Download citation
Download citation
link to html
The crystal structure of the title compound, chloro(1,10-phenanthroline-N,N')(1-phenyl-1,3-butane­dion­ato-O,O')copper(II), [CuCl(C10H9O2)(C12H8N2)], has been determined. The CuII ion displays a distorted square-pyramidal coordination, being linked to the two O atoms of the benzoyl­acetonate ligand and the two N atoms of the 1,10-phenanthroline ligand in the basal plane, and the Cl atom in the apical site. TheCu-N, Cu-O and Cu-Cl bond lengths are 2.043 (2)/2.025 (2), 1.914 (2)/1.941 (2) and 2.485 (1) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270100007411/gs1092sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270100007411/gs1092Isup2.hkl
Contains datablock I

CCDC reference: 150319

Comment top

Interest in mixed-ligand chelate complexes have been clearly established in inorganic and bioinorganic chemistry in the last decade years (Solans et al., 1987, 1993; Moreno-Esparza et al., 1995; Heldal & Sletten, 1997; Gasque et al., 1999; Venkatraman et al., 1999). A series of compounds of formula M(N—N)(O—O) (M = Cu, N—N = o-phenanthroline, O—O = salicylaldehydato, acetylacetonato or benzoylacetonato) have been synthesized and characterized (Solans et al., 1987; Keramidas et al., 1994). The title compound is a member of this series of complexes and its crystal structure is determined in order to obtain the ligand arrangement around the Cu ion.

We have reported previously the structures of several dimeric and monomeric CuII complexes (Elmali et al., 1993, 1995, 1997; Elerman et al., 1995; Elerman & Geselle, 1997; Kabak et al., 1999). We report here the crystal structure of (benzoylacetonato)chloro(1,10-phenanthroline)copper(II). \sch

The Cu ion displays a distorted square-pyramidal coordination, being linked to two O atoms of the benzoylacetonato ligand and two N atoms of the 1,10-phenanthroline ligand in the basal plane and the Cl atom in the apical site.

The Cu—N(phenanthroline) distances [2.025 (2)–2.043 (2) Å] are similar, within experimental error, to those reported in several related complexes [mean value 2.019 (7) Å; Solans et al., 1988], [mean value 2.019 (2) Å; Moreno-Esparza et al., 1995], [mean value 2.027 (4) Å; Venkatraman et al., 1999] and while it is shorter than that observed in these complexes [mean value 2.050 (1) Å; Boys, Escobar & Martínez-Carrera, 1981], [mean value 2.099 (4) Å; Heldal & Sletten 1997], it is larger than that reported for other complexes [mean value 2.006 (4) Å; Fabretti et al., 1985], [mean value 1.998 (3) Å; Solans et al., 1987], and [mean value 2.003 (3) Å; Alvarez-Lorena et al., 1995].

The Cu—O distances [1.914 (2)–1.941 (2) Å] are similar, within experimental error, to those reported in the related complexes [mean value 1.925 (3) Å; Solans et al., 1987], [mean value 1.925 (1) Å; Gasque et al., 1999], but it is shorter than that observed in this complex [mean value 1.986 (5) Å; Heldal & Sletten, 1997].

The π-bond character of the C14—O2 bond produces a lengthening of the Cu—O2 bond distance, 1.941 (2) Å, with respect to 1.914 (2) Å observed for Cu—O1. This effect is also observed in (1,10-phenanthroline)(salicylaldehydato)copper(II)nitrate (Solans et al., 1987) where these distances are 1.952 (3) and 1.898 (3) Å, respectively. This fact explains the shortening of the Cu—N2 bond distance [2.025 (2) Å, trans to O1] with respect to 2.043 (2) Å observed for Cu—N1 [trans to O2].

The Cl atom lies above the plane, at the apex of the slight distorted pyramid. The Cu—Cl (apical) bond length [2.485 (1) Å] is intermediate when compared with the following values: [2.192 (1) Å; Chiari et al., 1987], [2.233 (1) Å; Mégnamisi-Bélombé & Endres, 1983], [2.463 (1) Å; Nicholson et al., 1982], [2.546 (2) Å; Solans et al., 1988], [2.560 (1) Å; Thompson et al., 1996], [2.734 (4) Å; Phelps et al., 1976].

Mean planes in the molecule are the five-membered phenanthroline chelate ring defined by atoms N1, C5, C9, N2 and Cu1, which is planar with negligible distortion (avarage r.m.s. deviation from the five-atom plane is 0.0199 Å), and the plane defined by atoms O1, C16, C14, O2 and Cu1, which is roughly planar (average r.m.s. deviation from the five-atom plane is 0.0246 Å). The angle between the phenanthroline chelate plane (N1, C5, C9, N2 and Cu1) and the benzoylacetonato moiety excluding the C15 atom (O1, C14, C16, O2 and Cu1) is 23.37 (6)°. The angle between the planes of coordination-plane atoms and the phenanthroline molecule is 7.77 (8)° and that formed with the benzoylacetonato moiety is 16.92 (7)°. The Cu atom is displaced by 0.28 (1) Å, out of the least square plane containing O1, O2, N1, N2 toward the apical positions.

Experimental top

The complex was prepared by mixing copper(II)chloride dihydrate, 1,10-phenanthroline and benzoylacetone in the ratio 1:1:1 in ethanol. The solutions were allowed to stand for several days and green crystals precipitated.

Computing details top

Data collection: CAD-4 Diffractometer Control Software (Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe & Cie, 1991); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-III (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of the title compound showing the atom-labelling scheme and 50% probability level displacement ellipsoids for the non-H atoms. H atoms are drawn as spheres of arbitrary radii (ORTEP-3; Farrugia, 1997).
(I) top
Crystal data top
[CuCl(C10H9O2)(C12H8N2)]F(000) = 1808
Mr = 441.37Dx = 1.542 Mg m3
Monoclinic, C2/cCu Kα radiation, λ = 1.54180 Å
a = 14.453 (3) ÅCell parameters from 25 reflections
b = 10.3993 (13) Åθ = 22.6–42.4°
c = 25.371 (2) ŵ = 3.08 mm1
β = 94.366 (1)°T = 293 K
V = 3802.2 (9) Å3Plate, green
Z = 80.60 × 0.48 × 0.12 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
3485 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.000
Graphite monochromatorθmax = 74.2°, θmin = 3.5°
ω/2θ scansh = 018
Absorption correction: emprical psi scans (north et al., 1968)
?
k = 012
Tmin = 0.216, Tmax = 0.691l = 3131
3860 measured reflections3 standard reflections every 120 min
3860 independent reflections intensity decay: 1.4%
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.053Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.157H-atom parameters constrained
S = 1.06Calculated w = 1/[σ2(Fo2) + (0.0991P)2 + 4.6891P]
where P = (Fo2 + 2Fc2)/3
3860 reflections(Δ/σ)max = 0.001
253 parametersΔρmax = 0.57 e Å3
0 restraintsΔρmin = 0.65 e Å3
Crystal data top
[CuCl(C10H9O2)(C12H8N2)]V = 3802.2 (9) Å3
Mr = 441.37Z = 8
Monoclinic, C2/cCu Kα radiation
a = 14.453 (3) ŵ = 3.08 mm1
b = 10.3993 (13) ÅT = 293 K
c = 25.371 (2) Å0.60 × 0.48 × 0.12 mm
β = 94.366 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
3485 reflections with I > 2σ(I)
Absorption correction: emprical psi scans (north et al., 1968)
?
Rint = 0.000
Tmin = 0.216, Tmax = 0.6913 standard reflections every 120 min
3860 measured reflections intensity decay: 1.4%
3860 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0530 restraints
wR(F2) = 0.157H-atom parameters constrained
S = 1.06Δρmax = 0.57 e Å3
3860 reflectionsΔρmin = 0.65 e Å3
253 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct-phase determination. The parameters of the complete structure could be refined by full-matrix anisotropic least squares. All phenyl rings were refined without any constraints. Values of distances and angles in the rings show no significant differences from those of an ideal benzene ring. All hydrogen positions were calculated using a riding model and were considered with fixed isotropic U's in all refinements. It was possible to refine the parameters of the complete structure by full-matrix anisotropic least squares.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.88365 (3)0.14853 (4)0.409918 (15)0.04639 (18)
Cl10.83749 (5)0.37300 (8)0.38689 (3)0.0558 (2)
O10.91450 (14)0.1707 (2)0.48406 (8)0.0531 (5)
O21.01221 (15)0.1498 (2)0.39264 (9)0.0558 (5)
N10.75719 (15)0.0746 (2)0.42452 (9)0.0447 (5)
N20.84404 (18)0.0827 (3)0.33656 (10)0.0546 (6)
C10.7156 (2)0.0723 (3)0.46952 (11)0.0501 (6)
H10.74660.10550.50000.060*
C20.6268 (2)0.0217 (3)0.47238 (13)0.0564 (7)
H20.59990.02010.50450.068*
C30.5791 (2)0.0257 (3)0.42788 (13)0.0570 (7)
H30.51970.05920.42960.068*
C40.6204 (2)0.0232 (3)0.38005 (12)0.0523 (7)
C50.71048 (19)0.0279 (3)0.38050 (11)0.0460 (6)
C60.5777 (2)0.0690 (4)0.33092 (14)0.0658 (9)
H60.51810.10290.33000.079*
C70.6218 (3)0.0644 (4)0.28569 (14)0.0721 (10)
H70.59210.09550.25450.087*
C80.7141 (2)0.0122 (4)0.28521 (13)0.0608 (8)
C90.7575 (2)0.0330 (3)0.33299 (11)0.0508 (6)
C100.7643 (3)0.0047 (5)0.24014 (13)0.0767 (11)
H100.73850.03400.20760.092*
C110.8516 (3)0.0463 (5)0.24476 (14)0.0829 (13)
H110.88580.05190.21520.100*
C120.8894 (3)0.0898 (4)0.29335 (13)0.0706 (10)
H120.94860.12530.29560.085*
C131.1752 (2)0.1452 (4)0.40487 (17)0.0711 (10)
H13A1.16780.13820.36710.085*
H13B1.20830.07150.41920.085*
H13C1.20960.22170.41450.085*
C141.0815 (2)0.1516 (3)0.42653 (14)0.0529 (7)
C151.0770 (2)0.1615 (3)0.48075 (14)0.0576 (8)
H151.13290.15940.50150.069*
C160.9961 (2)0.1744 (3)0.50701 (12)0.0473 (6)
C171.0009 (2)0.1936 (3)0.56522 (12)0.0550 (7)
C180.9219 (3)0.1777 (4)0.59251 (13)0.0613 (8)
H180.86660.15200.57440.074*
C190.9246 (3)0.1996 (5)0.64590 (15)0.0813 (11)
H190.87170.18780.66400.098*
C201.0069 (4)0.2394 (6)0.67267 (16)0.1059 (18)
H201.00910.25460.70890.127*
C211.0837 (4)0.2562 (7)0.64648 (19)0.119 (2)
H211.13860.28280.66470.143*
C221.0815 (3)0.2344 (6)0.59332 (16)0.0910 (15)
H221.13490.24720.57570.109*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.0381 (3)0.0607 (3)0.0403 (3)0.00577 (16)0.00221 (17)0.00516 (16)
Cl10.0532 (4)0.0611 (4)0.0524 (4)0.0011 (3)0.0005 (3)0.0046 (3)
O10.0411 (10)0.0709 (13)0.0466 (11)0.0053 (9)0.0010 (8)0.0023 (9)
O20.0425 (10)0.0700 (14)0.0554 (12)0.0002 (9)0.0069 (9)0.0027 (10)
N10.0432 (11)0.0528 (13)0.0380 (11)0.0048 (10)0.0025 (9)0.0042 (9)
N20.0494 (13)0.0703 (16)0.0445 (13)0.0089 (12)0.0057 (10)0.0092 (12)
C10.0514 (15)0.0596 (17)0.0393 (13)0.0049 (13)0.0040 (11)0.0032 (12)
C20.0522 (16)0.0659 (18)0.0525 (16)0.0069 (14)0.0125 (13)0.0021 (14)
C30.0438 (15)0.0617 (18)0.0657 (19)0.0096 (13)0.0064 (13)0.0022 (15)
C40.0464 (15)0.0573 (16)0.0525 (16)0.0059 (12)0.0007 (12)0.0038 (13)
C50.0436 (14)0.0504 (14)0.0435 (14)0.0050 (11)0.0009 (11)0.0028 (11)
C60.0534 (17)0.082 (2)0.0614 (19)0.0171 (16)0.0037 (14)0.0110 (17)
C70.068 (2)0.091 (3)0.0555 (19)0.0164 (19)0.0086 (16)0.0176 (18)
C80.0630 (19)0.074 (2)0.0448 (15)0.0072 (16)0.0016 (13)0.0127 (15)
C90.0499 (15)0.0587 (16)0.0436 (14)0.0051 (13)0.0033 (11)0.0078 (12)
C100.081 (2)0.106 (3)0.0431 (17)0.011 (2)0.0017 (15)0.0217 (18)
C110.080 (3)0.123 (4)0.0481 (18)0.018 (2)0.0209 (17)0.019 (2)
C120.063 (2)0.101 (3)0.0501 (17)0.0160 (19)0.0177 (15)0.0179 (18)
C130.0428 (17)0.085 (3)0.086 (3)0.0045 (15)0.0092 (16)0.004 (2)
C140.0414 (15)0.0519 (16)0.0657 (19)0.0005 (11)0.0058 (13)0.0014 (13)
C150.0370 (14)0.0671 (19)0.0670 (19)0.0008 (12)0.0079 (13)0.0009 (15)
C160.0430 (14)0.0484 (14)0.0494 (15)0.0047 (11)0.0038 (11)0.0051 (12)
C170.0574 (17)0.0584 (17)0.0475 (15)0.0068 (14)0.0081 (13)0.0084 (13)
C180.068 (2)0.0639 (19)0.0507 (17)0.0066 (16)0.0011 (14)0.0106 (14)
C190.102 (3)0.089 (3)0.054 (2)0.002 (2)0.012 (2)0.0123 (19)
C200.138 (5)0.138 (5)0.0392 (18)0.003 (4)0.008 (2)0.003 (2)
C210.102 (4)0.191 (7)0.058 (2)0.021 (4)0.029 (3)0.014 (3)
C220.068 (2)0.141 (4)0.061 (2)0.024 (3)0.0142 (18)0.005 (2)
Geometric parameters (Å, º) top
Cu1—O11.914 (2)C8—C91.403 (4)
Cu1—O21.941 (2)C10—C111.366 (6)
Cu1—N22.025 (2)C10—H100.9300
Cu1—N12.043 (2)C11—C121.386 (5)
Cu1—Cl12.4852 (9)C11—H110.9300
O1—C161.276 (3)C12—H120.9300
O2—C141.269 (4)C13—C141.503 (4)
N1—C11.331 (3)C13—H13A0.9600
N1—C51.351 (3)C13—H13B0.9600
N2—C121.321 (4)C13—H13C0.9600
N2—C91.349 (4)C14—C151.386 (5)
C1—C21.394 (4)C15—C161.395 (4)
C1—H10.9300C15—H150.9300
C2—C31.369 (4)C16—C171.487 (4)
C2—H20.9300C17—C221.385 (5)
C3—C41.393 (4)C17—C181.390 (5)
C3—H30.9300C18—C191.371 (5)
C4—C51.406 (4)C18—H180.9300
C4—C61.429 (4)C19—C201.387 (7)
C5—C91.430 (4)C19—H190.9300
C6—C71.355 (5)C20—C211.348 (8)
C6—H60.9300C20—H200.9300
C7—C81.441 (5)C21—C221.365 (6)
C7—H70.9300C21—H210.9300
C8—C101.402 (5)C22—H220.9300
O1—Cu1—O293.77 (9)C8—C9—C5120.4 (3)
O1—Cu1—N2166.60 (11)C11—C10—C8118.9 (3)
O2—Cu1—N290.19 (10)C11—C10—H10120.6
O1—Cu1—N190.67 (9)C8—C10—H10120.6
O2—Cu1—N1158.21 (10)C10—C11—C12120.2 (3)
N2—Cu1—N181.09 (9)C10—C11—H11119.9
O1—Cu1—Cl198.99 (7)C12—C11—H11119.9
O2—Cu1—Cl1100.66 (7)N2—C12—C11122.2 (3)
N2—Cu1—Cl192.84 (9)N2—C12—H12118.9
N1—Cu1—Cl199.69 (7)C11—C12—H12118.9
C16—O1—Cu1126.2 (2)C14—C13—H13A109.5
C14—O2—Cu1124.5 (2)C14—C13—H13B109.5
C1—N1—C5118.2 (2)H13A—C13—H13B109.5
C1—N1—Cu1129.18 (19)C14—C13—H13C109.5
C5—N1—Cu1112.53 (18)H13A—C13—H13C109.5
C12—N2—C9118.8 (3)H13B—C13—H13C109.5
C12—N2—Cu1128.3 (2)O2—C14—C15125.4 (3)
C9—N2—Cu1112.77 (19)O2—C14—C13116.0 (3)
N1—C1—C2122.0 (3)C15—C14—C13118.6 (3)
N1—C1—H1119.0C14—C15—C16125.8 (3)
C2—C1—H1119.0C14—C15—H15117.1
C3—C2—C1120.1 (3)C16—C15—H15117.1
C3—C2—H2120.0O1—C16—C15123.9 (3)
C1—C2—H2120.0O1—C16—C17115.4 (3)
C2—C3—C4119.3 (3)C15—C16—C17120.7 (3)
C2—C3—H3120.3C22—C17—C18118.1 (3)
C4—C3—H3120.3C22—C17—C16121.7 (3)
C3—C4—C5117.3 (3)C18—C17—C16120.1 (3)
C3—C4—C6124.7 (3)C19—C18—C17120.6 (4)
C5—C4—C6118.1 (3)C19—C18—H18119.7
N1—C5—C4123.2 (3)C17—C18—H18119.7
N1—C5—C9116.4 (2)C18—C19—C20119.5 (4)
C4—C5—C9120.5 (3)C18—C19—H19120.3
C7—C6—C4121.8 (3)C20—C19—H19120.3
C7—C6—H6119.1C21—C20—C19120.3 (4)
C4—C6—H6119.1C21—C20—H20119.8
C6—C7—C8121.0 (3)C19—C20—H20119.8
C6—C7—H7119.5C20—C21—C22120.5 (5)
C8—C7—H7119.5C20—C21—H21119.8
C10—C8—C9117.5 (3)C22—C21—H21119.8
C10—C8—C7124.3 (3)C21—C22—C17121.0 (5)
C9—C8—C7118.2 (3)C21—C22—H22119.5
N2—C9—C8122.5 (3)C17—C22—H22119.5
N2—C9—C5117.1 (3)
O2—Cu1—O1—C163.8 (3)C6—C7—C8—C10179.7 (4)
N2—Cu1—O1—C16103.1 (4)C6—C7—C8—C90.5 (6)
N1—Cu1—O1—C16154.9 (2)C12—N2—C9—C80.4 (5)
Cl1—Cu1—O1—C16105.2 (2)Cu1—N2—C9—C8176.6 (3)
O1—Cu1—O2—C146.2 (3)C12—N2—C9—C5179.5 (3)
N2—Cu1—O2—C14161.0 (3)Cu1—N2—C9—C53.3 (4)
N1—Cu1—O2—C1495.1 (3)C10—C8—C9—N20.3 (6)
Cl1—Cu1—O2—C14106.1 (2)C7—C8—C9—N2179.5 (3)
O1—Cu1—N1—C110.6 (3)C10—C8—C9—C5179.8 (3)
O2—Cu1—N1—C1112.6 (3)C7—C8—C9—C50.5 (5)
N2—Cu1—N1—C1180.0 (3)N1—C5—C9—N20.5 (4)
Cl1—Cu1—N1—C188.6 (3)C4—C5—C9—N2179.7 (3)
O1—Cu1—N1—C5172.6 (2)N1—C5—C9—C8179.4 (3)
O2—Cu1—N1—C570.7 (3)C4—C5—C9—C80.4 (5)
N2—Cu1—N1—C53.2 (2)C9—C8—C10—C110.5 (6)
Cl1—Cu1—N1—C588.2 (2)C7—C8—C10—C11179.7 (5)
O1—Cu1—N2—C12128.1 (4)C8—C10—C11—C120.0 (7)
O2—Cu1—N2—C1220.8 (4)C9—N2—C12—C111.0 (6)
N1—Cu1—N2—C12179.3 (4)Cu1—N2—C12—C11176.5 (4)
Cl1—Cu1—N2—C1279.9 (3)C10—C11—C12—N20.8 (8)
O1—Cu1—N2—C956.1 (5)Cu1—O2—C14—C154.5 (4)
O2—Cu1—N2—C9163.5 (2)Cu1—O2—C14—C13176.9 (2)
N1—Cu1—N2—C93.5 (2)O2—C14—C15—C161.7 (5)
Cl1—Cu1—N2—C995.9 (2)C13—C14—C15—C16176.9 (3)
C5—N1—C1—C21.0 (4)Cu1—O1—C16—C150.5 (4)
Cu1—N1—C1—C2177.6 (2)Cu1—O1—C16—C17179.6 (2)
N1—C1—C2—C31.1 (5)C14—C15—C16—O14.5 (5)
C1—C2—C3—C40.3 (5)C14—C15—C16—C17175.5 (3)
C2—C3—C4—C50.5 (5)O1—C16—C17—C22162.0 (4)
C2—C3—C4—C6179.7 (3)C15—C16—C17—C2218.1 (5)
C1—N1—C5—C40.2 (4)O1—C16—C17—C1814.3 (4)
Cu1—N1—C5—C4177.3 (2)C15—C16—C17—C18165.6 (3)
C1—N1—C5—C9179.6 (3)C22—C17—C18—C191.2 (6)
Cu1—N1—C5—C92.5 (3)C16—C17—C18—C19177.7 (3)
C3—C4—C5—N10.6 (5)C17—C18—C19—C200.8 (7)
C6—C4—C5—N1179.6 (3)C18—C19—C20—C210.2 (9)
C3—C4—C5—C9179.7 (3)C19—C20—C21—C220.1 (10)
C6—C4—C5—C90.2 (5)C20—C21—C22—C170.6 (10)
C3—C4—C6—C7179.7 (4)C18—C17—C22—C211.2 (8)
C5—C4—C6—C70.1 (6)C16—C17—C22—C21177.5 (5)
C4—C6—C7—C80.3 (6)

Experimental details

Crystal data
Chemical formula[CuCl(C10H9O2)(C12H8N2)]
Mr441.37
Crystal system, space groupMonoclinic, C2/c
Temperature (K)293
a, b, c (Å)14.453 (3), 10.3993 (13), 25.371 (2)
β (°) 94.366 (1)
V3)3802.2 (9)
Z8
Radiation typeCu Kα
µ (mm1)3.08
Crystal size (mm)0.60 × 0.48 × 0.12
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmprical psi scans (North et al., 1968)
Tmin, Tmax0.216, 0.691
No. of measured, independent and
observed [I > 2σ(I)] reflections
3860, 3860, 3485
Rint0.000
(sin θ/λ)max1)0.624
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.053, 0.157, 1.06
No. of reflections3860
No. of parameters253
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.65

Computer programs: CAD-4 Diffractometer Control Software (Nonius, 1993), CAD-4 Diffractometer Control Software, REDU4 (Stoe & Cie, 1991), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-III (Farrugia, 1997), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—O11.914 (2)Cu1—N12.043 (2)
Cu1—O21.941 (2)Cu1—Cl12.4852 (9)
Cu1—N22.025 (2)
O1—Cu1—O293.77 (9)N2—Cu1—N181.09 (9)
O1—Cu1—N2166.60 (11)O1—Cu1—Cl198.99 (7)
O2—Cu1—N290.19 (10)O2—Cu1—Cl1100.66 (7)
O1—Cu1—N190.67 (9)N2—Cu1—Cl192.84 (9)
O2—Cu1—N1158.21 (10)N1—Cu1—Cl199.69 (7)
N1—C5—C9—N20.5 (4)C15—C16—C17—C2218.1 (5)
O2—C14—C15—C161.7 (5)O1—C16—C17—C1814.3 (4)
C14—C15—C16—O14.5 (5)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds