Download citation
Download citation
link to html
The crystal structure of a methanol-water solvate ofleurosine me­thio­dide, (leurosine-CH3)+I-·3CH3OH·2H2O (C47H59IN4O9·3CH3OH·2H2O), is described. The piperidine ring of the upper part of the mol­ecule adopts a sofa conformation. An intramolecular hydrogen bond between the tertiary N and the hydroxyl group of the vindoline moiety of the mol­ecule is present.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270199014055/gs1056sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270199014055/gs1056Isup2.hkl
Contains datablock I

CCDC reference: 142766

Comment top

Leurosine is the most abundant dimeric antitumour alkaloid isolated from the Madagascar periwinkle (Catharanthus Roseus). It belongs to the family of Vinca alkaloids which includes, amongst others, vinblastine (Magnus et al., 1990), vincristine (Mangeney et al., 1979) and anhydrovinblastine (Scott et al., 1978). These compounds and vinorelbine (Brossi et al., 1990), a semisynthetic derivative, inhibit mitosis by binding to tubuline, thus allowing a broad spectrum of activity in the treatment of various carcinomas. The identification of leurosine was achieved by spectroscopic comparison with related alkaloids and by chemical synthesis. Indeed, the mild oxidation of anhydrovinblastine furnished, as the major product, the corresponding epoxidized leurosine (Langlois & Potier, 1979). However, no X-ray data have yet been reported for leurosine and the present study was initiated to resolve the solid state conformation of leurosine methiodide as the methanol-water solvate, (I).

The structure of (I) is ionic, (leurosine-CH3)+ I·3CH3OH·2H2O, and the cation structure is shown in Fig. 1. The central six-membered ring of the vindoline moiety, C2/C12/C19/C5/C4/C3, is in a boat conformation, the C3 and C19 atoms being 0.694 (9) and 0.439 (9) Å from the plane defined within ±0.087 Å by the four remaining atoms. The other six-membered ring of the vindoline moiety, N9/C8/C7/C6/C5/C19, is in a sofa conformation: atoms C19, C5, C6 and C7 are coplanar within ±0.016 Å and the N9 and C8 atoms are on the same side at 0.78 (1) and 0.23 (1) Å from this plane. The O3—N9 bond length of 2.614 (7) Å is indicative of a short intramolecular hydrogen bond between the tertiary N and the hydroxyl group: H3A···N9 1.84 Å and O3—H3A···N9 157.8°. The five-membered ring N9/C10/C11/C12/C19 adopts an envelope conformation, with atom C19 deviating by 0.657 (9) Å from the plane formed by the remaining four atoms at ± 0.018 Å. Comparison of the vindoline moiety of leurosine and of 18'-epivinblastine (Lynch et al., 1991) shows that the conformation of these three rings is similar in both compounds.

The piperidine ring of the upper part of the molecule adopts a sofa conformation. Atoms C2', C3', C4' and C5' are coplanar to within 0.010 Å, with atoms C19' and N6' being 0.97 (1) and 0.81 (1) Å out of this plane; the oxiran atom O4' is on the same side at 1.206 (8) Å, leading to a boat conformation for the seven-membered ring. In 18'-epivinblastine the corresponding piperidine ring has a chair conformation. On the other hand, a similar boat-chair conformation is observed in both compounds for the azacyclononene ring.

The structure of (I) is stabilized by hydrogen bonds between methanol and water molecules [O···O 2.63 (1)–2.87 (2) Å], between a water molecule and the I atom [I1···O31(x − 1/2, 7/2 − y, −z) 3.52 (1) and I2···O31 2.99 (2) Å] and between the indolino N16'H and a methanol molecule [N16'···O29(x − 1, y, z) 2.959 (8) Å and N16'-H16A···O29(x − 1, y, z) 149.3°].

Experimental top

Leurosine (0.5 g) was added portionwise to iodomethane (5 ml). The solution was stirred at room temperature for 1 h and the solvent was then removed under reduced pressure. Suitable crystals of (I) were obtained by slow evaporation of a methanol-water-tetrahydrofuran solution.

Refinement top

H atoms (except those of the solvent molecules) were introduced at calculated positions as riding atoms, with an isotropic displacement parameter equal to 1.2 (CH, CH2) or 1.5 (CH3) times that of the parent atom. Solvent H atoms? The I atom was found disordered on two positions, with occupancy factors of 0.755 (4) and 0.241 (4). The maximum peak in the difference map was found 1.83 Å from C30 and the minimum 1.12 Å from I1.

Computing details top

Data collection: DENZO-SMN (Otwinowski & Minor, 1997); cell refinement: DENZO-SMN; data reduction: DENZO-SMN; program(s) used to solve structure: SHELXS86 (Sheldrick, 1990); program(s) used to refine structure: SHELXL93 (Sheldrick, 1993); molecular graphics: SHELXTL (Sheldrick, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The structure of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. H atoms and the solvent molecules are omitted for clarity.
(I) top
Crystal data top
C47H59IN4O9·3CH3OH·2H2ODx = 1.352 Mg m3
Mr = 1083.04Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, P212121Cell parameters from about 10000 reflections
a = 9.5567 (19) Åθ = 3–30°
b = 20.491 (4) ŵ = 0.67 mm1
c = 27.169 (5) ÅT = 123 K
V = 5320.5 (18) Å3Irregular, colourless
Z = 40.30 × 0.20 × 0.15 mm
F(000) = 2272
Data collection top
Nonius Kappa CCD
diffractometer
8109 independent reflections
Radiation source: fine-focus sealed tube5893 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.055
ϕ rotation scans with 2° stepsθmax = 25.1°, θmin = 2.0°
Absorption correction: empirical (using intensity measurements)
(MULABS in PLATON; Spek, 1998)
h = 1111
Tmin = 0.867, Tmax = 0.905k = 2424
17090 measured reflectionsl = 3232
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.211 w = 1/[σ2(Fo2) + (0.1266P)2 + 8.9316P]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max = 0.022
8109 reflectionsΔρmax = 1.11 e Å3
633 parametersΔρmin = 0.78 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.06 (3)
Crystal data top
C47H59IN4O9·3CH3OH·2H2OV = 5320.5 (18) Å3
Mr = 1083.04Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 9.5567 (19) ŵ = 0.67 mm1
b = 20.491 (4) ÅT = 123 K
c = 27.169 (5) Å0.30 × 0.20 × 0.15 mm
Data collection top
Nonius Kappa CCD
diffractometer
8109 independent reflections
Absorption correction: empirical (using intensity measurements)
(MULABS in PLATON; Spek, 1998)
5893 reflections with I > 2σ(I)
Tmin = 0.867, Tmax = 0.905Rint = 0.055
17090 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.073H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.211Δρmax = 1.11 e Å3
S = 0.97Δρmin = 0.78 e Å3
8109 reflectionsAbsolute structure: Flack (1983)
633 parametersAbsolute structure parameter: 0.06 (3)
1 restraint
Special details top

Experimental. Unit-cell dimensions were determined from more than a thousand reflections in all the angular range, taken from ten frames with ϕ steps of 2°. A 180° range in ϕ was scanned during data collection with 2°ϕ steps and 10 s exposure by frame·The crystal to detector distance was 40 mm.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement on F2 for ALL reflections except for 132 with very negative F2 or flagged by the user for potential systematic errors. The structure was solved by direct methods and refined by full matrix least-squares on F2 with anisotropic displacement parameters for all non-H atoms.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
I10.3577 (3)1.65982 (5)0.03593 (4)0.1004 (9)0.755 (4)
I20.2269 (8)1.6360 (2)0.03578 (14)0.106 (3)0.241 (4)
O30.2062 (4)1.4326 (2)0.12419 (17)0.0328 (11)
H3A0.23081.42110.15180.049*
O4'0.4984 (5)1.2773 (2)0.33745 (19)0.0375 (12)
O40.3129 (4)1.3267 (2)0.06436 (17)0.0351 (11)
O160.3840 (4)1.1367 (2)0.14360 (15)0.0282 (10)
O22'0.3778 (5)1.0197 (2)0.21295 (17)0.0362 (11)
O23'0.1891 (5)1.0381 (2)0.16549 (16)0.0346 (11)
O230.0577 (6)1.4712 (2)0.05166 (18)0.0496 (14)
O240.0651 (5)1.3720 (2)0.01648 (18)0.0381 (11)
O260.2506 (5)1.2366 (3)0.0220 (2)0.0560 (16)
O280.3328 (16)1.4743 (7)0.3939 (6)0.081 (5)
O290.8775 (7)1.0473 (4)0.1354 (2)0.080 (2)
O300.4125 (8)1.5118 (4)0.0816 (4)0.108 (3)
O310.0442 (17)1.6789 (5)0.0085 (6)0.218 (9)
O320.7683 (12)0.8955 (5)0.0262 (4)0.135 (4)
N10.1195 (5)1.3349 (2)0.10677 (18)0.0265 (11)
N6'0.2726 (6)1.1972 (3)0.3737 (2)0.0340 (13)
N90.2212 (5)1.3787 (3)0.2112 (2)0.0284 (12)
N16'0.0156 (5)1.0795 (2)0.23463 (19)0.0260 (12)
H16A0.02621.08270.20330.031*
C1'0.3608 (7)1.1363 (3)0.2613 (2)0.0256 (13)
H1'A0.36951.10590.28840.031*
H1'B0.44441.13210.24130.031*
C2'0.3568 (7)1.2066 (3)0.2827 (2)0.0306 (15)
H2'A0.33881.23590.25490.037*
C20.0134 (6)1.3717 (3)0.1349 (2)0.0250 (14)
H2A0.05291.41410.14400.030*
C3'0.4949 (7)1.2243 (3)0.3022 (3)0.0328 (16)
H3'A0.57251.22290.27870.039*
C30.1243 (7)1.3835 (3)0.1028 (2)0.0277 (14)
C4'0.5313 (7)1.2118 (3)0.3529 (3)0.0369 (17)
C40.1993 (6)1.3178 (3)0.0985 (2)0.0267 (14)
H4A0.13381.28610.08450.032*
C5'0.4235 (7)1.1769 (4)0.3841 (3)0.0394 (18)
H5'A0.44391.18510.41850.047*
H5'B0.43221.13030.37860.047*
C50.2539 (6)1.2907 (3)0.1473 (2)0.0289 (15)
C60.4098 (7)1.3082 (4)0.1566 (3)0.0364 (17)
H6A0.47551.29390.13380.044*
C7'0.1783 (7)1.1412 (3)0.3869 (2)0.0330 (15)
H7'A0.08301.15740.38780.040*
H7'B0.20181.12730.42010.040*
C70.4555 (7)1.3422 (4)0.1949 (3)0.0398 (17)
H7A0.55171.34630.19910.048*
C8'0.1809 (7)1.0821 (3)0.3544 (2)0.0274 (14)
H8'A0.15731.04440.37440.033*
H8'B0.27621.07600.34290.033*
C80.3643 (7)1.3737 (3)0.2311 (3)0.0361 (16)
H8A0.36341.34850.26130.043*
H8B0.39971.41700.23860.043*
C9'0.0843 (6)1.0821 (3)0.3092 (2)0.0259 (14)
C10'0.0586 (7)1.0612 (3)0.3142 (2)0.0255 (14)
C100.1152 (7)1.4033 (3)0.2460 (3)0.0348 (16)
H10A0.13891.39130.27950.042*
H10B0.10821.45050.24400.042*
C11'0.1405 (8)1.0422 (3)0.3548 (3)0.0346 (16)
H11'A0.10281.04260.38640.042*
C110.0230 (6)1.3710 (3)0.2301 (3)0.0305 (15)
H11A0.05791.34230.25570.037*
H11B0.09361.40370.22290.037*
C12'0.2766 (8)1.0230 (3)0.3475 (3)0.0400 (18)
H12'A0.33201.01210.37440.048*
C120.0145 (6)1.3317 (3)0.1831 (2)0.0252 (14)
C13'0.3332 (7)1.0196 (3)0.2998 (3)0.0378 (17)
H13'A0.42451.00510.29540.045*
C130.0776 (6)1.2720 (3)0.1759 (2)0.0214 (13)
C14'0.2540 (7)1.0377 (3)0.2593 (3)0.0371 (17)
H14'A0.29081.03570.22760.044*
C140.0960 (5)1.2177 (3)0.2053 (2)0.0188 (12)
H14A0.04091.21220.23320.023*
C15'0.1180 (7)1.0588 (3)0.2674 (2)0.0278 (14)
C150.1972 (6)1.1708 (3)0.1932 (2)0.0225 (13)
C160.2789 (6)1.1808 (3)0.1511 (2)0.0257 (14)
C17'0.1043 (6)1.0942 (3)0.2597 (2)0.0236 (13)
C170.2575 (6)1.2337 (3)0.1195 (2)0.0253 (14)
H17A0.30931.23790.09070.030*
C18'0.2323 (6)1.1152 (3)0.2294 (2)0.0228 (13)
C180.1561 (6)1.2800 (3)0.1321 (2)0.0213 (13)
C19'0.2437 (7)1.2214 (3)0.3216 (2)0.0304 (15)
H19'A0.23031.26830.32290.036*
H19'B0.15631.20230.31060.036*
C190.1677 (7)1.3154 (3)0.1923 (2)0.0286 (15)
H19A0.17341.28280.21870.034*
C20'0.6800 (8)1.2018 (4)0.3722 (3)0.049 (2)
H20'A0.68811.22290.40410.059*
H20'B0.69561.15550.37700.059*
C200.2441 (7)1.2158 (3)0.1443 (3)0.0319 (15)
H20A0.28931.20220.11400.038*
H20B0.14591.20440.14150.038*
C21'0.7933 (8)1.2282 (5)0.3386 (4)0.055 (2)
H21'A0.88331.22050.35310.083*
H21'B0.78001.27430.33410.083*
H21'C0.78831.20660.30730.083*
C210.3055 (8)1.1759 (4)0.1858 (3)0.0450 (19)
H21A0.29271.13040.17900.067*
H21B0.40361.18520.18870.067*
H21C0.25921.18690.21610.067*
C22'0.2786 (7)1.0526 (3)0.2019 (2)0.0272 (14)
C220.2258 (7)1.3693 (3)0.0783 (3)0.0350 (16)
H22A0.18471.40690.06290.053*
H22B0.26271.34070.05350.053*
H22C0.30001.38300.09980.053*
C23'0.2264 (9)0.9830 (4)0.1352 (3)0.053 (2)
H23'A0.15600.97660.11040.079*
H23'B0.23290.94460.15530.079*
H23'C0.31500.99100.11970.079*
C230.0803 (8)1.4065 (3)0.0517 (2)0.0349 (17)
C24'0.2395 (8)1.2532 (4)0.4085 (3)0.0452 (19)
H24'A0.29841.28980.40090.068*
H24'B0.25581.23970.44180.068*
H24'C0.14321.26560.40470.068*
C240.0153 (13)1.4978 (4)0.0050 (3)0.070 (3)
H24A0.00241.54410.00810.106*
H24B0.08631.48920.01910.106*
H24C0.07101.47790.00510.106*
C250.4345 (7)1.1280 (3)0.0949 (2)0.0321 (15)
H25A0.50791.09600.09500.048*
H25B0.47031.16870.08280.048*
H25C0.35961.11340.07410.048*
C260.3224 (8)1.2841 (4)0.0260 (3)0.0438 (19)
C270.4343 (8)1.3036 (5)0.0087 (3)0.061 (3)
H27A0.47851.34280.00300.092*
H27B0.50251.26930.01090.092*
H27C0.39451.31130.04060.092*
C280.3893 (17)1.4277 (6)0.3569 (7)0.131 (6)
C290.9269 (16)1.0763 (8)0.0885 (5)0.116 (5)
C300.4594 (16)1.4906 (6)0.0397 (4)0.101 (4)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
I10.210 (2)0.0504 (6)0.0410 (5)0.0262 (9)0.0166 (7)0.0050 (4)
I20.172 (6)0.084 (3)0.062 (2)0.030 (3)0.025 (2)0.0045 (19)
O30.039 (3)0.024 (2)0.036 (3)0.0077 (19)0.006 (2)0.003 (2)
O4'0.043 (3)0.022 (2)0.047 (3)0.000 (2)0.014 (2)0.002 (2)
O40.033 (3)0.037 (3)0.035 (3)0.007 (2)0.010 (2)0.015 (2)
O160.028 (2)0.034 (2)0.022 (2)0.0095 (19)0.0041 (18)0.0049 (19)
O22'0.050 (3)0.026 (2)0.033 (3)0.008 (2)0.007 (2)0.002 (2)
O23'0.042 (3)0.029 (2)0.032 (3)0.002 (2)0.003 (2)0.010 (2)
O230.090 (4)0.026 (3)0.032 (3)0.009 (3)0.010 (3)0.005 (2)
O240.057 (3)0.031 (3)0.026 (3)0.003 (2)0.006 (2)0.002 (2)
O260.046 (3)0.057 (4)0.065 (4)0.006 (3)0.003 (3)0.037 (3)
O280.091 (11)0.057 (9)0.095 (12)0.030 (8)0.032 (9)0.004 (8)
O290.072 (4)0.136 (6)0.032 (3)0.009 (4)0.005 (3)0.012 (4)
O300.090 (5)0.069 (5)0.163 (9)0.032 (4)0.078 (5)0.043 (5)
O310.291 (16)0.079 (7)0.286 (18)0.001 (8)0.215 (15)0.007 (9)
O320.159 (8)0.122 (8)0.125 (9)0.026 (7)0.019 (7)0.036 (7)
N10.031 (3)0.024 (3)0.025 (3)0.004 (2)0.000 (2)0.002 (2)
N6'0.049 (4)0.032 (3)0.022 (3)0.004 (3)0.003 (3)0.004 (2)
N90.030 (3)0.025 (3)0.031 (3)0.001 (2)0.001 (2)0.008 (2)
N16'0.031 (3)0.025 (3)0.022 (3)0.002 (2)0.002 (2)0.006 (2)
C1'0.034 (4)0.024 (3)0.018 (3)0.001 (3)0.002 (3)0.002 (2)
C2'0.034 (4)0.025 (3)0.032 (4)0.004 (3)0.001 (3)0.003 (3)
C20.028 (3)0.022 (3)0.025 (3)0.001 (3)0.005 (3)0.001 (3)
C3'0.033 (4)0.028 (3)0.038 (4)0.002 (3)0.003 (3)0.008 (3)
C30.035 (4)0.021 (3)0.027 (3)0.000 (3)0.011 (3)0.003 (3)
C4'0.046 (4)0.026 (4)0.038 (4)0.004 (3)0.015 (3)0.005 (3)
C40.021 (3)0.025 (3)0.034 (4)0.004 (2)0.007 (3)0.004 (3)
C5'0.044 (4)0.037 (4)0.037 (4)0.007 (3)0.017 (3)0.000 (3)
C50.027 (4)0.030 (4)0.030 (4)0.002 (3)0.009 (3)0.009 (3)
C60.026 (4)0.038 (4)0.046 (4)0.005 (3)0.004 (3)0.000 (3)
C7'0.043 (4)0.032 (4)0.023 (3)0.002 (3)0.002 (3)0.003 (3)
C70.026 (4)0.041 (4)0.052 (5)0.009 (3)0.001 (3)0.001 (4)
C8'0.037 (4)0.018 (3)0.027 (3)0.002 (3)0.003 (3)0.003 (3)
C80.028 (4)0.032 (4)0.048 (4)0.008 (3)0.002 (3)0.009 (3)
C9'0.032 (4)0.021 (3)0.024 (3)0.005 (3)0.005 (3)0.003 (3)
C10'0.033 (4)0.019 (3)0.024 (3)0.000 (3)0.002 (3)0.002 (3)
C100.042 (4)0.026 (3)0.037 (4)0.002 (3)0.003 (3)0.003 (3)
C11'0.046 (5)0.028 (3)0.030 (4)0.009 (3)0.008 (3)0.008 (3)
C110.031 (4)0.026 (3)0.034 (4)0.008 (3)0.003 (3)0.001 (3)
C12'0.042 (5)0.030 (4)0.048 (5)0.009 (3)0.011 (3)0.020 (3)
C120.029 (4)0.022 (3)0.024 (3)0.002 (3)0.003 (3)0.005 (3)
C13'0.030 (4)0.030 (4)0.054 (5)0.001 (3)0.008 (3)0.012 (3)
C130.019 (3)0.025 (3)0.021 (3)0.002 (2)0.001 (2)0.005 (3)
C14'0.043 (4)0.030 (4)0.039 (4)0.002 (3)0.006 (3)0.007 (3)
C140.016 (3)0.021 (3)0.019 (3)0.005 (2)0.004 (2)0.004 (2)
C15'0.035 (4)0.018 (3)0.030 (3)0.002 (3)0.005 (3)0.002 (3)
C150.028 (3)0.020 (3)0.020 (3)0.002 (2)0.001 (3)0.004 (3)
C160.030 (4)0.026 (3)0.021 (3)0.002 (3)0.001 (3)0.002 (3)
C17'0.025 (3)0.021 (3)0.025 (3)0.000 (2)0.005 (3)0.002 (3)
C170.025 (3)0.030 (3)0.021 (3)0.002 (3)0.002 (3)0.007 (3)
C18'0.032 (4)0.014 (3)0.022 (3)0.001 (2)0.004 (3)0.001 (2)
C180.030 (3)0.014 (3)0.020 (3)0.003 (2)0.007 (3)0.004 (2)
C19'0.037 (4)0.022 (3)0.031 (4)0.004 (3)0.006 (3)0.005 (3)
C190.031 (4)0.022 (3)0.033 (4)0.000 (3)0.001 (3)0.006 (3)
C20'0.051 (5)0.036 (4)0.061 (5)0.004 (3)0.025 (4)0.010 (4)
C200.024 (4)0.026 (3)0.046 (4)0.005 (3)0.002 (3)0.008 (3)
C21'0.038 (5)0.056 (5)0.071 (6)0.008 (4)0.007 (4)0.007 (5)
C210.050 (5)0.034 (4)0.051 (5)0.014 (3)0.008 (4)0.003 (4)
C22'0.037 (4)0.023 (3)0.022 (3)0.002 (3)0.008 (3)0.003 (3)
C220.050 (4)0.028 (3)0.027 (4)0.013 (3)0.008 (3)0.002 (3)
C23'0.083 (6)0.038 (4)0.037 (4)0.003 (4)0.006 (4)0.024 (4)
C230.055 (5)0.023 (3)0.026 (4)0.003 (3)0.017 (3)0.000 (3)
C24'0.060 (5)0.039 (4)0.036 (4)0.003 (4)0.001 (4)0.008 (3)
C240.138 (9)0.045 (5)0.028 (4)0.021 (5)0.007 (5)0.004 (4)
C250.040 (4)0.034 (4)0.023 (4)0.008 (3)0.005 (3)0.002 (3)
C260.036 (4)0.049 (5)0.046 (5)0.009 (4)0.006 (3)0.019 (4)
C270.042 (5)0.105 (8)0.037 (5)0.009 (5)0.007 (4)0.027 (5)
C280.137 (11)0.045 (6)0.213 (18)0.005 (7)0.072 (12)0.014 (9)
C290.137 (12)0.137 (13)0.073 (9)0.005 (9)0.004 (8)0.030 (9)
C300.158 (12)0.093 (8)0.052 (6)0.020 (8)0.024 (7)0.011 (7)
Geometric parameters (Å, º) top
I1—O31i3.516 (12)N16'—C17'1.367 (8)
I1—O32ii3.759 (12)N16'—C15'1.390 (8)
I2—O312.99 (2)N16'—C10'2.233 (8)
O3—C31.401 (8)N16'—C9'2.241 (8)
O3—C232.370 (9)N16'—C18'2.484 (8)
O3—C42.454 (7)N16'—C14'2.524 (9)
O3—C22.460 (7)N16'—O29iv2.959 (8)
O3—O232.554 (7)N16'—C152.983 (8)
O3—N92.614 (7)N16'—C22'3.000 (8)
O3—O302.804 (8)N16'—C143.128 (7)
O3—O42.897 (6)C1'—C2'1.554 (8)
O3—C53.009 (8)C1'—C18'1.564 (9)
O3—C193.054 (8)C2'—C3'1.469 (10)
O3—C8'iii3.127 (7)C2'—C19'1.542 (9)
O3—C123.193 (7)C2—C121.567 (9)
O4'—C4'1.442 (8)C2—C31.598 (8)
O4'—C3'1.449 (8)C3'—C4'1.443 (10)
O4—C261.362 (8)C3—C231.525 (9)
O4—C41.440 (7)C3—C41.530 (9)
O16—C161.367 (7)C4'—C5'1.514 (11)
O16—C251.419 (7)C4'—C20'1.528 (10)
O22'—C22'1.201 (8)C4—C51.529 (10)
O23'—C22'1.341 (8)C5—C201.539 (9)
O23'—C23'1.442 (8)C5—C61.554 (10)
O23'—N16'2.842 (7)C5—C191.559 (9)
O23'—O29iv3.095 (8)C6—C71.327 (10)
O23—C231.343 (8)C7'—C8'1.500 (9)
O23—C241.438 (10)C7—C81.464 (10)
O24—C231.198 (8)C8'—C9'1.535 (9)
O26—C261.197 (9)C8'—O3xii3.127 (7)
O28—C281.49 (2)C8'—O30xii3.162 (9)
O28—O29v2.628 (15)C9'—C17'1.381 (9)
O28—O32v2.87 (2)C9'—C10'1.438 (9)
O29—C291.483 (16)C10'—C15'1.394 (9)
O29—O28vi2.628 (15)C10'—C11'1.408 (9)
O29—N16'vii2.959 (8)C10—C111.540 (9)
O29—O23'vii3.095 (8)C11'—C12'1.373 (11)
O29—O324.423 (14)C11—C121.551 (9)
O30—C301.297 (13)C12'—C13'1.405 (11)
O30—C8'iii3.162 (9)C12—C131.520 (8)
O31—O32viii2.792 (16)C12—C191.522 (10)
O31—I1ix3.516 (12)C13'—C14'1.386 (10)
O32—O31x2.792 (16)C13—C141.382 (8)
O32—O28vi2.87 (2)C13—C181.415 (8)
O32—I1xi3.759 (12)C14'—C15'1.387 (10)
N1—C181.364 (7)C14—C151.402 (8)
N1—C221.458 (8)C15—C161.400 (8)
N1—C21.476 (8)C15—C18'1.540 (8)
N6'—C7'1.503 (9)C16—C171.399 (9)
N6'—C24'1.520 (9)C17'—C18'1.537 (9)
N6'—C5'1.527 (9)C17—C181.400 (9)
N6'—C19'1.525 (9)C18'—C22'1.549 (9)
N9—C81.474 (9)C20'—C21'1.517 (12)
N9—C191.485 (8)C20—C211.511 (10)
N9—C101.474 (9)C26—C271.481 (11)
O31i—I1—O32ii90.9 (3)C10'—N16'—C22'115.3 (3)
C3—O3—C2337.7 (3)C9'—N16'—C22'82.7 (2)
C3—O3—C434.8 (3)C18'—N16'—C22'31.03 (19)
C23—O3—C462.2 (2)C14'—N16'—C22'149.5 (3)
C3—O3—C237.6 (3)O23'—N16'—C22'26.37 (16)
C23—O3—C263.3 (2)O29iv—N16'—C22'90.7 (2)
C4—O3—C261.6 (2)C15—N16'—C22'50.56 (18)
C3—O3—O2365.9 (3)C17'—N16'—C1469.1 (3)
C23—O3—O2331.4 (2)C15'—N16'—C14132.9 (4)
C4—O3—O2393.6 (2)C10'—N16'—C14117.5 (3)
C2—O3—O2377.0 (2)C9'—N16'—C1493.6 (2)
C3—O3—N995.9 (3)C18'—N16'—C1452.67 (18)
C23—O3—N9133.2 (3)C14'—N16'—C14133.1 (3)
C4—O3—N981.6 (2)O23'—N16'—C1482.36 (19)
C2—O3—N974.0 (2)O29iv—N16'—C1495.0 (2)
O23—O3—N9149.2 (2)C15—N16'—C1426.40 (16)
C3—O3—O30129.5 (4)C22'—N16'—C1476.80 (19)
C23—O3—O3098.3 (3)C2'—C1'—C18'116.4 (5)
C4—O3—O30117.2 (3)C3'—C2'—C19'109.5 (6)
C2—O3—O30160.5 (3)C3'—C2'—C1'110.0 (5)
O23—O3—O3083.8 (3)C19'—C2'—C1'117.2 (5)
N9—O3—O30125.5 (3)N1—C2—C12106.4 (5)
C3—O3—O455.0 (3)N1—C2—C3111.1 (5)
C23—O3—O462.8 (2)C12—C2—C3113.3 (5)
C4—O3—O429.77 (17)N1—C2—O3141.6 (4)
C2—O3—O489.2 (2)C12—C2—O3102.6 (4)
O23—O3—O489.7 (2)C3—C2—O332.3 (3)
N9—O3—O499.9 (2)C4'—C3'—O4'59.8 (4)
O30—O3—O487.4 (2)C4'—C3'—C2'121.2 (6)
C3—O3—C558.5 (3)O4'—C3'—C2'116.4 (5)
C23—O3—C591.9 (2)O3—C3—C23108.1 (5)
C4—O3—C530.4 (2)O3—C3—C4113.7 (5)
C2—O3—C567.3 (2)C23—C3—C4109.4 (5)
O23—O3—C5123.0 (2)O3—C3—C2110.0 (5)
N9—O3—C552.73 (18)C23—C3—C2108.5 (5)
O30—O3—C5122.6 (3)C4—C3—C2107.0 (5)
O4—O3—C548.71 (17)O4'—C4'—C3'60.3 (4)
C3—O3—C1967.7 (3)O4'—C4'—C5'117.1 (6)
C23—O3—C19105.4 (2)C3'—C4'—C5'117.0 (6)
C4—O3—C1954.2 (2)O4'—C4'—C20'115.3 (6)
C2—O3—C1955.0 (2)C3'—C4'—C20'125.1 (7)
O23—O3—C19130.1 (2)C5'—C4'—C20'112.2 (6)
N9—O3—C1929.06 (17)O4—C4—C5110.3 (5)
O30—O3—C19142.2 (3)O4—C4—C3106.9 (5)
O4—O3—C1978.09 (18)C5—C4—C3114.4 (5)
C5—O3—C1929.78 (17)O4—C4—O392.4 (4)
C3—O3—C8'iii137.5 (4)C5—C4—O395.3 (4)
C23—O3—C8'iii109.7 (3)C3—C4—O331.5 (3)
C4—O3—C8'iii171.7 (3)C4'—C5'—N6'114.2 (6)
C2—O3—C8'iii114.2 (2)C20—C5—C4107.2 (5)
O23—O3—C8'iii78.3 (2)C20—C5—C6107.3 (5)
N9—O3—C8'iii104.5 (2)C4—C5—C6112.6 (5)
O30—O3—C8'iii64.2 (2)C20—C5—C19109.5 (5)
O4—O3—C8'iii149.9 (2)C4—C5—C19112.5 (5)
C5—O3—C8'iii156.8 (2)C6—C5—C19107.7 (5)
C19—O3—C8'iii130.4 (2)C20—C5—O3160.5 (5)
C3—O3—C1254.7 (3)C4—C5—O354.3 (3)
C23—O3—C1288.8 (2)C6—C5—O387.5 (4)
C4—O3—C1260.4 (2)C19—C5—O376.7 (3)
C2—O3—C1228.62 (19)C7—C6—C5124.3 (6)
O23—O3—C12105.6 (2)N6'—C7'—C8'117.7 (5)
N9—O3—C1245.91 (17)C6—C7—C8124.3 (6)
O30—O3—C12170.2 (3)C7'—C8'—C9'117.4 (5)
O4—O3—C1289.88 (17)C7'—C8'—O3xii133.0 (4)
C5—O3—C1249.93 (17)C9'—C8'—O3xii101.3 (4)
C19—O3—C1228.09 (18)C7'—C8'—O30xii93.1 (4)
C8'iii—O3—C12119.8 (2)C9'—C8'—O30xii149.4 (4)
C4'—O4'—C3'59.9 (4)O3xii—C8'—O30xii52.95 (18)
C26—O4—C4117.5 (5)C7—C8—N9109.7 (6)
C26—O4—O3158.9 (4)C17'—C9'—C10'106.0 (5)
C4—O4—O357.8 (3)C17'—C9'—C8'134.1 (6)
C16—O16—C25118.2 (5)C10'—C9'—C8'119.7 (6)
C22'—O23'—C23'115.9 (6)C17'—C9'—N16'35.1 (3)
C22'—O23'—N16'83.4 (3)C10'—C9'—N16'70.9 (4)
C23'—O23'—N16'141.3 (4)C8'—C9'—N16'168.2 (5)
C22'—O23'—O29iv142.7 (4)C15'—C10'—C11'118.6 (6)
C23'—O23'—O29iv97.7 (4)C15'—C10'—C9'108.2 (5)
N16'—O23'—O29iv59.61 (17)C11'—C10'—C9'133.2 (6)
C23—O23—C24114.8 (6)C15'—C10'—N16'36.6 (3)
C23—O23—O366.7 (4)C11'—C10'—N16'155.2 (5)
C24—O23—O3162.6 (6)C9'—C10'—N16'71.6 (4)
C28—O28—O29v115.9 (11)N9—C10—C11105.2 (5)
C28—O28—O32v105.8 (9)C12'—C11'—C10'119.5 (7)
O29v—O28—O32v106.9 (6)C10—C11—C12104.8 (5)
C29—O29—O28vi102.2 (7)C11'—C12'—C13'120.9 (7)
C29—O29—N16'vii125.7 (7)C13—C12—C19113.7 (5)
O28vi—O29—N16'vii131.9 (5)C13—C12—C11112.9 (5)
C29—O29—O23'vii86.8 (7)C19—C12—C11101.5 (5)
O28vi—O29—O23'vii141.4 (5)C13—C12—C2102.4 (5)
N16'vii—O29—O23'vii55.95 (17)C19—C12—C2114.6 (5)
C29—O29—O3277.3 (6)C11—C12—C2112.1 (5)
O28vi—O29—O3238.4 (4)C13—C12—O3142.1 (4)
N16'vii—O29—O32148.2 (3)C19—C12—O370.9 (3)
O23'vii—O29—O32111.2 (3)C11—C12—O3102.0 (4)
C30—O30—O3114.3 (7)C2—C12—O348.7 (3)
C30—O30—C8'iii151.2 (10)C14'—C13'—C12'120.6 (7)
O3—O30—C8'iii62.88 (19)C14—C13—C18120.8 (5)
O32viii—O31—I2111.6 (6)C14—C13—C12130.3 (5)
O32viii—O31—I1ix112.3 (5)C18—C13—C12108.8 (5)
I2—O31—I1ix126.3 (5)C15'—C14'—C13'117.9 (7)
O31x—O32—O28vi107.7 (6)C15'—C14'—N16'24.7 (3)
O31x—O32—I1xi126.0 (5)C13'—C14'—N16'142.5 (6)
O28vi—O32—I1xi115.9 (4)C13—C14—C15120.3 (5)
O31x—O32—O29142.3 (6)C13—C14—N16'146.4 (4)
O28vi—O32—O2934.6 (3)C15—C14—N16'71.0 (3)
I1xi—O32—O2986.6 (2)C14'—C15'—N16'130.7 (6)
C18—N1—C22119.2 (5)C14'—C15'—C10'122.6 (6)
C18—N1—C2109.6 (5)N16'—C15'—C10'106.7 (5)
C22—N1—C2120.4 (5)C14—C15—C16118.4 (5)
C7'—N6'—C24'107.6 (5)C14—C15—C18'120.5 (5)
C7'—N6'—C5'108.3 (5)C16—C15—C18'120.5 (5)
C24'—N6'—C5'106.7 (5)C14—C15—N16'82.6 (3)
C7'—N6'—C19'111.2 (5)C16—C15—N16'141.3 (4)
C24'—N6'—C19'107.0 (5)C18'—C15—N16'56.3 (3)
C5'—N6'—C19'115.6 (5)O16—C16—C17121.9 (5)
C8—N9—C19112.7 (5)O16—C16—C15115.8 (5)
C8—N9—C10115.2 (5)C17—C16—C15122.3 (6)
C19—N9—C10106.5 (5)N16'—C17'—C9'109.3 (5)
C8—N9—O3114.3 (4)N16'—C17'—C18'117.5 (5)
C19—N9—O392.1 (4)C9'—C17'—C18'133.1 (6)
C10—N9—O3113.4 (4)C16—C17—C18118.4 (5)
C17'—N16'—C15'109.8 (5)C17'—C18'—C15112.1 (5)
C17'—N16'—C10'73.0 (4)C17'—C18'—C22'104.6 (5)
C15'—N16'—C10'36.7 (3)C15—C18'—C22'111.6 (5)
C17'—N16'—C9'35.6 (3)C17'—C18'—C1'113.9 (5)
C15'—N16'—C9'74.2 (4)C15—C18'—C1'108.7 (5)
C10'—N16'—C9'37.5 (3)C22'—C18'—C1'105.7 (5)
C17'—N16'—C18'33.3 (3)C17'—C18'—N16'29.2 (3)
C15'—N16'—C18'143.0 (4)C15—C18'—N16'92.7 (4)
C10'—N16'—C18'106.3 (3)C22'—C18'—N16'93.2 (4)
C9'—N16'—C18'68.8 (2)C1'—C18'—N16'143.0 (4)
C17'—N16'—C14'134.4 (4)N1—C18—C17127.8 (5)
C15'—N16'—C14'24.6 (3)N1—C18—C13112.6 (5)
C10'—N16'—C14'61.3 (3)C17—C18—C13119.6 (5)
C9'—N16'—C14'98.8 (3)N6'—C19'—C2'116.5 (5)
C18'—N16'—C14'167.5 (3)N9—C19—C12101.4 (5)
C17'—N16'—O23'79.5 (3)N9—C19—C5111.9 (5)
C15'—N16'—O23'144.8 (4)C12—C19—C5116.7 (5)
C10'—N16'—O23'135.8 (3)N9—C19—O358.8 (3)
C9'—N16'—O23'108.1 (3)C12—C19—O381.0 (4)
C18'—N16'—O23'52.63 (19)C5—C19—O373.5 (4)
C14'—N16'—O23'134.0 (3)C21'—C20'—C4'114.2 (7)
C17'—N16'—O29iv142.5 (4)C21—C20—C5118.4 (6)
C15'—N16'—O29iv105.8 (4)O22'—C22'—O23'124.3 (6)
C10'—N16'—O29iv141.4 (3)O22'—C22'—C18'124.8 (6)
C9'—N16'—O29iv167.6 (3)O23'—C22'—C18'110.9 (5)
C18'—N16'—O29iv110.0 (3)O22'—C22'—N16'140.3 (4)
C14'—N16'—O29iv81.6 (3)O23'—C22'—N16'70.2 (3)
O23'—N16'—O29iv64.44 (19)C18'—C22'—N16'55.8 (3)
C17'—N16'—C1558.6 (3)O24—C23—O23124.3 (7)
C15'—N16'—C15156.0 (4)O24—C23—C3125.2 (6)
C10'—N16'—C15126.6 (3)O23—C23—C3110.4 (6)
C9'—N16'—C1592.0 (3)O24—C23—O3149.1 (6)
C18'—N16'—C1531.05 (18)O23—C23—O381.9 (4)
C14'—N16'—C15158.2 (3)C3—C23—O334.2 (3)
O23'—N16'—C1557.89 (17)O26—C26—O4123.6 (7)
O29iv—N16'—C1591.8 (2)O26—C26—C27125.1 (7)
C17'—N16'—C22'53.3 (3)O4—C26—C27111.2 (7)
C15'—N16'—C22'142.5 (4)
Symmetry codes: (i) x1/2, y+7/2, z; (ii) x3/2, y+5/2, z; (iii) x, y+1/2, z+1/2; (iv) x1, y, z; (v) x+1, y+1/2, z+1/2; (vi) x+1, y1/2, z+1/2; (vii) x+1, y, z; (viii) x1/2, y+5/2, z; (ix) x+1/2, y+7/2, z; (x) x+1/2, y+5/2, z; (xi) x+3/2, y+5/2, z; (xii) x, y1/2, z+1/2.

Experimental details

Crystal data
Chemical formulaC47H59IN4O9·3CH3OH·2H2O
Mr1083.04
Crystal system, space groupOrthorhombic, P212121
Temperature (K)123
a, b, c (Å)9.5567 (19), 20.491 (4), 27.169 (5)
V3)5320.5 (18)
Z4
Radiation typeMo Kα
µ (mm1)0.67
Crystal size (mm)0.30 × 0.20 × 0.15
Data collection
DiffractometerNonius Kappa CCD
diffractometer
Absorption correctionEmpirical (using intensity measurements)
(MULABS in PLATON; Spek, 1998)
Tmin, Tmax0.867, 0.905
No. of measured, independent and
observed [I > 2σ(I)] reflections
17090, 8109, 5893
Rint0.055
(sin θ/λ)max1)0.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.073, 0.211, 0.97
No. of reflections8109
No. of parameters633
No. of restraints1
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)1.11, 0.78
Absolute structureFlack (1983)
Absolute structure parameter0.06 (3)

Computer programs: DENZO-SMN (Otwinowski & Minor, 1997), DENZO-SMN, SHELXS86 (Sheldrick, 1990), SHELXL93 (Sheldrick, 1993), SHELXTL (Sheldrick, 1997), SHELXTL.

 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds