68 (17)
N1i—Cu1—N3—C11137.65 (14)C8—C9—C10—C110.2 (3)
Cu1—N1—C1—C2178.43 (14)C10—C9—C12—O2159.69 (19)
C5—N1—C1—C20.5 (3)C10—C9—C12—N419.5 (3)
Cu1—N1—C5—C4176.93 (16)C8—C9—C12—N4160.16 (18)
C1—N1—C5—C41.1 (3)C12—C9—C10—C11179.51 (17)
C7—N3—C11—C100.1 (3)C8—C9—C12—O220.6 (3)
Cu1—N3—C7—C8174.48 (14)C9—C10—C11—N30.3 (3)
Symmetry codes: (i) x+1, y, z+1/2; (ii) x+3/2, y+1/2, z+1; (iii) x+3/2, y1/2, z+1/2; (iv) x+3/2, y+3/2, z+1; (v) x+1/2, y1/2, z; (vi) x+3/2, y+3/2, z; (vii) x1/2, y+3/2, z1/2; (viii) x+1, y+1, z; (ix) x, y+1, z1/2; (x) x1/2, y+1/2, z; (xi) x+3/2, y+1/2, z+1/2; (xii) x, y+1, z+1/2; (xiii) x+1/2, y+3/2, z+1/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H12···O5Aiv0.85 (3)2.07 (3)2.882 (4)159 (3)
N2—H13···O2xiii0.84 (2)2.07 (2)2.898 (2)174 (3)
N4—H14···O8Axi0.85 (2)2.38 (3)3.128 (7)148 (3)
N4—H15···O1vi0.87 (2)2.09 (2)2.940 (2)167 (2)
O3—H16···O1xi0.82 (3)2.04 (3)2.831 (2)163 (3)
O4—H17···O2viii0.79 (3)2.10 (3)2.889 (3)176 (3)
C10—H10···O8Axi0.932.353.244 (6)162
Symmetry codes: (iv) x+3/2, y+3/2, z+1; (vi) x+3/2, y+3/2, z; (viii) x+1, y+1, z; (xi) x+3/2, y+1/2, z+1/2; (xiii) x+1/2, y+3/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formula[Cu(NO3)2(C6H6N2O)2(H2O)2][Cu(C6H6N2O)4(H2O)2](ClO4)2
Mr467.86786.99
Crystal system, space groupMonoclinic, P21/cMonoclinic, C2/c
Temperature (K)296296
a, b, c (Å)7.5367 (2), 9.8819 (3), 11.7402 (4)18.7783 (3), 9.5648 (2), 18.2630 (2)
β (°) 96.280 (3) 92.090 (1)
V3)869.13 (5)3278.05 (9)
Z24
Radiation typeMo KαMo Kα
µ (mm1)1.330.91
Crystal size (mm)0.59 × 0.02 × 0.010.60 × 0.38 × 0.30
Data collection
DiffractometerOxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
Oxford Diffraction Xcalibur
diffractometer with a Sapphire3 detector
Absorption correctionMulti-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Multi-scan
(CrysAlis PRO; Oxford Diffraction, 2007)
Tmin, Tmax0.874, 0.9870.628, 0.761
No. of measured, independent and
observed [I > 2σ(I)] reflections
11568, 2536, 2188 26135, 3576, 3224
Rint0.0130.019
(sin θ/λ)max1)0.7030.639
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.069, 1.09 0.032, 0.089, 1.05
No. of reflections25363576
No. of parameters149293
No. of restraints0366
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.37, 0.330.55, 0.29

Computer programs: CrysAlis PRO (Oxford Diffraction, 2007), SHELXS97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and Mercury (Bruno et al., 2002), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected geometric parameters (Å, º) for (I) top
Cu1—O21.984 (1)Cu1—N11.992 (1)
Cu1—O32.507 (1)
O2—Cu1—O384.36 (4)O2—Cu1—N1i89.98 (4)
O2—Cu1—N190.02 (4)O3—Cu1—N190.27 (4)
O2—Cu1—O3i95.64 (4)O3—Cu1—N1i89.73 (4)
Symmetry code: (i) x+1, y+1, z+1.
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O2—H12O···O1ii0.81 (2)1.90 (2)2.702 (1)175 (2)
O2—H22O···O5iii0.74 (2)2.03 (2)2.764 (2)174 (2)
N2—H12N···O3iv0.84 (3)2.50 (3)3.123 (2)132 (2)
N2—H22N···O4v0.84 (2)2.12 (2)2.910 (2)158 (2)
N2—H12N···O5iv0.84 (3)2.21 (3)2.988 (2)154 (2)
Symmetry codes: (ii) x, y+1, z; (iii) x, y+1, z+1; (iv) x, y1, z; (v) x, y1/2, z+1/2.
Selected geometric parameters (Å, º) for (II) top
Cu1—O32.415 (2)Cu1—N12.0280 (15)
Cu1—O42.652 (3)Cu1—N32.0428 (15)
O3—Cu1—O4180.00O4—Cu1—N393.78 (5)
O3—Cu1—N195.04 (5)N1—Cu1—N389.12 (6)
O3—Cu1—N386.22 (5)N1i—Cu1—N391.55 (6)
O4—Cu1—N184.96 (5)
Symmetry code: (i) x+1, y, z+1/2.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N2—H12···O5Aii0.85 (3)2.07 (3)2.882 (4)159 (3)
N2—H13···O2iii0.84 (2)2.07 (2)2.898 (2)174 (3)
N4—H14···O8Aiv0.85 (2)2.38 (3)3.128 (7)148 (3)
N4—H15···O1v0.87 (2)2.09 (2)2.940 (2)167 (2)
O3—H16···O1iv0.82 (3)2.04 (3)2.831 (2)163 (3)
O4—H17···O2vi0.79 (3)2.10 (3)2.889 (3)176 (3)
Symmetry codes: (ii) x+3/2, y+3/2, z+1; (iii) x+1/2, y+3/2, z+1/2; (iv) x+3/2, y+1/2, z+1/2; (v) x+3/2, y+3/2, z; (vi) x+1, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds