Download citation
Download citation
link to html
The hydro­thermal reaction of cobalt(II) chloride with trimesate (3,5-di­carboxy­benzoate) ions in aqueous solution gives the novel title complex, [Co(C9H5O6)2(H2O)4]. The CoII ion lies on an inversion centre and is octahedrally coordinated to two trimesate anions and four water mol­ecules. Hydro­gen bonds ensure the three-dimensional architecture of the structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100012312/gs1105sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100012312/gs1105Isup2.hkl
Contains datablock I

CCDC reference: 156144

Comment top

Over the last decade, significant research effort has focused on using organic molecular building blocks to generate three-dimensional porous solids, via hydrogen bonding or copolymerization of metal ions (Palmans et al., 1997; Livage et al., 1998, 1999). Trimesic acid (benzene-1,3,5-tricarboxylic acid, TMA) has successfully been used to design organic supramolecular networks by several authors (Kolotuchin et al., 1999; Sharma & Zaworotko, 1996; Melendez et al., 1996). Its geometry and hydrogen-bonding capability (three carboxylic acid groups) make it an interesting tool for crystal engineering. Condensation of TMA with metal ions was first developed by Yaghi et al. (1996, 1997, 1998) to generate coordination polymers (Chui, Siu & Williams, 1999; Chui, Los et al., 1999; Daiguebonne et al., 1999; Li et al., 1999). Herein, we describe the synthesis and crystal structure of a new cobalt(II)-TMA complex, the title compound, (I), and we demonstrate that this species can be used as synthon to generate supramolecular networks. \sch

The centrosymmetric complex of (I) is shown with the atom-labelling scheme in Fig. 1. Two unidentate carboxylate groups and four water molecules octahedrally coordinate the Co atom. Each trimesate ligand presents one bonding and two dangling protonated carboxylate groups, leading to a single negative charge on the ligand. The TMA and two of the coordinated water molecules lie in planes, the Co atom being located in between these planes. A network of strong hydrogen bonds (Table 2), between TMA and between TMA and water molecules, provides the basis of this two-dimensional network (Fig. 2a). The Co atom ensures the three-dimensionality of the architecture by linking adjacent layers (Fig. 2 b).

These results illustrate the clear tendency of trimesate complexes to pack into planes in order to maximize hydrogen bonding. The solid-state arrangement is therefore dominated by the formation of trimesate layers, as previously described for lanthanide complexes by Daiguebonne et al. (1999).

Experimental top

Complex (I) was hydrothermally synthesized from a mixture of cobalt(II) chloride hexahydrate, trimesic acid, potassium hydroxide and water in the molar ratio 1:1:1:60. The starting mixture was heated for 12 h at 453 K under autogenous pressure (final pH 2). The resulting solid phase, consisting of pink needles of (I), was filtered off and dried at room temperature. Query shape.

Refinement top

H atoms from water molecules were found via difference Fourier maps and isotropically refined. H atoms from the trimesate molecules were treated as riding (O—H 0.82 and C—H 0.93 Å). All H-atom positions (trimesate and water) could be deduced from difference Fourier maps. However, H atoms from the trimesate were placed in calculated positions in order to have a perfect sp2 geometry.

Computing details top

Data collection: XSCANS (Siemens, 1996); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1994); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. A view of complex (I) with the atomic numbering scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are drawn as spheres of arbitrary radii.
[Figure 2] Fig. 2. (a) A view of one layer in (I) showing the network of hydrogen bonding; (b) a projection of the structure of (I) along [010] showing the stacking of the trimesate layers. Dotted lines correspond to hydrogen bonds.
Tetraaquabis(3,5-dicarboxybenzoate-O)cobalt(II) top
Crystal data top
[Co(C9H5O6)2(H2O)4]F(000) = 562
Mr = 549.26Dx = 1.818 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
a = 5.1160 (1) ÅCell parameters from 5763 reflections
b = 13.0080 (2) Åθ = 2.1–29.8°
c = 15.1890 (1) ŵ = 0.95 mm1
β = 96.853 (1)°T = 296 K
V = 1003.59 (3) Å3Parallelepiped, pink
Z = 20.76 × 0.14 × 0.08 mm
Data collection top
Siemens SMART 1K
diffractometer
2590 independent reflections
Radiation source: fine-focus sealed tube2281 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.022
ω scansθmax = 29.8°, θmin = 2.1°
Absorption correction: semi-empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
h = 67
Tmin = 0.533, Tmax = 0.928k = 1714
6860 measured reflectionsl = 2019
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.025H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.073 w = 1/[σ2(Fo2) + (0.042P)2 + 0.0785P]
where P = (Fo2 + 2Fc2)/3
S = 1.09(Δ/σ)max = 0.001
2590 reflectionsΔρmax = 0.36 e Å3
179 parametersΔρmin = 0.40 e Å3
0 restraintsExtinction correction: SHELXL97 (Sheldrick, 1997), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.031 (2)
Crystal data top
[Co(C9H5O6)2(H2O)4]V = 1003.59 (3) Å3
Mr = 549.26Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.1160 (1) ŵ = 0.95 mm1
b = 13.0080 (2) ÅT = 296 K
c = 15.1890 (1) Å0.76 × 0.14 × 0.08 mm
β = 96.853 (1)°
Data collection top
Siemens SMART 1K
diffractometer
2590 independent reflections
Absorption correction: semi-empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
2281 reflections with I > 2σ(I)
Tmin = 0.533, Tmax = 0.928Rint = 0.022
6860 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0250 restraints
wR(F2) = 0.073H atoms treated by a mixture of independent and constrained refinement
S = 1.09Δρmax = 0.36 e Å3
2590 reflectionsΔρmin = 0.40 e Å3
179 parameters
Special details top

Experimental. Blessing, R. H. (1995). Acta Cryst. A51, 33–38.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Co11/2100.01799 (9)
O10.28141 (17)0.88421 (7)0.05566 (6)0.0236 (2)
O20.02902 (18)0.76498 (8)0.01636 (7)0.0303 (2)
O30.5219 (2)0.34736 (7)0.14601 (8)0.0365 (3)
O40.1612 (2)0.41152 (8)0.07056 (9)0.0445 (3)
H4A0.12930.35050.06100.067*
O51.16179 (19)0.63394 (7)0.29025 (7)0.0294 (2)
O61.0432 (2)0.79506 (8)0.25379 (8)0.0374 (3)
H6A1.17730.80860.28690.056*
O70.81952 (19)0.97174 (8)0.09412 (7)0.0246 (2)
O80.3575 (2)1.10552 (8)0.08847 (7)0.0274 (2)
C10.3924 (2)0.70954 (9)0.08663 (8)0.0196 (2)
C20.3247 (2)0.60613 (9)0.07853 (8)0.0224 (3)
H20.17580.58670.04100.027*
C30.4779 (2)0.53088 (10)0.12621 (8)0.0219 (3)
C40.7028 (2)0.55907 (10)0.18195 (8)0.0225 (3)
H40.80700.50930.21300.027*
C50.7699 (2)0.66331 (9)0.19068 (8)0.0204 (2)
C60.6143 (2)0.73814 (9)0.14364 (8)0.0208 (2)
H60.65900.80720.15040.025*
C70.2232 (2)0.79123 (9)0.03745 (8)0.0192 (2)
C80.3939 (3)0.42090 (10)0.11620 (9)0.0253 (3)
C91.0096 (2)0.69466 (10)0.25019 (8)0.0216 (2)
H7A0.849 (5)1.0181 (18)0.1287 (16)0.054 (7)*
H7B0.967 (4)0.9479 (15)0.0807 (13)0.044 (5)*
H8A0.236 (4)1.1484 (15)0.0671 (13)0.049 (6)*
H8B0.467 (5)1.1345 (15)0.1226 (14)0.049 (6)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Co10.01581 (13)0.01300 (14)0.02386 (14)0.00011 (7)0.00297 (8)0.00095 (8)
O10.0214 (4)0.0136 (4)0.0345 (5)0.0010 (3)0.0013 (3)0.0013 (3)
O20.0273 (5)0.0172 (5)0.0414 (5)0.0007 (3)0.0170 (4)0.0010 (4)
O30.0318 (5)0.0176 (5)0.0543 (7)0.0023 (4)0.0188 (5)0.0042 (4)
O40.0375 (6)0.0154 (5)0.0708 (8)0.0030 (4)0.0340 (5)0.0039 (5)
O50.0252 (5)0.0266 (5)0.0327 (5)0.0031 (4)0.0112 (4)0.0079 (4)
O60.0309 (5)0.0215 (5)0.0533 (7)0.0044 (4)0.0222 (5)0.0011 (4)
O70.0197 (5)0.0212 (5)0.0309 (5)0.0022 (4)0.0056 (4)0.0041 (4)
O80.0243 (5)0.0232 (5)0.0325 (5)0.0052 (4)0.0056 (4)0.0071 (4)
C10.0183 (5)0.0157 (5)0.0235 (6)0.0003 (4)0.0026 (4)0.0015 (4)
C20.0216 (6)0.0162 (6)0.0271 (6)0.0001 (4)0.0072 (5)0.0009 (4)
C30.0217 (6)0.0153 (5)0.0266 (6)0.0003 (4)0.0056 (5)0.0008 (4)
C40.0208 (6)0.0186 (6)0.0259 (6)0.0004 (4)0.0065 (5)0.0023 (4)
C50.0185 (5)0.0178 (6)0.0231 (5)0.0008 (4)0.0048 (4)0.0008 (4)
C60.0200 (6)0.0159 (6)0.0249 (6)0.0018 (4)0.0034 (4)0.0009 (4)
C70.0174 (5)0.0151 (5)0.0241 (5)0.0001 (4)0.0010 (4)0.0020 (4)
C80.0246 (6)0.0173 (6)0.0308 (6)0.0001 (5)0.0099 (5)0.0006 (5)
C90.0202 (6)0.0206 (6)0.0226 (6)0.0029 (4)0.0036 (4)0.0011 (4)
Geometric parameters (Å, º) top
Co1—O72.0720 (9)O7—H7B0.86 (2)
Co1—O7i2.0720 (9)O8—H8A0.87 (2)
Co1—O8i2.111 (1)O8—H8B0.81 (2)
Co1—O82.111 (1)C1—C21.391 (2)
Co1—O12.1117 (9)C1—C61.393 (2)
Co1—O1i2.1117 (9)C1—C71.511 (2)
O1—C71.268 (2)C2—C31.401 (2)
O2—C71.256 (2)C2—H20.93
O3—C81.216 (2)C3—C41.394 (2)
O4—C81.310 (2)C3—C81.496 (2)
O4—H4A0.82C4—C51.401 (2)
O5—C91.219 (2)C4—H40.93
O6—C91.317 (2)C5—C61.399 (2)
O6—H6A0.82C5—C91.491 (2)
O7—H7A0.80 (2)C6—H60.93
O7—Co1—O7i180.0C6—C1—C7119.71 (10)
O7—Co1—O8i91.14 (4)C1—C2—C3120.79 (11)
O7i—Co1—O8i88.86 (4)C1—C2—H2119.6
O7—Co1—O888.86 (4)C3—C2—H2119.6
O7i—Co1—O891.14 (4)C4—C3—C2120.05 (11)
O8i—Co1—O8180.0C4—C3—C8121.30 (11)
O7—Co1—O190.52 (4)C2—C3—C8118.65 (10)
O7i—Co1—O189.48 (4)C3—C4—C5119.16 (11)
O8i—Co1—O191.76 (4)C3—C4—H4120.4
O8—Co1—O188.24 (4)C5—C4—H4120.4
O7—Co1—O1i89.48 (4)C6—C5—C4120.47 (10)
O7i—Co1—O1i90.52 (4)C6—C5—C9119.76 (11)
O8i—Co1—O1i88.24 (4)C4—C5—C9119.77 (10)
O8—Co1—O1i91.76 (4)C1—C6—C5120.23 (11)
O1—Co1—O1i180.00 (5)C1—C6—H6119.9
C7—O1—Co1135.62 (8)C5—C6—H6119.9
C8—O4—H4A109.5O2—C7—O1123.24 (11)
C9—O6—H6A109.5O2—C7—C1119.51 (11)
Co1—O7—H7A112.9 (17)O1—C7—C1117.20 (10)
Co1—O7—H7B122.8 (13)O3—C8—O4122.60 (12)
H7A—O7—H7B109 (2)O3—C8—C3125.39 (11)
Co1—O8—H8A117.8 (13)O4—C8—C3112.00 (10)
Co1—O8—H8B116.4 (16)O5—C9—O6123.30 (12)
H8A—O8—H8B111 (2)O5—C9—C5123.74 (11)
C2—C1—C6119.28 (11)O6—C9—C5112.95 (11)
C2—C1—C7120.95 (10)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.821.802.589 (2)161
O6—H6A···O3iii0.821.812.631 (2)175
O7—H7A···O5iii0.80 (2)1.95 (3)2.740 (2)168
O7—H7B···O1iv0.86 (2)1.89 (2)2.748 (2)175
O8—H8A···O2v0.87 (2)1.86 (3)2.726 (2)177
Symmetry codes: (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+2, z.

Experimental details

Crystal data
Chemical formula[Co(C9H5O6)2(H2O)4]
Mr549.26
Crystal system, space groupMonoclinic, P21/c
Temperature (K)296
a, b, c (Å)5.1160 (1), 13.0080 (2), 15.1890 (1)
β (°) 96.853 (1)
V3)1003.59 (3)
Z2
Radiation typeMo Kα
µ (mm1)0.95
Crystal size (mm)0.76 × 0.14 × 0.08
Data collection
DiffractometerSiemens SMART 1K
diffractometer
Absorption correctionSemi-empirical (using intensity measurements)
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.533, 0.928
No. of measured, independent and
observed [I > 2σ(I)] reflections
6860, 2590, 2281
Rint0.022
(sin θ/λ)max1)0.699
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.025, 0.073, 1.09
No. of reflections2590
No. of parameters179
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.36, 0.40

Computer programs: XSCANS (Siemens, 1996), XSCANS, SHELXTL (Siemens, 1994), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
Co1—O72.0720 (9)O7—H7B0.86 (2)
Co1—O7i2.0720 (9)O8—H8A0.87 (2)
Co1—O8i2.111 (1)O8—H8B0.81 (2)
Co1—O82.111 (1)C1—C21.391 (2)
Co1—O12.1117 (9)C1—C61.393 (2)
Co1—O1i2.1117 (9)C1—C71.511 (2)
O1—C71.268 (2)C2—C31.401 (2)
O2—C71.256 (2)C2—H20.93
O3—C81.216 (2)C3—C41.394 (2)
O4—C81.310 (2)C3—C81.496 (2)
O4—H4A0.82C4—C51.401 (2)
O5—C91.219 (2)C4—H40.93
O6—C91.317 (2)C5—C61.399 (2)
O6—H6A0.82C5—C91.491 (2)
O7—H7A0.80 (2)C6—H60.93
O7—Co1—O7i180.0O8i—Co1—O191.76 (4)
O7—Co1—O8i91.14 (4)O8—Co1—O188.24 (4)
O7i—Co1—O8i88.86 (4)O7—Co1—O1i89.48 (4)
O7—Co1—O888.86 (4)O7i—Co1—O1i90.52 (4)
O7i—Co1—O891.14 (4)O8i—Co1—O1i88.24 (4)
O8i—Co1—O8180.0O8—Co1—O1i91.76 (4)
O7—Co1—O190.52 (4)O1—Co1—O1i180.00 (5)
O7i—Co1—O189.48 (4)
Symmetry code: (i) x+1, y+2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O4—H4A···O2ii0.821.802.589 (2)161
O6—H6A···O3iii0.821.812.631 (2)175
O7—H7A···O5iii0.80 (2)1.95 (3)2.740 (2)168
O7—H7B···O1iv0.86 (2)1.89 (2)2.748 (2)175
O8—H8A···O2v0.87 (2)1.86 (3)2.726 (2)177
Symmetry codes: (ii) x, y+1, z; (iii) x+2, y+1/2, z+1/2; (iv) x+1, y, z; (v) x, y+2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds