Download citation
Download citation
link to html
In the title compound, {4,4'-di­bromo-2,2'-[o-phenyl­ene­bis­(nitrilo­methyl­idene)]­di­phen­ol­ato-O,N,N',O'}copper(II), [Cu(C20H12Br2N2O2], the CuII ion shows a slightly distorted square-planar geometry with the N2O2 atoms of the Schiff base imine-phenol tetradentate ligand.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199016935/gs1068sup1.cif
Contains datablocks I, 1

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199016935/gs1068Isup2.hkl
Contains datablock I

CCDC reference: 144613

Comment top

Schiff-base complexes are one of the most important stereochemical models in transition metal coordination chemistry, with their easy preparation and structural variation (Garnovskii et al., 1993). Metal derivatives of Schiff bases have been extensively studied, and copper(II) and nickel(II) complexes play a major role in both synthetic and structural research. The geometry of the coordination sphere is usually planar in the case of Ni, but for Cu a tetrahedral distortion is often observed (Garnovskii et al., 1993). We have previously reported the crystal structures of several dimeric and monomeric Schiff-base complexes of CuII (Elmali et al., 1997; Elerman & Geselle, 1997; Elerman, Elmali & Özbey, 1998; Elerman, Elmali, Kabak & Svoboda, 1998). We report here the results of the reaction of copper(II) with the tetradentate ligand N,N'-bis(5-bromosalicylidene)-o-phenylenediamine, forming the title compound, (I). \scheme

Tetracoordinate Schiff-base metal complexes may form trans or cis planar or tetrahedral structures. A strictly planar or slightly distorted coordination is characteristic for transition metal complexes of copper(II) with a CuN2O2 coordination sphere (Garnovskii et al., 1993). In (I), the Cu atom is coordinated by two imine N atoms and two phenol O atoms from the imine-phenol ligand, in a slightly distorted square-planar coordination. The N1—Cu1—N2, N1—Cu1—O1, O1—Cu1—O2 and O2—Cu1—N2 bond angles are 84.6 (2), 94.1 (2), 87.4 (2) and 93.9 (2)°, respectively. The Cu—N distances [1.936 (4) and 1.946 (4) Å, respectively] are longer than the Cu—O distances [1.887 (4) and 1.882 (3) Å, respectively]. These distances agree with values in other square-planar coordinated copper(II) complexes (Akhtar & Drew, 1982; Labisbal et al., 1994). The planar molecules are stacked in columns along the b axis, with Cu···Cu separations of 3.399 (1) Å. However, this Cu···Cu dimeric interaction is considerably lower than the value of 3.613 (3) Å observed in N,N'-propylenebis[(2-hydroxy-1-naphthyl)methaniminato]copper(II) (Akhtar et al., 1982).

No unusual bond distances are observed in the salen derivative of (I); average distances and angles include C—C = 120.3 (3)?? [1.394?(?)], C—O = 1.294 (6), C—N = 1.420 (6) and C=N = 1.292?(7) Å, and phenyl C—C—C = 120.0?(3)°. These values are within the expected ranges for coordinated salen derivatives (Riley et al., 1986; Zamian et al., 1995; Schmidt et al., 1996).

Experimental top

Suitable crystals were obtained directly from the synthesis of compound (I). The preparation of the bis-N,N'-p-chloro?salicylideneamine-1,2-diaminobenzene followed the process described recently by Elerman, Elmali, Kabak & Svoboda (1998). Please clarify - the connection between this ref and the present work is not clear. Two solutions, bis-N,N'-p-chloro?salicylideneamine-1,2-diaminobenzene (0.5 mmol) in tetrahydrofuran (50 ml) and [Cu(O2CCH3)2]·4H2O in methanol (30 ml), were prepared and heated to boiling point. The mixture of the two solutions was then refluxed for 4 h. Crystals of (I) were obtained after 2 d.

Refinement top

H atoms bonded to C were refined using a riding model and H-atom displacement parameters were restricted to be 1.2Ueq of the parent atom.

Computing details top

Data collection: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993); cell refinement: CAD-4 Diffractometer Control Software; data reduction: REDU4 (Stoe & Cie, 1991); program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL93.

Figures top
[Figure 1] Fig. 1. The molecular structure and atom-labelling scheme of (I). Displacement ellipsoids are plotted at the 50% probability level (ORTEP-3 for Windows; Farrugia, 1997).
[N,N'-Bis(5-bromosalicylidene)-o-phenylenediamine]copper(II) top
Crystal data top
[Cu(C20H12Br2N2O2)]F(000) = 1044
Mr = 535.70Dx = 2.039 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71093 Å
a = 12.114 (1) ÅCell parameters from 25 reflections
b = 8.095 (2) Åθ = 2.3–10.3°
c = 18.538 (6) ŵ = 5.85 mm1
β = 106.30 (1)°T = 299 K
V = 1744.8 (7) Å3Prism, brown
Z = 40.30 × 0.13 × 0.05 mm
Data collection top
Enraf-Nonius CAD-4
diffractometer
1973 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.045
Graphite monochromatorθmax = 26.0°, θmin = 1.8°
θ/2θ scansh = 149
Absorption correction: empirical (using intensity measurements) via ψ scans (north et al., 1968)
?
k = 90
Tmin = 0.421, Tmax = 0.752l = 2222
6199 measured reflections3 standard reflections every 120 min
3399 independent reflections intensity decay: 3.1%
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.115Calculated w = 1/[σ2(Fo2) + (0.0621P)2]
where P = (Fo2 + 2Fc2)/3
S = 1.02(Δ/σ)max < 0.001
3399 reflectionsΔρmax = 0.81 e Å3
245 parametersΔρmin = 1.08 e Å3
0 restraintsExtinction correction: SHELXL93 (Sheldrick, 1993), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0001 (3)
Crystal data top
[Cu(C20H12Br2N2O2)]V = 1744.8 (7) Å3
Mr = 535.70Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.114 (1) ŵ = 5.85 mm1
b = 8.095 (2) ÅT = 299 K
c = 18.538 (6) Å0.30 × 0.13 × 0.05 mm
β = 106.30 (1)°
Data collection top
Enraf-Nonius CAD-4
diffractometer
1973 reflections with I > 2σ(I)
Absorption correction: empirical (using intensity measurements) via ψ scans (north et al., 1968)
?
Rint = 0.045
Tmin = 0.421, Tmax = 0.7523 standard reflections every 120 min
6199 measured reflections intensity decay: 3.1%
3399 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.115H atoms treated by a mixture of independent and constrained refinement
S = 1.02Δρmax = 0.81 e Å3
3399 reflectionsΔρmin = 1.08 e Å3
245 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 0 with very negative F2 or flagged by the user for potential systematic errors. Weighted R-factors wR and all goodnesses of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The observed criterion of F2 > σ(F2) is used only for calculating _R_factor_obs etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

The structure was solved by direct-phase determination. The parameters of the complete structure could be refined by full-matrix least-squares methods including anisotropic displacement parameters for non-H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7592 (5)0.5058 (7)0.0268 (3)0.0373 (13)
C20.8578 (5)0.5846 (7)0.0729 (3)0.0422 (14)
H20.8742 (5)0.5731 (7)0.1248 (3)0.051*
C30.9302 (5)0.6768 (7)0.0446 (3)0.0460 (15)
H30.9950 (5)0.7253 (7)0.0768 (3)0.055*
C40.9065 (5)0.6978 (7)0.0326 (3)0.0392 (13)
C50.8127 (5)0.6259 (7)0.0801 (3)0.0377 (13)
H50.7985 (5)0.6397 (7)0.1317 (3)0.045*
C60.7367 (4)0.5307 (6)0.0519 (3)0.0311 (12)
C70.6382 (4)0.4638 (6)0.1063 (3)0.0339 (12)
H70.6304 (4)0.4864 (6)0.1567 (3)0.041*
C80.4641 (4)0.3107 (6)0.1476 (3)0.0321 (12)
C90.4449 (5)0.3338 (7)0.2248 (3)0.0403 (13)
H90.4959 (5)0.3972 (7)0.2424 (3)0.048*
C100.3511 (5)0.2632 (8)0.2748 (3)0.0432 (15)
H100.3385 (5)0.2810 (8)0.3261 (3)0.052*
C110.2758 (5)0.1672 (8)0.2503 (3)0.046 (2)
H110.2128 (5)0.1194 (8)0.2847 (3)0.055*
C120.2945 (4)0.1416 (7)0.1733 (3)0.0397 (14)
H120.2434 (4)0.0766 (7)0.1565 (3)0.048*
C130.3882 (4)0.2119 (6)0.1216 (3)0.0327 (12)
C140.3562 (4)0.1027 (6)0.0105 (3)0.0323 (12)
H140.2912 (4)0.0518 (6)0.0415 (3)0.039*
C150.3794 (4)0.0761 (6)0.0686 (3)0.0297 (12)
C160.3004 (4)0.0206 (7)0.0933 (3)0.0346 (12)
H160.2375 (4)0.0668 (7)0.0583 (3)0.042*
C170.3151 (4)0.0473 (7)0.1680 (3)0.0351 (12)
C180.4091 (4)0.0204 (7)0.2207 (3)0.0372 (13)
H180.4200 (4)0.0006 (7)0.2715 (3)0.045*
C190.4848 (5)0.1165 (7)0.1986 (3)0.0387 (13)
H190.5456 (5)0.1635 (7)0.2350 (3)0.046*
C200.4747 (4)0.1483 (7)0.1222 (3)0.0341 (12)
N10.5592 (4)0.3742 (5)0.0906 (2)0.0325 (10)
N20.4171 (3)0.1905 (5)0.0427 (2)0.0303 (10)
O10.6948 (3)0.4196 (5)0.0575 (2)0.0451 (10)
O20.5531 (3)0.2365 (5)0.1052 (2)0.0416 (10)
Br11.00562 (6)0.82823 (9)0.07253 (4)0.0585 (2)
Br20.21163 (5)0.18366 (9)0.20131 (3)0.0539 (2)
Cu10.55747 (5)0.30701 (8)0.00928 (3)0.0317 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (3)0.040 (3)0.032 (3)0.001 (3)0.004 (2)0.000 (2)
C20.036 (3)0.058 (4)0.025 (3)0.006 (3)0.004 (2)0.004 (3)
C30.041 (3)0.051 (4)0.038 (3)0.007 (3)0.002 (3)0.003 (3)
C40.037 (3)0.036 (3)0.045 (3)0.003 (3)0.013 (3)0.003 (3)
C50.044 (3)0.040 (3)0.027 (3)0.002 (3)0.008 (2)0.005 (2)
C60.030 (3)0.034 (3)0.026 (2)0.000 (2)0.002 (2)0.001 (2)
C70.041 (3)0.036 (3)0.022 (2)0.004 (3)0.004 (2)0.001 (2)
C80.027 (3)0.037 (3)0.026 (2)0.005 (3)0.002 (2)0.006 (2)
C90.043 (3)0.048 (4)0.025 (2)0.001 (3)0.001 (2)0.002 (3)
C100.039 (3)0.065 (4)0.023 (2)0.004 (3)0.003 (2)0.000 (3)
C110.038 (3)0.061 (4)0.029 (3)0.002 (3)0.006 (2)0.006 (3)
C120.030 (3)0.057 (4)0.025 (3)0.001 (3)0.005 (2)0.001 (3)
C130.033 (3)0.036 (3)0.025 (2)0.005 (3)0.002 (2)0.001 (2)
C140.026 (3)0.039 (3)0.026 (2)0.001 (2)0.001 (2)0.002 (2)
C150.027 (3)0.036 (3)0.023 (2)0.007 (2)0.001 (2)0.003 (2)
C160.029 (3)0.041 (3)0.028 (3)0.003 (3)0.002 (2)0.000 (2)
C170.033 (3)0.041 (3)0.031 (3)0.001 (3)0.008 (2)0.003 (3)
C180.038 (3)0.048 (4)0.022 (2)0.004 (3)0.002 (2)0.001 (2)
C190.035 (3)0.049 (3)0.028 (3)0.000 (3)0.002 (2)0.000 (3)
C200.030 (3)0.042 (3)0.027 (2)0.003 (3)0.002 (2)0.000 (2)
N10.036 (3)0.033 (2)0.022 (2)0.005 (2)0.002 (2)0.001 (2)
N20.027 (2)0.037 (3)0.021 (2)0.001 (2)0.004 (2)0.002 (2)
O10.042 (2)0.060 (3)0.024 (2)0.019 (2)0.004 (2)0.003 (2)
O20.041 (2)0.057 (3)0.020 (2)0.010 (2)0.004 (2)0.004 (2)
Br10.0532 (4)0.0687 (5)0.0571 (4)0.0174 (4)0.0214 (3)0.0037 (4)
Br20.0545 (4)0.0694 (5)0.0359 (3)0.0194 (4)0.0096 (3)0.0030 (3)
Cu10.0321 (4)0.0376 (4)0.0199 (3)0.0003 (3)0.0020 (2)0.0006 (3)
Geometric parameters (Å, º) top
C1—O11.291 (6)C11—H110.93
C1—C21.411 (7)C12—C131.385 (7)
C1—C61.423 (7)C12—H120.93
C2—C31.364 (8)C13—N21.416 (6)
C2—H20.93C14—N21.286 (6)
C3—C41.388 (8)C14—C151.430 (6)
C3—H30.93C14—H140.93
C4—C51.358 (8)C15—C161.409 (7)
C4—Br11.898 (5)C15—C201.421 (7)
C5—C61.409 (7)C16—C171.362 (7)
C5—H50.93C16—H160.93
C6—C71.434 (7)C17—C181.388 (7)
C7—N11.298 (6)C17—Br21.899 (5)
C7—H70.93C18—C191.351 (7)
C8—C91.396 (7)C18—H180.93
C8—C131.401 (7)C19—C201.410 (7)
C8—N11.423 (6)C19—H190.93
C9—C101.374 (8)C20—O21.296 (6)
C9—H90.93N1—Cu11.936 (4)
C10—C111.369 (8)N2—Cu11.946 (4)
C10—H100.93O1—Cu11.887 (4)
C11—C121.398 (7)O2—Cu11.882 (3)
O1—C1—C2119.4 (5)C12—C13—N2125.5 (5)
O1—C1—C6124.2 (5)C8—C13—N2115.4 (4)
C2—C1—C6116.3 (5)N2—C14—C15125.9 (5)
C3—C2—C1122.7 (5)N2—C14—H14117.1 (3)
C3—C2—H2118.7 (3)C15—C14—H14117.1 (3)
C1—C2—H2118.7 (3)C16—C15—C20119.6 (4)
C2—C3—C4119.7 (5)C16—C15—C14117.5 (4)
C2—C3—H3120.2 (3)C20—C15—C14122.8 (5)
C4—C3—H3120.2 (3)C17—C16—C15120.8 (5)
C5—C4—C3120.6 (5)C17—C16—H16119.6 (3)
C5—C4—Br1119.4 (4)C15—C16—H16119.6 (3)
C3—C4—Br1120.0 (4)C16—C17—C18120.0 (5)
C4—C5—C6120.6 (5)C16—C17—Br2120.9 (4)
C4—C5—H5119.7 (3)C18—C17—Br2119.1 (4)
C6—C5—H5119.7 (3)C19—C18—C17120.4 (5)
C5—C6—C1120.0 (5)C19—C18—H18119.8 (3)
C5—C6—C7116.5 (4)C17—C18—H18119.8 (3)
C1—C6—C7123.4 (5)C18—C19—C20122.3 (5)
N1—C7—C6125.0 (4)C18—C19—H19118.8 (3)
N1—C7—H7117.5 (3)C20—C19—H19118.8 (3)
C6—C7—H7117.5 (3)O2—C20—C19118.8 (5)
C9—C8—C13119.5 (4)O2—C20—C15124.3 (4)
C9—C8—N1125.4 (5)C19—C20—C15116.8 (5)
C13—C8—N1115.1 (4)C7—N1—C8122.0 (4)
C10—C9—C8120.3 (5)C7—N1—Cu1125.4 (3)
C10—C9—H9119.8 (3)C8—N1—Cu1112.6 (3)
C8—C9—H9119.8 (3)C14—N2—C13122.6 (4)
C11—C10—C9120.9 (5)C14—N2—Cu1125.0 (3)
C11—C10—H10119.5 (3)C13—N2—Cu1112.4 (3)
C9—C10—H10119.5 (3)C1—O1—Cu1127.9 (3)
C10—C11—C12119.4 (5)C20—O2—Cu1127.9 (3)
C10—C11—H11120.3 (3)O2—Cu1—O187.4 (2)
C12—C11—H11120.3 (3)O2—Cu1—N1178.4 (2)
C13—C12—C11120.8 (5)O1—Cu1—N194.1 (2)
C13—C12—H12119.6 (3)O2—Cu1—N293.9 (2)
C11—C12—H12119.6 (3)O1—Cu1—N2178.5 (2)
C12—C13—C8119.1 (4)N1—Cu1—N284.6 (2)
O1—C1—C2—C3179.6 (5)C14—C15—C20—O24.1 (8)
C6—C1—C2—C31.5 (8)C16—C15—C20—C190.5 (7)
C1—C2—C3—C41.0 (9)C14—C15—C20—C19177.7 (5)
C2—C3—C4—C50.7 (9)C6—C7—N1—C8179.5 (5)
C2—C3—C4—Br1179.2 (4)C6—C7—N1—Cu11.2 (8)
C3—C4—C5—C61.0 (9)C9—C8—N1—C70.8 (8)
Br1—C4—C5—C6179.0 (4)C13—C8—N1—C7178.0 (5)
C4—C5—C6—C11.5 (8)C9—C8—N1—Cu1177.6 (4)
C4—C5—C6—C7178.2 (5)C13—C8—N1—Cu10.4 (5)
O1—C1—C6—C5179.5 (5)C15—C14—N2—C13179.6 (5)
C2—C1—C6—C51.7 (8)C15—C14—N2—Cu10.7 (8)
O1—C1—C6—C70.8 (9)C12—C13—N2—C140.9 (8)
C2—C1—C6—C7178.0 (5)C8—C13—N2—C14179.7 (5)
C5—C6—C7—N1179.7 (5)C12—C13—N2—Cu1178.8 (4)
C1—C6—C7—N10.0 (8)C8—C13—N2—Cu10.0 (6)
C13—C8—C9—C101.4 (8)C2—C1—O1—Cu1178.4 (4)
N1—C8—C9—C10178.5 (5)C6—C1—O1—Cu10.3 (8)
C8—C9—C10—C111.1 (9)C19—C20—O2—Cu1176.5 (4)
C9—C10—C11—C120.4 (9)C15—C20—O2—Cu15.3 (8)
C10—C11—C12—C130.2 (9)C20—O2—Cu1—O1177.6 (5)
C11—C12—C13—C80.5 (8)C20—O2—Cu1—N125 (7)
C11—C12—C13—N2178.2 (5)C20—O2—Cu1—N23.1 (5)
C9—C8—C13—C121.2 (8)C1—O1—Cu1—O2178.8 (5)
N1—C8—C13—C12178.5 (5)C1—O1—Cu1—N10.6 (5)
C9—C8—C13—N2177.7 (5)C1—O1—Cu1—N225 (7)
N1—C8—C13—N20.3 (6)C7—N1—Cu1—O2156 (6)
N2—C14—C15—C16178.2 (5)C8—N1—Cu1—O222 (7)
N2—C14—C15—C200.9 (8)C7—N1—Cu1—O11.3 (5)
C20—C15—C16—C170.8 (8)C8—N1—Cu1—O1179.7 (3)
C14—C15—C16—C17178.2 (5)C7—N1—Cu1—N2178.1 (5)
C15—C16—C17—C180.3 (8)C8—N1—Cu1—N20.4 (3)
C15—C16—C17—Br2177.9 (4)C14—N2—Cu1—O20.1 (4)
C16—C17—C18—C191.8 (8)C13—N2—Cu1—O2179.6 (3)
Br2—C17—C18—C19179.4 (4)C14—N2—Cu1—O1154 (7)
C17—C18—C19—C202.1 (8)C13—N2—Cu1—O125 (7)
C18—C19—C20—O2177.3 (5)C14—N2—Cu1—N1179.5 (4)
C18—C19—C20—C151.0 (8)C13—N2—Cu1—N10.2 (3)
C16—C15—C20—O2178.7 (5)

Experimental details

Crystal data
Chemical formula[Cu(C20H12Br2N2O2)]
Mr535.70
Crystal system, space groupMonoclinic, P21/n
Temperature (K)299
a, b, c (Å)12.114 (1), 8.095 (2), 18.538 (6)
β (°) 106.30 (1)
V3)1744.8 (7)
Z4
Radiation typeMo Kα
µ (mm1)5.85
Crystal size (mm)0.30 × 0.13 × 0.05
Data collection
DiffractometerEnraf-Nonius CAD-4
diffractometer
Absorption correctionEmpirical (using intensity measurements) via ψ scans (North et al., 1968)
Tmin, Tmax0.421, 0.752
No. of measured, independent and
observed [I > 2σ(I)] reflections
6199, 3399, 1973
Rint0.045
(sin θ/λ)max1)0.616
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.115, 1.02
No. of reflections3399
No. of parameters245
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.81, 1.08

Computer programs: CAD-4 Diffractometer Control Software (Enraf-Nonius, 1993), CAD-4 Diffractometer Control Software, REDU4 (Stoe & Cie, 1991), SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), ORTEP-3 for Windows (Farrugia, 1997), SHELXL93.

Selected geometric parameters (Å, º) top
C1—O11.291 (6)C17—Br21.899 (5)
C4—Br11.898 (5)C20—O21.296 (6)
C7—N11.298 (6)N1—Cu11.936 (4)
C8—N11.423 (6)N2—Cu11.946 (4)
C13—N21.416 (6)O1—Cu11.887 (4)
C14—N21.286 (6)O2—Cu11.882 (3)
O1—C1—C2119.4 (5)C7—N1—C8122.0 (4)
O1—C1—C6124.2 (5)C7—N1—Cu1125.4 (3)
C5—C4—Br1119.4 (4)C8—N1—Cu1112.6 (3)
C3—C4—Br1120.0 (4)C14—N2—C13122.6 (4)
N1—C7—C6125.0 (4)C14—N2—Cu1125.0 (3)
C9—C8—N1125.4 (5)C13—N2—Cu1112.4 (3)
C13—C8—N1115.1 (4)C1—O1—Cu1127.9 (3)
C12—C13—N2125.5 (5)C20—O2—Cu1127.9 (3)
C8—C13—N2115.4 (4)O2—Cu1—O187.4 (2)
N2—C14—C15125.9 (5)O2—Cu1—N1178.4 (2)
C16—C17—Br2120.9 (4)O1—Cu1—N194.1 (2)
C18—C17—Br2119.1 (4)O2—Cu1—N293.9 (2)
O2—C20—C19118.8 (5)O1—Cu1—N2178.5 (2)
O2—C20—C15124.3 (4)N1—Cu1—N284.6 (2)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds