Download citation
Download citation
link to html
Structural changes in the high-temperature [epsilon]-polymorph of chlorpropamide, 4-chloro-N-(propylaminocarbonyl)benzenesulfonamide, C10H13ClN2O3S, on cooling down to 100 K and on reverse heating were followed by single-crystal X-ray diffraction. At temperatures below 200 K the phase transition into a new polymorph (termed the [epsilon]′-form) has been observed for the first time. The polymorphic transition preserves the space group Pna21, is reversible and is accompanied by discontinuous changes in the cell volume and parameters, resulting from changes in molecular conformation. As shown by IR spectroscopy and X-ray powder diffraction, the phase transition in a powder sample is inhomogeneous throughout the bulk, and the two phases co-exist in a wide temperature range. The cell parameters and the molecular conformation in the new polymorph are close to those in the previously known α-polymorph, but the packing of the z-shaped molecular ribbons linked by hydrogen bonds inherits that of the [epsilon]-form and is different from the packing in the α-polymorph. A structural study of the α-polymorph in the same temperature range has revealed no phase transitions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S010876810903290X/gp5033sup1.cif
Contains datablocks enewcpa100, ecpa250, enewcpa200, acpa105, acpa200, acpa295

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033enewcpa100sup2.hkl
Contains datablock enewcpa100

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033ecpa250sup3.hkl
Contains datablock ecpa250

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033enewcpa200sup4.hkl
Contains datablock enewcpa200

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033acpa105sup5.hkl
Contains datablock acpa105

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033acpa200sup6.hkl
Contains datablock acpa200

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S010876810903290X/gp5033acpa295sup7.hkl
Contains datablock acpa295

CCDC references: 760272; 760273; 760274; 760275; 760276; 760277

Computing details top

Data collection: CrysAlis CCD (Oxford Diffraction,2008) for enewcpa100; CrysAlis CCD (Oxford Diffraction, 2008) for ecpa250, enewcpa200; STADI4 (STOE & Cie, 1997) for acpa105, acpa200, acpa295. Cell refinement: CrysAlis RED (Oxford Diffraction,2008) for enewcpa100; CrysAlis RED (Oxford Diffraction, 2008) for ecpa250, enewcpa200; STADI4 (STOE & Cie, 1997) for acpa105, acpa200, acpa295. Data reduction: CrysAlis RED (Oxford Diffraction,2008) for enewcpa100; CrysAlis RED for ecpa250, enewcpa200; X-RED (STOE & Cie, 1997) for acpa105, acpa200, acpa295. For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008). Program(s) used to refine structure: SHELXS97 (Sheldrick, 2008) for enewcpa100; SHELXL97 (Sheldrick, 2008) for ecpa250, enewcpa200, acpa105, acpa200, acpa295.

(enewcpa100) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.489 Mg m3
Mr = 276.73Melting point: Kinetic phase transition K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1973 reflections
a = 26.4353 (19) Åθ = 3.1–29.1°
b = 5.1398 (4) ŵ = 0.48 mm1
c = 9.0845 (6) ÅT = 100 K
V = 1234.33 (15) Å3Plate, colourless
Z = 40.40 × 0.15 × 0.03 mm
F(000) = 576
Data collection top
Oxford Diffraction KM4 CCD
diffractometer
1995 independent reflections
Radiation source: Enhance (Mo) X-ray Source1399 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 10.3457 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 3131
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2008)
k = 64
Tmin = 0.800, Tmax = 0.986l = 910
4372 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.088 w = 1/[σ2(Fo2) + (0.0357P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.97(Δ/σ)max < 0.001
1995 reflectionsΔρmax = 0.43 e Å3
155 parametersΔρmin = 0.31 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.17 (11)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.29277 (14)1.2677 (9)0.2638 (6)0.0203 (11)
C20.29740 (17)1.1116 (11)0.1437 (5)0.0264 (13)
H20.27361.12280.06560.032*
C30.33702 (16)0.9363 (11)0.1359 (5)0.0253 (13)
H30.34050.82440.05330.030*
C40.37172 (13)0.9263 (8)0.2512 (6)0.0173 (10)
C50.36672 (16)1.0843 (10)0.3723 (5)0.0215 (12)
H50.39041.07340.45070.026*
C60.32703 (16)1.2591 (11)0.3797 (5)0.0257 (12)
H60.32331.37090.46220.031*
C70.49785 (14)1.0630 (8)0.2535 (6)0.0164 (10)
C80.55976 (14)1.4167 (9)0.2298 (5)0.0223 (11)
H8A0.54631.46800.32730.027*
H8B0.55801.57080.16470.027*
C90.61446 (14)1.3368 (9)0.2468 (6)0.0222 (10)
H9A0.61691.19400.31950.027*
H9B0.62731.27080.15140.027*
C100.64680 (15)1.5611 (9)0.2965 (5)0.0234 (12)
H10A0.63441.62540.39150.035*
H10B0.64511.70120.22350.035*
H10C0.68191.50290.30700.035*
O10.41212 (11)0.5239 (7)0.1230 (3)0.0240 (8)
O20.43469 (11)0.6199 (6)0.3833 (3)0.0225 (8)
O30.49476 (11)1.0760 (6)0.3889 (3)0.0233 (8)
S10.42316 (4)0.7072 (2)0.23721 (13)0.0205 (3)
Cl10.24323 (4)1.4913 (3)0.27008 (13)0.0312 (3)
N10.46979 (12)0.8809 (8)0.1728 (4)0.0191 (10)
H1N0.47800.85840.07980.023*
N20.52773 (13)1.2108 (8)0.1687 (4)0.0199 (10)
H2N0.52811.18320.07310.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.014 (2)0.018 (3)0.028 (3)0.0003 (19)0.006 (2)0.002 (3)
C20.028 (3)0.033 (4)0.019 (3)0.005 (3)0.002 (2)0.003 (3)
C30.023 (3)0.030 (4)0.022 (3)0.001 (3)0.004 (2)0.004 (3)
C40.014 (2)0.019 (3)0.019 (2)0.0041 (18)0.006 (2)0.005 (3)
C50.023 (2)0.025 (3)0.017 (2)0.001 (2)0.002 (2)0.003 (3)
C60.026 (3)0.030 (3)0.021 (2)0.005 (3)0.007 (2)0.009 (3)
C70.0120 (19)0.009 (3)0.028 (3)0.0011 (17)0.002 (2)0.000 (3)
C80.025 (2)0.020 (3)0.022 (3)0.006 (2)0.001 (2)0.000 (3)
C90.024 (2)0.020 (3)0.023 (2)0.0016 (19)0.000 (3)0.010 (3)
C100.026 (2)0.021 (3)0.023 (3)0.001 (2)0.001 (2)0.000 (2)
O10.0285 (17)0.021 (2)0.0226 (18)0.0006 (16)0.0021 (14)0.0065 (18)
O20.0292 (17)0.022 (2)0.0159 (16)0.0019 (15)0.0031 (15)0.0001 (15)
O30.0301 (18)0.027 (2)0.0123 (17)0.0017 (16)0.0028 (15)0.0007 (17)
S10.0212 (5)0.0192 (7)0.0212 (6)0.0026 (5)0.0016 (6)0.0005 (7)
Cl10.0263 (6)0.0353 (7)0.0321 (6)0.0091 (6)0.0025 (6)0.0007 (7)
N10.023 (2)0.022 (2)0.0129 (19)0.001 (2)0.0080 (17)0.0031 (17)
N20.022 (2)0.024 (3)0.0139 (19)0.003 (2)0.0013 (17)0.002 (2)
Geometric parameters (Å, º) top
C1—C21.360 (7)C8—N21.464 (6)
C1—C61.390 (6)C8—C91.511 (5)
C1—Cl11.743 (4)C8—H8A0.9900
C2—C31.383 (6)C8—H8B0.9900
C2—H20.9500C9—C101.505 (6)
C3—C41.393 (6)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.374 (7)C10—H10A0.9800
C4—S11.770 (4)C10—H10B0.9800
C5—C61.383 (6)C10—H10C0.9800
C5—H50.9500O1—S11.432 (3)
C6—H60.9500O2—S11.434 (3)
C7—O31.234 (6)S1—N11.630 (4)
C7—N21.339 (5)N1—H1N0.8800
C7—N11.402 (6)N2—H2N0.8800
C2—C1—C6122.1 (4)H8A—C8—H8B107.7
C2—C1—Cl1118.9 (4)C10—C9—C8111.5 (4)
C6—C1—Cl1119.0 (4)C10—C9—H9A109.3
C1—C2—C3119.5 (5)C8—C9—H9A109.3
C1—C2—H2120.2C10—C9—H9B109.3
C3—C2—H2120.2C8—C9—H9B109.3
C2—C3—C4119.0 (5)H9A—C9—H9B108.0
C2—C3—H3120.5C9—C10—H10A109.5
C4—C3—H3120.5C9—C10—H10B109.5
C5—C4—C3121.1 (4)H10A—C10—H10B109.5
C5—C4—S1120.5 (4)C9—C10—H10C109.5
C3—C4—S1118.4 (4)H10A—C10—H10C109.5
C4—C5—C6119.7 (4)H10B—C10—H10C109.5
C4—C5—H5120.1O1—S1—O2120.5 (2)
C6—C5—H5120.1O1—S1—N1104.72 (19)
C5—C6—C1118.6 (4)O2—S1—N1110.06 (19)
C5—C6—H6120.7O1—S1—C4108.3 (2)
C1—C6—H6120.7O2—S1—C4107.2 (2)
O3—C7—N2125.5 (4)N1—S1—C4105.0 (2)
O3—C7—N1121.5 (4)C7—N1—S1125.3 (3)
N2—C7—N1113.0 (4)C7—N1—H1N117.3
N2—C8—C9113.3 (4)S1—N1—H1N117.3
N2—C8—H8A108.9C7—N2—C8122.2 (4)
C9—C8—H8A108.9C7—N2—H2N118.9
N2—C8—H8B108.9C8—N2—H2N118.9
C9—C8—H8B108.9
C6—C1—C2—C30.6 (7)C5—C4—S1—O233.5 (4)
Cl1—C1—C2—C3178.9 (4)C3—C4—S1—O2147.2 (4)
C1—C2—C3—C40.8 (7)C5—C4—S1—N183.5 (4)
C2—C3—C4—C51.0 (7)C3—C4—S1—N195.8 (4)
C2—C3—C4—S1178.3 (4)O3—C7—N1—S112.3 (6)
C3—C4—C5—C60.9 (7)N2—C7—N1—S1168.8 (3)
S1—C4—C5—C6178.3 (4)O1—S1—N1—C7171.1 (3)
C4—C5—C6—C10.7 (7)O2—S1—N1—C740.2 (4)
C2—C1—C6—C50.5 (7)C4—S1—N1—C774.9 (4)
Cl1—C1—C6—C5178.8 (4)O3—C7—N2—C82.2 (7)
N2—C8—C9—C10174.8 (4)N1—C7—N2—C8179.0 (3)
C5—C4—S1—O1165.0 (4)C9—C8—N2—C7100.4 (5)
C3—C4—S1—O115.7 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.881.912.753 (5)161
N2—H2N···O2i0.882.232.910 (5)134
N2—H2N···O3i0.882.222.998 (5)147
C10—H10A···O1ii0.982.553.378 (5)142
C2—H2···Cl1iii0.952.803.613 (5)144
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1, y+2, z+1/2; (iii) x+1/2, y1/2, z1/2.
(ecpa250) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.383 Mg m3
Mr = 276.73Melting point: 401 K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1587 reflections
a = 19.805 (2) Åθ = 2.8–29.2°
b = 7.3500 (7) ŵ = 0.44 mm1
c = 9.1295 (9) ÅT = 250 K
V = 1329.0 (2) Å3Plate, colourless
Z = 40.40 × 0.15 × 0.03 mm
F(000) = 576
Data collection top
Oxford Diffraction KM4 CCD
diffractometer
1247 independent reflections
Radiation source: Enhance (Mo) X-ray Source714 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.075
Detector resolution: 10.3457 pixels mm-1θmax = 25.0°, θmin = 3.0°
ω scansh = 2223
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2008)
k = 88
Tmin = 0.765, Tmax = 0.987l = 1010
5838 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.044H-atom parameters constrained
wR(F2) = 0.098 w = 1/[σ2(Fo2) + (0.0433P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.85(Δ/σ)max < 0.001
1247 reflectionsΔρmax = 0.30 e Å3
155 parametersΔρmin = 0.26 e Å3
1 restraintAbsolute structure: Merged equivalents
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2807 (3)0.3441 (10)0.4088 (9)0.059 (2)
C20.3166 (4)0.3278 (9)0.2762 (7)0.060 (2)
H20.31660.42220.20670.072*
C30.3515 (4)0.1705 (10)0.2522 (8)0.061 (2)
H30.37620.15740.16490.073*
C40.3515 (3)0.0315 (8)0.3517 (7)0.0466 (18)
C50.3170 (3)0.0495 (10)0.4828 (8)0.0571 (19)
H50.31800.04390.55310.068*
C60.2807 (3)0.2088 (11)0.5086 (8)0.065 (2)
H60.25610.22210.59600.078*
C70.5095 (3)0.0281 (8)0.3278 (8)0.0429 (15)
C80.5944 (3)0.2665 (8)0.3079 (8)0.0522 (16)
H8A0.63540.27290.24780.063*
H8B0.60800.23250.40750.063*
C90.5622 (4)0.4507 (9)0.3121 (11)0.085 (3)
H9A0.52130.44530.37230.102*
H9B0.54890.48590.21270.102*
C100.6092 (5)0.5923 (12)0.3738 (12)0.122 (4)
H10A0.61530.57150.47790.183*
H10B0.59010.71240.35840.183*
H10C0.65260.58440.32470.183*
N10.4689 (2)0.0985 (7)0.2532 (5)0.0439 (13)
H1N0.48280.14050.16940.053*
N20.5501 (2)0.1244 (7)0.2489 (5)0.0457 (13)
H2N0.55130.10370.15510.055*
O10.3670 (2)0.2626 (6)0.1953 (4)0.0547 (12)
O20.4064 (2)0.2659 (6)0.4539 (4)0.0505 (11)
O30.5039 (2)0.0383 (6)0.4655 (4)0.0560 (12)
S10.39703 (8)0.1694 (2)0.31753 (16)0.0440 (4)
Cl10.23578 (9)0.5438 (3)0.4358 (3)0.0929 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.056 (4)0.058 (5)0.061 (6)0.009 (3)0.010 (4)0.005 (5)
C20.090 (5)0.041 (5)0.047 (6)0.000 (4)0.002 (4)0.016 (4)
C30.088 (5)0.054 (5)0.040 (4)0.003 (4)0.015 (4)0.003 (4)
C40.054 (4)0.041 (4)0.045 (5)0.011 (3)0.001 (3)0.002 (3)
C50.061 (4)0.063 (5)0.047 (5)0.007 (4)0.021 (4)0.013 (4)
C60.056 (4)0.083 (6)0.056 (5)0.006 (4)0.019 (3)0.004 (5)
C70.043 (3)0.046 (4)0.040 (4)0.001 (3)0.003 (4)0.004 (4)
C80.068 (4)0.058 (4)0.031 (3)0.014 (3)0.007 (4)0.003 (5)
C90.108 (6)0.060 (5)0.088 (6)0.002 (4)0.049 (6)0.016 (6)
C100.159 (8)0.069 (6)0.138 (11)0.012 (6)0.073 (8)0.017 (6)
N10.047 (3)0.057 (3)0.027 (3)0.001 (3)0.005 (2)0.008 (3)
N20.059 (3)0.056 (4)0.022 (3)0.010 (3)0.005 (2)0.002 (3)
O10.071 (3)0.057 (3)0.035 (3)0.016 (2)0.007 (2)0.008 (2)
O20.072 (3)0.054 (3)0.025 (2)0.005 (2)0.002 (2)0.011 (2)
O30.076 (3)0.079 (3)0.013 (2)0.021 (3)0.002 (2)0.003 (2)
S10.0580 (8)0.0494 (9)0.0246 (7)0.0059 (8)0.0011 (9)0.0011 (10)
Cl10.0843 (13)0.0636 (12)0.131 (2)0.0080 (10)0.0331 (15)0.0050 (15)
Geometric parameters (Å, º) top
C1—C61.349 (9)C8—N21.467 (7)
C1—C21.409 (10)C8—C91.497 (9)
C1—Cl11.734 (7)C8—H8A0.9800
C2—C31.365 (9)C8—H8B0.9800
C2—H20.9400C9—C101.506 (10)
C3—C41.367 (9)C9—H9A0.9800
C3—H30.9400C9—H9B0.9800
C4—C51.385 (9)C10—H10A0.9700
C4—S11.758 (6)C10—H10B0.9700
C5—C61.394 (9)C10—H10C0.9700
C5—H50.9400N1—S11.626 (5)
C6—H60.9400N1—H1N0.8700
C7—O31.264 (8)N2—H2N0.8700
C7—N21.291 (7)O1—S11.439 (4)
C7—N11.406 (7)O2—S11.445 (4)
C6—C1—C2121.2 (6)H8A—C8—H8B107.7
C6—C1—Cl1121.9 (6)C8—C9—C10111.8 (7)
C2—C1—Cl1117.0 (6)C8—C9—H9A109.3
C3—C2—C1117.8 (6)C10—C9—H9A109.3
C3—C2—H2121.1C8—C9—H9B109.3
C1—C2—H2121.1C10—C9—H9B109.3
C2—C3—C4121.7 (6)H9A—C9—H9B107.9
C2—C3—H3119.1C9—C10—H10A109.5
C4—C3—H3119.1C9—C10—H10B109.5
C3—C4—C5120.2 (6)H10A—C10—H10B109.5
C3—C4—S1120.6 (5)C9—C10—H10C109.5
C5—C4—S1119.1 (5)H10A—C10—H10C109.5
C4—C5—C6118.7 (6)H10B—C10—H10C109.5
C4—C5—H5120.6C7—N1—S1122.5 (4)
C6—C5—H5120.6C7—N1—H1N118.7
C1—C6—C5120.4 (7)S1—N1—H1N118.7
C1—C6—H6119.8C7—N2—C8123.9 (5)
C5—C6—H6119.8C7—N2—H2N118.0
O3—C7—N2125.3 (6)C8—N2—H2N118.0
O3—C7—N1118.1 (5)O1—S1—O2119.2 (2)
N2—C7—N1116.6 (6)O1—S1—N1103.6 (3)
N2—C8—C9113.5 (6)O2—S1—N1110.9 (3)
N2—C8—H8A108.9O1—S1—C4109.0 (3)
C9—C8—H8A108.9O2—S1—C4109.0 (3)
N2—C8—H8B108.9N1—S1—C4104.1 (3)
C9—C8—H8B108.9
C6—C1—C2—C30.0 (10)O3—C7—N2—C82.5 (9)
Cl1—C1—C2—C3179.2 (5)N1—C7—N2—C8178.0 (5)
C1—C2—C3—C40.7 (10)C9—C8—N2—C789.5 (8)
C2—C3—C4—C51.8 (10)C7—N1—S1—O1168.0 (4)
C2—C3—C4—S1180.0 (6)C7—N1—S1—O263.0 (5)
C3—C4—C5—C62.1 (9)C7—N1—S1—C454.0 (5)
S1—C4—C5—C6179.6 (5)C3—C4—S1—O166.4 (6)
C2—C1—C6—C50.4 (11)C5—C4—S1—O1115.3 (5)
Cl1—C1—C6—C5179.6 (5)C3—C4—S1—O2162.0 (5)
C4—C5—C6—C11.5 (10)C5—C4—S1—O216.2 (6)
N2—C8—C9—C10179.8 (7)C3—C4—S1—N143.6 (6)
O3—C7—N1—S125.7 (7)C5—C4—S1—N1134.6 (5)
N2—C7—N1—S1154.8 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.872.022.718 (6)136
N2—H2N···O2i0.872.353.013 (6)134
N2—H2N···O3i0.872.303.044 (6)144
C2—H2···O1ii0.942.523.256 (8)135
Symmetry codes: (i) x+1, y, z1/2; (ii) x, y+1, z.
(enewcpa200) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.467 Mg m3
Mr = 276.73Melting point: Kinetic phase transition K
Orthorhombic, Pna21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2c -2nCell parameters from 1165 reflections
a = 26.455 (4) Åθ = 3.1–29.1°
b = 5.1924 (9) ŵ = 0.47 mm1
c = 9.1219 (11) ÅT = 200 K
V = 1253.0 (3) Å3Plate, colourless
Z = 40.40 × 0.15 × 0.03 mm
F(000) = 576
Data collection top
Oxford Diffraction KM4 CCD
diffractometer
1181 independent reflections
Radiation source: Enhance (Mo) X-ray Source630 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.110
Detector resolution: 10.3457 pixels mm-1θmax = 25.0°, θmin = 3.1°
ω scansh = 2431
Absorption correction: multi-scan
CrysAlis RED (Oxford Diffraction, 2008)
k = 66
Tmin = 0.808, Tmax = 0.986l = 1010
4998 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.127 w = 1/[σ2(Fo2) + (0.0641P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.90(Δ/σ)max < 0.001
1181 reflectionsΔρmax = 0.44 e Å3
155 parametersΔρmin = 0.25 e Å3
1 restraintAbsolute structure: Merged equivalents
Primary atom site location: structure-invariant direct methods
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2937 (3)1.2672 (18)0.2626 (10)0.046 (2)
C20.2978 (4)1.111 (2)0.1444 (10)0.052 (3)
H20.27331.11620.06840.063*
C30.3372 (3)0.948 (2)0.1366 (9)0.045 (3)
H30.34160.84650.05090.055*
C40.3718 (3)0.9248 (15)0.2509 (11)0.037 (2)
C50.3670 (3)1.0872 (17)0.3724 (10)0.041 (2)
H50.39141.08460.44870.049*
C60.3272 (3)1.2468 (19)0.3789 (9)0.049 (3)
H60.32181.34740.46450.058*
C70.4984 (3)1.0641 (14)0.2539 (12)0.035 (2)
C80.5601 (3)1.4116 (16)0.2305 (11)0.041 (2)
H8A0.54681.45870.32830.049*
H8B0.55741.56580.16720.049*
C90.6141 (3)1.3446 (15)0.2459 (12)0.041 (2)
H9A0.62681.28300.15010.049*
H9B0.61721.20080.31660.049*
C100.6464 (3)1.5612 (18)0.2963 (12)0.056 (3)
H10A0.63501.61960.39290.085*
H10B0.64411.70370.22620.085*
H10C0.68161.50310.30300.085*
O10.4128 (2)0.5334 (12)0.1233 (6)0.0484 (18)
O20.4348 (2)0.6261 (12)0.3815 (6)0.0472 (17)
O30.4948 (2)1.0803 (11)0.3883 (6)0.0437 (16)
S10.42358 (8)0.7142 (4)0.2372 (2)0.0385 (6)
Cl10.24388 (9)1.4871 (5)0.2703 (3)0.0635 (8)
N10.4700 (2)0.8843 (15)0.1740 (8)0.0410 (19)
H1N0.47820.86190.08140.049*
N20.5282 (3)1.2106 (14)0.1695 (8)0.041 (2)
H2N0.52851.18430.07420.049*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.030 (5)0.071 (7)0.036 (6)0.000 (5)0.012 (5)0.001 (7)
C20.045 (6)0.076 (8)0.036 (6)0.006 (6)0.000 (5)0.005 (6)
C30.039 (6)0.071 (8)0.026 (5)0.001 (6)0.001 (4)0.003 (5)
C40.023 (4)0.049 (6)0.039 (5)0.012 (4)0.007 (5)0.011 (6)
C50.045 (6)0.040 (6)0.037 (5)0.004 (5)0.002 (5)0.001 (5)
C60.050 (6)0.069 (7)0.027 (5)0.002 (6)0.009 (5)0.017 (6)
C70.022 (4)0.027 (5)0.056 (6)0.004 (4)0.005 (5)0.002 (6)
C80.042 (5)0.038 (5)0.044 (6)0.009 (4)0.003 (5)0.001 (6)
C90.038 (5)0.041 (5)0.042 (5)0.001 (4)0.004 (5)0.001 (6)
C100.049 (5)0.063 (7)0.056 (6)0.014 (5)0.005 (5)0.014 (6)
O10.061 (4)0.036 (4)0.048 (4)0.001 (3)0.001 (3)0.009 (4)
O20.065 (4)0.042 (4)0.035 (3)0.008 (3)0.005 (3)0.000 (3)
O30.058 (4)0.053 (4)0.021 (3)0.008 (3)0.001 (3)0.006 (3)
S10.0420 (12)0.0378 (13)0.0357 (12)0.0038 (11)0.0033 (14)0.0033 (15)
Cl10.0522 (14)0.0721 (16)0.0662 (17)0.0173 (14)0.0041 (15)0.0008 (17)
N10.029 (4)0.064 (5)0.030 (4)0.008 (4)0.002 (3)0.010 (4)
N20.039 (4)0.050 (5)0.034 (4)0.006 (4)0.006 (4)0.003 (4)
Geometric parameters (Å, º) top
C1—C21.354 (14)C8—N21.453 (10)
C1—C61.385 (12)C8—C91.476 (10)
C1—Cl11.746 (9)C8—H8A0.9900
C2—C31.345 (12)C8—H8B0.9900
C2—H20.9500C9—C101.486 (11)
C3—C41.392 (12)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.398 (13)C10—H10A0.9800
C4—S11.758 (8)C10—H10B0.9800
C5—C61.342 (11)C10—H10C0.9800
C5—H50.9500O1—S11.430 (6)
C6—H60.9500O2—S11.425 (6)
C7—O31.232 (12)S1—N11.619 (7)
C7—N21.339 (10)N1—H1N0.8800
C7—N11.402 (10)N2—H2N0.8800
C2—C1—C6120.9 (9)H8A—C8—H8B107.5
C2—C1—Cl1119.0 (8)C8—C9—C10114.1 (7)
C6—C1—Cl1120.1 (7)C8—C9—H9A108.7
C3—C2—C1118.8 (9)C10—C9—H9A108.7
C3—C2—H2120.6C8—C9—H9B108.7
C1—C2—H2120.6C10—C9—H9B108.7
C2—C3—C4121.6 (9)H9A—C9—H9B107.6
C2—C3—H3119.2C9—C10—H10A109.5
C4—C3—H3119.2C9—C10—H10B109.5
C3—C4—C5118.8 (8)H10A—C10—H10B109.5
C3—C4—S1120.8 (8)C9—C10—H10C109.5
C5—C4—S1120.1 (7)H10A—C10—H10C109.5
C6—C5—C4118.6 (9)H10B—C10—H10C109.5
C6—C5—H5120.7O2—S1—O1120.2 (4)
C4—C5—H5120.7O2—S1—N1110.2 (4)
C5—C6—C1121.0 (9)O1—S1—N1104.5 (4)
C5—C6—H6119.5O2—S1—C4107.3 (4)
C1—C6—H6119.5O1—S1—C4107.7 (4)
O3—C7—N2125.4 (8)N1—S1—C4106.1 (4)
O3—C7—N1121.4 (8)C7—N1—S1125.7 (6)
N2—C7—N1113.2 (9)C7—N1—H1N117.1
N2—C8—C9115.4 (7)S1—N1—H1N117.1
N2—C8—H8A108.4C7—N2—C8122.0 (8)
C9—C8—H8A108.4C7—N2—H2N119.0
N2—C8—H8B108.4C8—N2—H2N119.0
C9—C8—H8B108.4
C6—C1—C2—C35.0 (15)C3—C4—S1—O118.7 (8)
Cl1—C1—C2—C3177.7 (7)C5—C4—S1—O1166.6 (6)
C1—C2—C3—C44.4 (14)C3—C4—S1—N192.9 (7)
C2—C3—C4—C54.2 (13)C5—C4—S1—N181.9 (7)
C2—C3—C4—S1179.0 (7)O3—C7—N1—S111.0 (11)
C3—C4—C5—C64.7 (13)N2—C7—N1—S1168.5 (5)
S1—C4—C5—C6179.5 (7)O2—S1—N1—C740.4 (8)
C4—C5—C6—C15.4 (13)O1—S1—N1—C7170.9 (6)
C2—C1—C6—C55.7 (14)C4—S1—N1—C775.4 (8)
Cl1—C1—C6—C5177.1 (7)O3—C7—N2—C80.5 (12)
N2—C8—C9—C10175.0 (8)N1—C7—N2—C8179.1 (6)
C3—C4—S1—O2149.3 (7)C9—C8—N2—C7101.5 (10)
C5—C4—S1—O236.0 (8)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.881.922.774 (9)162
N2—H2N···O2i0.882.242.928 (10)135
N2—H2N···O3i0.882.273.038 (9)146
C10—H10A···O1ii0.982.583.404 (11)142
C2—H2···Cl1iii0.952.843.643 (10)143
Symmetry codes: (i) x+1, y+2, z1/2; (ii) x+1, y+2, z+1/2; (iii) x+1/2, y1/2, z1/2.
(acpa105) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.505 Mg m3
Mr = 276.73Melting point: Kinetic phase transition K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 42 reflections
a = 26.657 (6) Åθ = 10.2–12.5°
b = 5.0938 (16) ŵ = 0.48 mm1
c = 8.9941 (18) ÅT = 105 K
V = 1221.3 (5) Å3Block, colourless
Z = 40.32 × 0.23 × 0.15 mm
F(000) = 576
Data collection top
STOE STADI4 4-circle-
diffractometer D094
2041 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Planar graphite monochromatorθmax = 26.0°, θmin = 1.5°
ω/2θ scansh = 3232
Absorption correction: ψ scan
X-RED (STOE & Cie, 1997)
k = 66
Tmin = 0.886, Tmax = 0.937l = 1111
2875 measured reflections3 standard reflections every 240 min
2397 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041H-atom parameters constrained
wR(F2) = 0.136 w = 1/[σ2(Fo2) + (0.044P)2 + 4.5034P]
where P = (Fo2 + 2Fc2)/3
S = 1.06(Δ/σ)max < 0.001
2397 reflectionsΔρmax = 0.30 e Å3
155 parametersΔρmin = 0.45 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.09 (15)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04057 (17)0.7650 (9)0.4879 (5)0.0205 (10)
C20.04432 (19)0.6098 (10)0.6137 (6)0.0227 (10)
H20.01980.62070.69020.027*
C30.08455 (18)0.4379 (9)0.6261 (5)0.0194 (10)
H30.08770.32690.71050.023*
C40.12016 (16)0.4305 (8)0.5130 (5)0.0149 (9)
C50.11604 (18)0.5885 (9)0.3881 (5)0.0189 (10)
H50.14050.58040.31150.023*
C60.07575 (18)0.7582 (9)0.3767 (5)0.0212 (10)
H60.07250.86930.29250.025*
C70.24603 (16)0.5712 (8)0.5135 (5)0.0154 (9)
C80.30770 (16)0.9275 (8)0.5357 (5)0.0181 (9)
H8A0.30591.08240.60200.022*
H8B0.29440.98020.43730.022*
C90.36211 (17)0.8460 (8)0.5186 (6)0.0207 (10)
H9A0.36450.70160.44530.025*
H9B0.37490.78030.61500.025*
C100.39415 (17)1.0758 (9)0.4672 (6)0.0209 (10)
H10A0.38281.13380.36880.031*
H10B0.42931.02080.46150.031*
H10C0.39091.22090.53810.031*
Cl20.01067 (4)0.9781 (3)0.47166 (16)0.0312 (3)
N10.21740 (14)0.3908 (7)0.5948 (4)0.0153 (8)
H1N0.22490.37140.68940.018*
N20.27601 (15)0.7191 (8)0.5966 (4)0.0182 (8)
H2N0.27690.69030.69300.022*
O10.16084 (12)0.0305 (7)0.6462 (3)0.0199 (7)
O20.18368 (13)0.1222 (6)0.3841 (4)0.0193 (7)
O30.24243 (12)0.5862 (6)0.3770 (4)0.0184 (7)
S10.17148 (4)0.2137 (2)0.53002 (12)0.0151 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.016 (2)0.016 (2)0.029 (3)0.0010 (17)0.0059 (19)0.004 (2)
C20.017 (2)0.029 (3)0.022 (2)0.001 (2)0.004 (2)0.001 (2)
C30.019 (2)0.023 (3)0.017 (2)0.002 (2)0.0049 (19)0.002 (2)
C40.014 (2)0.014 (2)0.017 (2)0.0009 (16)0.0048 (18)0.0053 (19)
C50.020 (2)0.021 (2)0.016 (2)0.003 (2)0.0011 (19)0.001 (2)
C60.023 (3)0.020 (3)0.020 (2)0.002 (2)0.0040 (19)0.002 (2)
C70.015 (2)0.015 (2)0.017 (2)0.0028 (16)0.0005 (18)0.0023 (18)
C80.021 (2)0.015 (2)0.018 (2)0.0001 (17)0.002 (2)0.003 (2)
C90.022 (2)0.017 (2)0.023 (2)0.0002 (18)0.001 (2)0.001 (2)
C100.016 (2)0.025 (2)0.021 (2)0.0062 (18)0.002 (2)0.001 (2)
Cl20.0229 (6)0.0312 (6)0.0395 (7)0.0093 (5)0.0017 (6)0.0010 (6)
N10.0145 (19)0.0198 (18)0.0117 (17)0.0031 (16)0.0001 (15)0.0028 (16)
N20.020 (2)0.0216 (19)0.0130 (17)0.0051 (17)0.0009 (15)0.0004 (17)
O10.0244 (18)0.0174 (16)0.0178 (16)0.0044 (14)0.0031 (13)0.0040 (14)
O20.0248 (19)0.0162 (15)0.0169 (16)0.0056 (14)0.0066 (14)0.0028 (13)
O30.0196 (18)0.0197 (16)0.0160 (16)0.0052 (14)0.0007 (13)0.0002 (14)
S10.0172 (5)0.0136 (5)0.0146 (5)0.0016 (4)0.0023 (5)0.0000 (5)
Geometric parameters (Å, º) top
C1—C61.371 (7)C8—N21.463 (6)
C1—C21.384 (7)C8—C91.517 (6)
C1—Cl21.751 (5)C8—H8A0.9900
C2—C31.389 (7)C8—H8B0.9900
C2—H20.9500C9—C101.521 (6)
C3—C41.392 (6)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.386 (6)C10—H10A0.9800
C4—S11.765 (4)C10—H10B0.9800
C5—C61.382 (7)C10—H10C0.9800
C5—H50.9500N1—S11.628 (4)
C6—H60.9500N1—H1N0.8800
C7—O31.234 (6)N2—H2N0.8800
C7—N21.328 (6)O1—S11.430 (3)
C7—N11.400 (6)O2—S11.430 (3)
C6—C1—C2122.2 (4)H8A—C8—H8B107.8
C6—C1—Cl2119.2 (4)C8—C9—C10110.9 (4)
C2—C1—Cl2118.6 (4)C8—C9—H9A109.5
C1—C2—C3118.8 (4)C10—C9—H9A109.5
C1—C2—H2120.6C8—C9—H9B109.5
C3—C2—H2120.6C10—C9—H9B109.5
C2—C3—C4119.0 (4)H9A—C9—H9B108.0
C2—C3—H3120.5C9—C10—H10A109.5
C4—C3—H3120.5C9—C10—H10B109.5
C5—C4—C3121.5 (4)H10A—C10—H10B109.5
C5—C4—S1119.7 (3)C9—C10—H10C109.5
C3—C4—S1118.8 (3)H10A—C10—H10C109.5
C6—C5—C4119.0 (4)H10B—C10—H10C109.5
C6—C5—H5120.5C7—N1—S1125.9 (3)
C4—C5—H5120.5C7—N1—H1N117.0
C1—C6—C5119.6 (4)S1—N1—H1N117.0
C1—C6—H6120.2C7—N2—C8123.3 (4)
C5—C6—H6120.2C7—N2—H2N118.4
O3—C7—N2124.8 (4)C8—N2—H2N118.4
O3—C7—N1121.2 (4)O1—S1—O2120.2 (2)
N2—C7—N1114.0 (4)O1—S1—N1104.4 (2)
N2—C8—C9113.0 (4)O2—S1—N1109.8 (2)
N2—C8—H8A109.0O1—S1—C4108.5 (2)
C9—C8—H8A109.0O2—S1—C4107.5 (2)
N2—C8—H8B109.0N1—S1—C4105.5 (2)
C9—C8—H8B109.0
C6—C1—C2—C31.3 (7)O3—C7—N2—C82.2 (7)
Cl2—C1—C2—C3179.1 (4)N1—C7—N2—C8177.4 (4)
C1—C2—C3—C41.1 (7)C9—C8—N2—C7101.1 (5)
C2—C3—C4—C50.7 (7)C7—N1—S1—O1169.8 (4)
C2—C3—C4—S1179.4 (4)C7—N1—S1—O239.7 (4)
C3—C4—C5—C60.5 (7)C7—N1—S1—C475.9 (4)
S1—C4—C5—C6179.7 (4)C5—C4—S1—O1165.7 (3)
C2—C1—C6—C51.1 (7)C3—C4—S1—O114.2 (4)
Cl2—C1—C6—C5179.3 (4)C5—C4—S1—O234.3 (4)
C4—C5—C6—C10.6 (7)C3—C4—S1—O2145.6 (3)
N2—C8—C9—C10175.3 (4)C5—C4—S1—N182.8 (4)
O3—C7—N1—S19.4 (6)C3—C4—S1—N197.3 (4)
N2—C7—N1—S1170.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.881.912.757 (5)161
N2—H2N···O2i0.882.232.915 (5)135
N2—H2N···O3i0.882.233.003 (5)146
C10—H10A···O1ii0.982.463.282 (6)141
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.
(acpa200) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.482 Mg m3
Mr = 276.73Melting point: Kinetic phase transition K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 42 reflections
a = 26.675 (5) Åθ = 10.2–12.4°
b = 5.1438 (14) ŵ = 0.47 mm1
c = 9.0370 (16) ÅT = 200 K
V = 1240.0 (5) Å3Block, colourless
Z = 40.32 × 0.23 × 0.15 mm
F(000) = 576
Data collection top
STOE STADI4 4-circle-
diffractometer D094
1794 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.029
Planar graphite monochromatorθmax = 25.0°, θmin = 1.5°
ω/2θ scansh = 3131
Absorption correction: ψ scan
X-RED (STOE & Cie, 1997)
k = 66
Tmin = 0.886, Tmax = 0.937l = 1010
2631 measured reflections3 standard reflections every 240 min
2181 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.092 w = 1/[σ2(Fo2) + (0.0185P)2 + 1.3649P]
where P = (Fo2 + 2Fc2)/3
S = 1.11(Δ/σ)max < 0.001
2181 reflectionsΔρmax = 0.28 e Å3
155 parametersΔρmin = 0.27 e Å3
0 restraintsAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.00 (12)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04098 (13)0.7625 (8)0.4873 (5)0.0365 (10)
C20.04511 (15)0.6097 (9)0.6116 (5)0.0400 (11)
H20.02060.61950.68770.048*
C30.08521 (14)0.4423 (8)0.6246 (4)0.0349 (10)
H30.08870.33480.70950.042*
C40.12045 (12)0.4333 (7)0.5115 (4)0.0266 (8)
C50.11629 (14)0.5876 (8)0.3880 (4)0.0326 (9)
H50.14080.57820.31190.039*
C60.07612 (14)0.7570 (8)0.3752 (4)0.0358 (10)
H60.07290.86680.29120.043*
C70.24662 (13)0.5725 (7)0.5115 (4)0.0255 (8)
C80.30770 (12)0.9249 (7)0.5337 (4)0.0299 (8)
H8A0.30551.07910.59900.036*
H8B0.29430.97500.43560.036*
C90.36215 (13)0.8489 (7)0.5170 (5)0.0350 (10)
H9A0.36500.70550.44440.042*
H9B0.37500.78530.61310.042*
C100.39367 (14)1.0772 (8)0.4656 (5)0.0399 (10)
H10A0.38181.13580.36850.060*
H10B0.42881.02350.45820.060*
H10C0.39071.21980.53700.060*
Cl20.00988 (4)0.9747 (2)0.47081 (16)0.0594 (4)
N10.21786 (11)0.3923 (6)0.5928 (3)0.0267 (7)
H1N0.22550.37250.68690.032*
N20.27650 (11)0.7181 (6)0.5949 (3)0.0309 (8)
H2N0.27750.68870.69080.037*
O10.16118 (9)0.0364 (5)0.6441 (3)0.0337 (6)
O20.18410 (10)0.1257 (5)0.3833 (3)0.0323 (7)
O30.24284 (10)0.5855 (5)0.3758 (3)0.0329 (7)
S10.17194 (3)0.21785 (17)0.52852 (10)0.0262 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0237 (18)0.038 (2)0.048 (3)0.0004 (18)0.0058 (18)0.005 (2)
C20.028 (2)0.053 (3)0.039 (2)0.003 (2)0.0058 (19)0.000 (2)
C30.031 (2)0.045 (3)0.029 (2)0.001 (2)0.0013 (17)0.006 (2)
C40.0228 (18)0.032 (2)0.025 (2)0.0041 (16)0.0036 (16)0.0020 (18)
C50.032 (2)0.035 (2)0.030 (2)0.0054 (19)0.0014 (18)0.001 (2)
C60.034 (2)0.037 (2)0.037 (2)0.002 (2)0.0040 (18)0.008 (2)
C70.0194 (17)0.0267 (19)0.031 (2)0.0043 (15)0.0010 (15)0.0009 (18)
C80.0290 (19)0.029 (2)0.031 (2)0.0083 (16)0.0016 (18)0.000 (2)
C90.029 (2)0.033 (2)0.042 (2)0.0010 (16)0.0045 (19)0.000 (2)
C100.034 (2)0.042 (2)0.043 (2)0.0133 (18)0.003 (2)0.001 (2)
Cl20.0395 (6)0.0604 (8)0.0784 (9)0.0171 (6)0.0030 (6)0.0026 (8)
N10.0240 (16)0.0350 (18)0.0212 (15)0.0050 (15)0.0017 (13)0.0022 (14)
N20.0283 (17)0.0400 (19)0.0245 (15)0.0106 (16)0.0019 (13)0.0014 (16)
O10.0340 (15)0.0321 (15)0.0349 (15)0.0048 (13)0.0028 (12)0.0073 (13)
O20.0365 (16)0.0312 (15)0.0291 (14)0.0061 (13)0.0058 (12)0.0065 (12)
O30.0386 (16)0.0379 (16)0.0221 (14)0.0084 (13)0.0018 (12)0.0009 (13)
S10.0255 (4)0.0263 (5)0.0269 (4)0.0031 (4)0.0015 (4)0.0002 (4)
Geometric parameters (Å, º) top
C1—C21.376 (6)C8—N21.460 (5)
C1—C61.380 (5)C8—C91.512 (5)
C1—Cl21.747 (4)C8—H8A0.9900
C2—C31.378 (5)C8—H8B0.9900
C2—H20.9500C9—C101.517 (5)
C3—C41.390 (5)C9—H9A0.9900
C3—H30.9500C9—H9B0.9900
C4—C51.373 (5)C10—H10A0.9800
C4—S11.772 (4)C10—H10B0.9800
C5—C61.386 (5)C10—H10C0.9800
C5—H50.9500N1—S11.626 (3)
C6—H60.9500N1—H1N0.8800
C7—O31.232 (4)N2—H2N0.8800
C7—N21.329 (5)O1—S11.430 (3)
C7—N11.410 (4)O2—S11.433 (3)
C2—C1—C6122.2 (4)H8A—C8—H8B107.7
C2—C1—Cl2119.2 (3)C8—C9—C10111.3 (3)
C6—C1—Cl2118.5 (3)C8—C9—H9A109.4
C1—C2—C3119.3 (4)C10—C9—H9A109.4
C1—C2—H2120.4C8—C9—H9B109.4
C3—C2—H2120.4C10—C9—H9B109.4
C2—C3—C4118.9 (4)H9A—C9—H9B108.0
C2—C3—H3120.6C9—C10—H10A109.5
C4—C3—H3120.6C9—C10—H10B109.5
C5—C4—C3121.6 (4)H10A—C10—H10B109.5
C5—C4—S1119.6 (3)C9—C10—H10C109.5
C3—C4—S1118.7 (3)H10A—C10—H10C109.5
C4—C5—C6119.6 (4)H10B—C10—H10C109.5
C4—C5—H5120.2C7—N1—S1125.9 (3)
C6—C5—H5120.2C7—N1—H1N117.0
C1—C6—C5118.5 (4)S1—N1—H1N117.0
C1—C6—H6120.8C7—N2—C8122.5 (3)
C5—C6—H6120.8C7—N2—H2N118.7
O3—C7—N2125.7 (4)C8—N2—H2N118.7
O3—C7—N1120.7 (4)O1—S1—O2119.90 (16)
N2—C7—N1113.6 (3)O1—S1—N1104.51 (16)
N2—C8—C9113.4 (3)O2—S1—N1109.84 (16)
N2—C8—H8A108.9O1—S1—C4108.44 (16)
C9—C8—H8A108.9O2—S1—C4107.63 (16)
N2—C8—H8B108.9N1—S1—C4105.65 (16)
C9—C8—H8B108.9
C6—C1—C2—C30.9 (6)O3—C7—N2—C82.8 (6)
Cl2—C1—C2—C3180.0 (3)N1—C7—N2—C8177.1 (3)
C1—C2—C3—C40.2 (6)C9—C8—N2—C7102.0 (4)
C2—C3—C4—C50.3 (6)C7—N1—S1—O1170.0 (3)
C2—C3—C4—S1180.0 (3)C7—N1—S1—O240.1 (3)
C3—C4—C5—C60.1 (6)C7—N1—S1—C475.7 (3)
S1—C4—C5—C6179.7 (3)C5—C4—S1—O1165.4 (3)
C2—C1—C6—C51.3 (6)C3—C4—S1—O114.9 (3)
Cl2—C1—C6—C5179.6 (3)C5—C4—S1—O234.3 (3)
C4—C5—C6—C10.8 (6)C3—C4—S1—O2146.0 (3)
N2—C8—C9—C10175.1 (3)C5—C4—S1—N183.0 (3)
O3—C7—N1—S19.8 (5)C3—C4—S1—N196.7 (3)
N2—C7—N1—S1170.1 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.881.922.767 (4)162
N2—H2N···O2i0.882.232.923 (4)135
N2—H2N···O3i0.882.253.025 (4)146
C10—H10A···O1ii0.982.493.305 (5)140
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.
(acpa295) 4-chloro-N-((propylaminocarbonyl)benzenesulfonamide top
Crystal data top
C10H13ClN2O3SDx = 1.450 Mg m3
Mr = 276.73Melting point: Kinetic phase transition K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 42 reflections
a = 26.673 (6) Åθ = 10.1–12.4°
b = 5.2296 (19) ŵ = 0.46 mm1
c = 9.088 (2) ÅT = 295 K
V = 1267.6 (6) Å3Block, colourless
Z = 40.32 × 0.23 × 0.15 mm
F(000) = 576
Data collection top
STOE STADI4 4-circle-
diffractometer D094
1828 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.024
Planar graphite monochromatorθmax = 26.0°, θmin = 1.5°
ω/2θ scansh = 3232
Absorption correction: ψ scan
X-RED (STOE & Cie, 1997)
k = 66
Tmin = 0.888, Tmax = 0.937l = 1111
2974 measured reflections3 standard reflections every 240 min
2485 independent reflections intensity decay: none
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.051H-atom parameters constrained
wR(F2) = 0.116 w = 1/[σ2(Fo2) + (0.026P)2 + 1.143P]
where P = (Fo2 + 2Fc2)/3
S = 1.13(Δ/σ)max < 0.001
2485 reflectionsΔρmax = 0.22 e Å3
155 parametersΔρmin = 0.25 e Å3
0 restraintsAbsolute structure: Flack(1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.01 (14)
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.04134 (16)0.7577 (10)0.4852 (6)0.0599 (12)
C20.04595 (18)0.6082 (12)0.6068 (6)0.0715 (16)
H20.02210.61720.68130.086*
C30.08588 (17)0.4440 (11)0.6195 (5)0.0621 (14)
H30.08930.34090.70230.075*
C40.12092 (14)0.4337 (8)0.5080 (5)0.0425 (10)
C50.11670 (18)0.5867 (9)0.3863 (5)0.0553 (13)
H50.14080.57970.31230.066*
C60.07630 (17)0.7521 (11)0.3741 (6)0.0628 (13)
H60.07290.85750.29230.075*
C70.24719 (15)0.5709 (8)0.5064 (5)0.0435 (10)
C80.30763 (15)0.9228 (9)0.5286 (6)0.0552 (12)
H8A0.30441.07130.59180.066*
H8B0.29480.96860.43230.066*
C90.36164 (16)0.8561 (9)0.5148 (6)0.0637 (14)
H9A0.36540.71600.44570.076*
H9B0.37430.79990.60950.076*
C100.39204 (18)1.0838 (10)0.4620 (6)0.0728 (15)
H10A0.38291.12390.36240.109*
H10B0.42711.04300.46620.109*
H10C0.38531.22850.52390.109*
Cl10.00955 (5)0.9650 (3)0.4699 (2)0.1027 (6)
N10.21862 (12)0.3964 (7)0.5877 (4)0.0451 (9)
H1N0.22600.37890.67920.054*
N20.27721 (13)0.7150 (8)0.5888 (4)0.0535 (10)
H2N0.27880.68450.68170.064*
O10.16186 (11)0.0467 (6)0.6399 (3)0.0569 (8)
O20.18440 (12)0.1334 (6)0.3805 (3)0.0541 (8)
O30.24322 (11)0.5857 (6)0.3723 (3)0.0546 (9)
S10.17258 (4)0.2238 (2)0.52455 (11)0.0443 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.042 (2)0.063 (3)0.075 (3)0.003 (2)0.005 (2)0.008 (3)
C20.047 (3)0.103 (5)0.065 (3)0.007 (3)0.012 (3)0.004 (3)
C30.050 (3)0.086 (4)0.050 (3)0.005 (3)0.006 (2)0.012 (3)
C40.038 (2)0.047 (2)0.042 (2)0.0069 (18)0.0036 (18)0.000 (2)
C50.056 (3)0.060 (3)0.050 (3)0.004 (3)0.004 (2)0.002 (3)
C60.059 (3)0.066 (3)0.063 (3)0.006 (3)0.008 (2)0.008 (3)
C70.038 (2)0.047 (2)0.046 (3)0.0018 (19)0.0040 (19)0.001 (2)
C80.053 (3)0.057 (3)0.055 (3)0.006 (2)0.005 (2)0.004 (3)
C90.051 (3)0.067 (3)0.073 (3)0.005 (2)0.010 (3)0.001 (3)
C100.063 (3)0.083 (4)0.073 (3)0.031 (3)0.005 (3)0.004 (3)
Cl10.0672 (9)0.1038 (13)0.1372 (15)0.0295 (9)0.0049 (10)0.0063 (13)
N10.0406 (19)0.058 (2)0.0372 (19)0.0097 (18)0.0017 (15)0.0028 (17)
N20.050 (2)0.066 (3)0.044 (2)0.020 (2)0.0026 (17)0.003 (2)
O10.061 (2)0.0532 (18)0.0564 (19)0.0133 (17)0.0046 (16)0.0114 (16)
O20.061 (2)0.0540 (19)0.0474 (17)0.0066 (16)0.0067 (15)0.0120 (15)
O30.062 (2)0.062 (2)0.0398 (17)0.0138 (17)0.0025 (15)0.0000 (17)
S10.0439 (5)0.0462 (6)0.0427 (5)0.0066 (5)0.0023 (5)0.0005 (5)
Geometric parameters (Å, º) top
C1—C21.360 (7)C8—N21.462 (5)
C1—C61.374 (6)C8—C91.488 (6)
C1—Cl11.743 (5)C8—H8A0.9700
C2—C31.373 (7)C8—H8B0.9700
C2—H20.9300C9—C101.519 (6)
C3—C41.380 (6)C9—H9A0.9700
C3—H30.9300C9—H9B0.9700
C4—C51.370 (6)C10—H10A0.9600
C4—S11.768 (4)C10—H10B0.9600
C5—C61.386 (6)C10—H10C0.9600
C5—H50.9300N1—S11.629 (3)
C6—H60.9300N1—H1N0.8600
C7—O31.225 (5)N2—H2N0.8600
C7—N21.330 (5)O1—S11.428 (3)
C7—N11.400 (5)O2—S11.427 (3)
C2—C1—C6121.6 (4)H8A—C8—H8B107.7
C2—C1—Cl1119.5 (4)C8—C9—C10111.1 (4)
C6—C1—Cl1118.9 (4)C8—C9—H9A109.4
C1—C2—C3119.9 (5)C10—C9—H9A109.4
C1—C2—H2120.1C8—C9—H9B109.4
C3—C2—H2120.1C10—C9—H9B109.4
C2—C3—C4119.2 (5)H9A—C9—H9B108.0
C2—C3—H3120.4C9—C10—H10A109.5
C4—C3—H3120.4C9—C10—H10B109.5
C5—C4—C3121.0 (4)H10A—C10—H10B109.5
C5—C4—S1119.7 (3)C9—C10—H10C109.5
C3—C4—S1119.3 (3)H10A—C10—H10C109.5
C4—C5—C6119.5 (4)H10B—C10—H10C109.5
C4—C5—H5120.2C7—N1—S1125.9 (3)
C6—C5—H5120.2C7—N1—H1N117.1
C1—C6—C5118.8 (5)S1—N1—H1N117.1
C1—C6—H6120.6C7—N2—C8123.0 (4)
C5—C6—H6120.6C7—N2—H2N118.5
O3—C7—N2125.2 (4)C8—N2—H2N118.5
O3—C7—N1121.3 (4)O2—S1—O1120.2 (2)
N2—C7—N1113.6 (4)O2—S1—N1109.89 (18)
N2—C8—C9113.3 (4)O1—S1—N1104.59 (18)
N2—C8—H8A108.9O2—S1—C4107.44 (19)
C9—C8—H8A108.9O1—S1—C4108.0 (2)
N2—C8—H8B108.9N1—S1—C4105.86 (18)
C9—C8—H8B108.9
C6—C1—C2—C31.0 (8)O3—C7—N2—C83.7 (7)
Cl1—C1—C2—C3179.9 (4)N1—C7—N2—C8175.3 (4)
C1—C2—C3—C40.1 (8)C9—C8—N2—C7104.1 (5)
C2—C3—C4—C50.8 (8)C7—N1—S1—O239.5 (4)
C2—C3—C4—S1179.6 (4)C7—N1—S1—O1169.8 (3)
C3—C4—C5—C60.8 (7)C7—N1—S1—C476.2 (4)
S1—C4—C5—C6179.6 (4)C5—C4—S1—O235.1 (4)
C2—C1—C6—C51.0 (8)C3—C4—S1—O2146.0 (4)
Cl1—C1—C6—C5179.9 (4)C5—C4—S1—O1166.2 (3)
C4—C5—C6—C10.1 (7)C3—C4—S1—O115.0 (4)
N2—C8—C9—C10176.1 (4)C5—C4—S1—N182.2 (4)
O3—C7—N1—S18.8 (6)C3—C4—S1—N196.6 (4)
N2—C7—N1—S1170.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1N···O3i0.861.952.781 (5)164
N2—H2N···O2i0.862.272.950 (5)137
N2—H2N···O3i0.862.313.067 (5)147
C10—H10A···O1ii0.962.513.332 (6)143
Symmetry codes: (i) x+1/2, y+1, z+1/2; (ii) x+1/2, y+1, z1/2.
 

Follow Acta Cryst. B
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds