metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

catena-Poly[[[(pyridine-κN)copper(II)]-μ-3-{1-[(2-amino­eth­yl)imino]­eth­yl}-6-methyl-2-oxo-2H-pyran-4-olato-κ4N,N,O4:O2] perchlorate]

aLaboratoire d'Electrochimie, d'Ingénierie Moléculaire et de Catalyse Redox (LEIMCR), Faculté des Sciences de l'Ingénieur, Université Farhat Abbas, Sétif 19000, Algeria, and bUnité de Recherche de Chimie de l'Environnement et Moléculaire Structurale, CHEMS, Université Mentouri–Constantine, 25000 Algeria
*Correspondence e-mail: bouacida_sofiane@yahoo.fr

(Received 18 October 2011; accepted 3 November 2011; online 9 November 2011)

In the title compound, {[Cu(C10H13N2O3)(C5H5N)]ClO4}n, the CuII atom has an N3O2 coordination sphere. The complex contains two different ligands, viz. a pyridine mol­ecule and a Schiff base mol­ecule, resulting from the condensation of ethyl­enodiamine with dehydro­acetic acid. The CuII atom exhibits a square-pyramidal geometry: three of the four donors of the pyramid base belong to the Schiff base ligand (an N atom from the amine group, a second N atom from the imine group and the O atom of the pyran­one residue) and the fourth donor is the pyridine N atom. The coordination around the metal ion is completed by a longer axial bond to the pyran­one O atom of an adjacent Schiff base, so forming a one-dimensional polymer. The complex has a +1 charge that is compensated by a perchlorate ion. The crystal packing, which can be described as alternating chains of cations and tetra­hedral perchlorate anions along the a axis, is stabilized by inter­molecular N—H⋯O, C—H⋯O and C—H⋯N hydrogen-bonding interactions.

Related literature

For the synthesis of similar compounds: El-Abbassi et al. (1987[El-Abbassi, M. E. M., Essassi, E. M. & Fifani, J. (1987). Tetrahedron Lett. 28, 1389-1392.]); Fettouhi et al. (1996[Fettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031-1032.]); El-Kihel et al. (1999[El-Kihel, A., Benchidmi, M., Essassi, E. M. & Bougout, R. D. (1999). Synth. Commun. 29, 2435-2444.]); Tan & Kok-Peng Ang (1988[Tan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64-68.]); Djerrari et al. (2002[Djerrari, B., Essassi, E. M. J., Fifani, J. & Carrigues, B. (2002). C. R. Chim. 5, 177-183.]); El-Kubaisi & Ismail (1994[El-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785-1788.]); Danilova et al. (2003[Danilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375-1383.]); Munde et al. (2010[Munde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349-359.]). For their applications, see: Maiti et al. (1988[Maiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57-65.]); Mohan et al. (1981[Mohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41-54.]); Das & Livingstoone (1976[Das, M. & Livingstoone, S. E. (1976). Inorg. Chim. Acta, 19, 5-10.]); Moutet & Ali Ourari (1997[Moutet, J. C. & Ali Ourari, A. (1997). Electrochim. Acta, 42, 2525-2531.]); Ourari et al. (2008[Ourari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736-1739.]).

[Scheme 1]

Experimental

Crystal data
  • [Cu(C10H13N2O3)(C5H5N)]ClO4

  • Mr = 451.32

  • Orthorhombic, P c a b

  • a = 8.8090 (2) Å

  • b = 19.9017 (4) Å

  • c = 20.9053 (5) Å

  • V = 3664.99 (14) Å3

  • Z = 8

  • Mo Kα radiation

  • μ = 1.38 mm−1

  • T = 295 K

  • 0.12 × 0.11 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • 7008 measured reflections

  • 3731 independent reflections

  • 2619 reflections with I > 2σ(I)

  • Rint = 0.022

Refinement
  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.121

  • S = 1.03

  • 3731 reflections

  • 246 parameters

  • H-atom parameters constrained

  • Δρmax = 0.45 e Å−3

  • Δρmin = −0.49 e Å−3

Table 1
Selected bond lengths (Å)

N1—Cu1 2.049 (2)
N2—Cu1 2.001 (3)
N3—Cu1 1.974 (2)
O1—Cu1 1.914 (2)
O3—Cu1i 2.358 (2)
Symmetry code: (i) [x-{\script{1\over 2}}, -y+{\script{1\over 2}}, z].

Table 2
Hydrogen-bond geometry (Å, °)

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H2A⋯O11ii 0.90 2.34 3.182 (4) 156
N2—H2A⋯O41ii 0.90 2.57 3.338 (4) 144
N2—H2B⋯O31iii 0.90 2.31 3.142 (4) 153
C1—H1⋯O1 0.93 2.29 2.842 (4) 118
C5—H5⋯N2 0.93 2.59 3.121 (4) 117
C8—H8B⋯O3 0.96 2.39 2.809 (4) 106
Symmetry codes: (ii) -x, -y, -z+1; (iii) [-x+{\script{1\over 2}}, y, z+{\script{1\over 2}}].

Data collection: COLLECT (Nonius, 1998[Nonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR2002 (Burla et al., 2005[Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]) and DIAMOND (Brandenburg & Berndt, 2001[Brandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.]); software used to prepare material for publication: WinGX (Farrugia, 1999[Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.]).

Supporting information


Comment top

The dehydroacetic acid is a row material which is involved in the synthesis of the most heterocyclic compounds (El-Abbassi et al., 1987; Fettouhi et al., 1996; El-Kihel et al., 1999) and the chelating agents such as the Schiff bases. These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Tan et al., 1988; El-Kubaisi et al., 1994; Munde et al., 2010). Additionally, it was often shown that the heterocyclic compounds resulting from this molecule exhibit some therapeutic activities (Das et al., 1976; Mohan et al., 1981; Maiti et al., 1988) useful for the human diseases while the Schiff base complexes obtained from its ligands showed an important catalytic activity particularly in the oxidation reactions as those carried out according the cytochrome P450 model (Moutet et al., 1997; Ourari et al., 2008). Thus, we have attempted to synthesize the Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). So, we describe here the formation of a new copper Schiff base complex from dehydroacetic acid, ethylenediamine, copper perchlorate and pyridine in methanolic solution. This complex was formed in one pot with only one azomethine (–CH=N–) group yielding an unreacted amino group of ethylenediamine leading to an acceptable yield 68%. In this case, it can noted that the ring of the dehydroacetic acid seems to be not open during the reaction as it was reported in the literature (Djerrari et al., 2002) in presence of nucleophile agents such as the pyridinic derivatives. This behavior may be due to an inhibition of the nucleophilic effect of the pyridine since the reaction was conducted in methanolic solution at room temperature and without reflux. Finally, the resulting compound was confirmed by crystallographic studies as further discussed.

The asymetric unit of ionic structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is five coordinated in a square-pyramidal geometry by three N atoms of pyridine,imine and amine group and two O atom of pyranone moiety. The bond lengths for co-ordination CuII sphere is ranging from 1.974 (2) to 2.049 (2) Å for Cu-N distances and Cu-O = 1.914 (2) Å and 1.914 (2) Å (Table 2).

The crystal packing in the title structure can be described by alterning chains of cations and tetrahedral anions of perchlorate along the c axis (Fig. 2). It is stabilized by intermolecular N—H···O, C—H···O and C—H···N hydrogen bonding (Table 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.

Related literature top

For the synthesis of similar compounds: El-Abbassi et al. (1987); Fettouhi et al. (1996); El-Kihel et al. (1999); Tan & Kok-Peng Ang (1988); Djerrari et al. (2002); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010). For their applications, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstoone (1976); Moutet & Ali Ourari (1997); Ourari et al. (2008).

Experimental top

This complex was obtained by mixing stoechiometric quantities of dehydroacetic acid 0.168 g (1 mMol) with copper perchlorate 0.373 g (1 mMol) in methanol. To this mixture was added an excess of pyridine and then 0.060 g (1 mMol) of ethylenediamine dissolved as well in methanol. After two hours of reaction, a mallow precipitate was observed which is immediately recovered by filtration. It was copiously washed with methanol. Its suitable single-crystal was so obtained by slow evaporation from the filtrate.

Refinement top

The remaining H atoms were localized on Fourier maps but introduced in calculated positions and treated as riding on their parent atoms (C and N) with C—H = 0.96 Å (methyl), 0.97Å (methylene) or 0.93 Å (aromatic) and N—H = 0.90 Å with Uiso(H) = 1.2Ueq(C and N) or Uiso(H) = 1.5Ueq(methyl).

Structure description top

The dehydroacetic acid is a row material which is involved in the synthesis of the most heterocyclic compounds (El-Abbassi et al., 1987; Fettouhi et al., 1996; El-Kihel et al., 1999) and the chelating agents such as the Schiff bases. These ligands are also currently applied in coordination chemistry for the synthesis of Schiff base complexes of transition metals (Tan et al., 1988; El-Kubaisi et al., 1994; Munde et al., 2010). Additionally, it was often shown that the heterocyclic compounds resulting from this molecule exhibit some therapeutic activities (Das et al., 1976; Mohan et al., 1981; Maiti et al., 1988) useful for the human diseases while the Schiff base complexes obtained from its ligands showed an important catalytic activity particularly in the oxidation reactions as those carried out according the cytochrome P450 model (Moutet et al., 1997; Ourari et al., 2008). Thus, we have attempted to synthesize the Schiff base half-units in order to use them as starting materials to obtain unsymmetrical tetradentate Schiff base complexes according the Danilova method's (Danilova et al., 2003). So, we describe here the formation of a new copper Schiff base complex from dehydroacetic acid, ethylenediamine, copper perchlorate and pyridine in methanolic solution. This complex was formed in one pot with only one azomethine (–CH=N–) group yielding an unreacted amino group of ethylenediamine leading to an acceptable yield 68%. In this case, it can noted that the ring of the dehydroacetic acid seems to be not open during the reaction as it was reported in the literature (Djerrari et al., 2002) in presence of nucleophile agents such as the pyridinic derivatives. This behavior may be due to an inhibition of the nucleophilic effect of the pyridine since the reaction was conducted in methanolic solution at room temperature and without reflux. Finally, the resulting compound was confirmed by crystallographic studies as further discussed.

The asymetric unit of ionic structure of (I), and the atomic numbering used, is illustrated in Fig. 1. The CuII ion is five coordinated in a square-pyramidal geometry by three N atoms of pyridine,imine and amine group and two O atom of pyranone moiety. The bond lengths for co-ordination CuII sphere is ranging from 1.974 (2) to 2.049 (2) Å for Cu-N distances and Cu-O = 1.914 (2) Å and 1.914 (2) Å (Table 2).

The crystal packing in the title structure can be described by alterning chains of cations and tetrahedral anions of perchlorate along the c axis (Fig. 2). It is stabilized by intermolecular N—H···O, C—H···O and C—H···N hydrogen bonding (Table 1). These interactions link the molecules within the layers and also link the layers together and reinforcing the cohesion of the ionic structure.

For the synthesis of similar compounds: El-Abbassi et al. (1987); Fettouhi et al. (1996); El-Kihel et al. (1999); Tan & Kok-Peng Ang (1988); Djerrari et al. (2002); El-Kubaisi & Ismail (1994); Danilova et al. (2003); Munde et al. (2010). For their applications, see: Maiti et al. (1988); Mohan et al. (1981); Das & Livingstoone (1976); Moutet & Ali Ourari (1997); Ourari et al. (2008).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR2002 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. The asymmetric unit of (I) with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are represented as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Connexion between cationic chains in zigzag with anionic tetrahedral via N—H···O hydrogen bond showing in dashed line.
catena-Poly[[[(pyridine-κN)copper(II)]-µ- 3-{1-[(2-aminoethyl)imino]ethyl}-6-methyl-2-oxo-2H-pyran-4-olato- κ4N,N,O4:O2] perchlorate] top
Crystal data top
[Cu(C10H13N2O3)(C5H5N)]ClO4Dx = 1.636 Mg m3
Mr = 451.32Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, PcabCell parameters from 4212 reflections
a = 8.8090 (2) Åθ = 1.0–26.4°
b = 19.9017 (4) ŵ = 1.38 mm1
c = 20.9053 (5) ÅT = 295 K
V = 3664.99 (14) Å3Plate, black
Z = 80.12 × 0.11 × 0.05 mm
F(000) = 1848
Data collection top
Nonius KappaCCD
diffractometer
2619 reflections with I > 2σ(I)
Radiation source: Enraf Nonius FR590Rint = 0.022
Graphite monochromatorθmax = 26.4°, θmin = 3.1°
Detector resolution: 9 pixels mm-1h = 010
CCD rotation images, thick slices scansk = 024
7008 measured reflectionsl = 026
3731 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0723P)2 + 0.807P]
where P = (Fo2 + 2Fc2)/3
3731 reflections(Δ/σ)max = 0.001
246 parametersΔρmax = 0.45 e Å3
0 restraintsΔρmin = 0.49 e Å3
Crystal data top
[Cu(C10H13N2O3)(C5H5N)]ClO4V = 3664.99 (14) Å3
Mr = 451.32Z = 8
Orthorhombic, PcabMo Kα radiation
a = 8.8090 (2) ŵ = 1.38 mm1
b = 19.9017 (4) ÅT = 295 K
c = 20.9053 (5) Å0.12 × 0.11 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
2619 reflections with I > 2σ(I)
7008 measured reflectionsRint = 0.022
3731 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.03Δρmax = 0.45 e Å3
3731 reflectionsΔρmin = 0.49 e Å3
246 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2273 (4)0.02862 (16)0.45790 (16)0.0517 (8)
H10.17980.06580.43990.062*
C20.3060 (4)0.01413 (18)0.41827 (18)0.0600 (9)
H20.3110.00580.37460.072*
C30.3770 (4)0.06940 (19)0.4441 (2)0.0600 (9)
H30.43190.09880.41830.072*
C40.3652 (4)0.08009 (18)0.5081 (2)0.0630 (10)
H40.41190.11710.52680.076*
C50.2830 (4)0.03545 (16)0.54523 (18)0.0560 (8)
H50.27420.04390.58880.067*
C60.1257 (4)0.09736 (17)0.71225 (16)0.0559 (9)
H6A0.18830.1370.71790.067*
H6B0.12580.07220.7520.067*
C70.0333 (4)0.11746 (18)0.69521 (16)0.0567 (9)
H7A0.10030.07890.69750.068*
H7B0.06990.15140.72470.068*
C80.2344 (4)0.22163 (17)0.65805 (17)0.0576 (9)
H8A0.27620.18590.68340.086*
H8B0.31390.24260.63380.086*
H8C0.18790.25430.68560.086*
C90.1166 (3)0.19342 (14)0.61287 (14)0.0398 (6)
C100.1085 (3)0.21966 (14)0.54728 (14)0.0380 (6)
C110.1603 (3)0.28666 (15)0.53460 (15)0.0430 (7)
C120.1244 (4)0.26748 (18)0.42205 (14)0.0508 (8)
C130.1460 (6)0.3012 (2)0.3588 (2)0.0908 (15)
H13A0.07970.33940.35590.136*
H13B0.24950.31580.35490.136*
H13C0.12280.27020.32510.136*
C140.0700 (4)0.20627 (18)0.43217 (15)0.0562 (9)
H140.04170.17980.39750.067*
C150.0541 (3)0.18023 (15)0.49603 (14)0.0423 (7)
N10.2158 (3)0.01933 (12)0.52137 (12)0.0432 (6)
N20.1869 (3)0.05540 (13)0.65998 (12)0.0532 (7)
H2A0.15820.01240.66550.064*
H2B0.2890.0570.66020.064*
N30.0300 (3)0.14435 (12)0.62977 (12)0.0429 (6)
O10.0066 (2)0.12212 (10)0.50150 (10)0.0491 (5)
O20.1684 (3)0.30769 (10)0.47159 (11)0.0541 (6)
O30.1950 (3)0.33001 (10)0.57362 (11)0.0519 (6)
O110.1778 (3)0.09728 (16)0.29504 (16)0.0869 (9)
O210.0241 (4)0.16739 (14)0.26635 (16)0.0868 (9)
O310.0210 (4)0.06891 (19)0.21098 (16)0.1067 (11)
O410.0701 (4)0.06507 (16)0.31535 (17)0.0910 (10)
Cl10.02517 (10)0.09943 (4)0.27165 (4)0.0553 (2)
Cu10.10791 (4)0.089862 (17)0.576431 (17)0.03931 (14)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.057 (2)0.0475 (18)0.0504 (19)0.0085 (15)0.0026 (16)0.0018 (15)
C20.065 (2)0.062 (2)0.053 (2)0.0106 (18)0.0082 (17)0.0093 (16)
C30.054 (2)0.057 (2)0.069 (2)0.0124 (16)0.0062 (17)0.0149 (19)
C40.063 (2)0.0489 (19)0.078 (3)0.0197 (16)0.0030 (19)0.0071 (18)
C50.064 (2)0.0480 (18)0.056 (2)0.0109 (16)0.0041 (17)0.0006 (16)
C60.075 (2)0.0528 (19)0.0397 (18)0.0080 (17)0.0046 (16)0.0028 (14)
C70.070 (2)0.062 (2)0.0386 (18)0.0066 (17)0.0109 (16)0.0073 (16)
C80.065 (2)0.0550 (19)0.053 (2)0.0112 (17)0.0181 (17)0.0024 (16)
C90.0388 (15)0.0399 (15)0.0406 (16)0.0040 (12)0.0029 (12)0.0041 (12)
C100.0381 (15)0.0365 (14)0.0392 (15)0.0007 (12)0.0003 (12)0.0003 (12)
C110.0422 (16)0.0434 (16)0.0434 (17)0.0011 (13)0.0003 (13)0.0008 (13)
C120.062 (2)0.0546 (19)0.0354 (17)0.0125 (15)0.0016 (14)0.0023 (14)
C130.123 (4)0.094 (3)0.055 (3)0.040 (3)0.002 (2)0.021 (2)
C140.073 (2)0.061 (2)0.0352 (17)0.0186 (17)0.0016 (15)0.0023 (14)
C150.0423 (16)0.0458 (16)0.0387 (16)0.0055 (13)0.0009 (12)0.0036 (13)
N10.0465 (14)0.0377 (12)0.0456 (15)0.0032 (10)0.0024 (11)0.0017 (11)
N20.0679 (18)0.0489 (15)0.0428 (15)0.0100 (13)0.0001 (13)0.0044 (12)
N30.0466 (15)0.0428 (13)0.0394 (14)0.0003 (11)0.0031 (11)0.0037 (11)
O10.0591 (13)0.0467 (12)0.0415 (12)0.0163 (10)0.0048 (10)0.0058 (9)
O20.0671 (14)0.0458 (12)0.0494 (13)0.0110 (11)0.0009 (11)0.0060 (10)
O30.0640 (14)0.0388 (11)0.0528 (13)0.0068 (10)0.0018 (11)0.0062 (10)
O110.0555 (15)0.116 (2)0.089 (2)0.0077 (16)0.0063 (16)0.0173 (18)
O210.093 (2)0.0626 (17)0.105 (2)0.0126 (16)0.0017 (18)0.0161 (16)
O310.109 (3)0.145 (3)0.067 (2)0.022 (2)0.0035 (19)0.038 (2)
O410.088 (2)0.091 (2)0.094 (2)0.0057 (18)0.0299 (18)0.0290 (18)
Cl10.0575 (5)0.0638 (5)0.0447 (5)0.0077 (4)0.0079 (4)0.0055 (4)
Cu10.0458 (2)0.0370 (2)0.0352 (2)0.00416 (15)0.00067 (15)0.00081 (14)
Geometric parameters (Å, º) top
C1—N11.344 (4)C10—C111.434 (4)
C1—C21.375 (4)C11—O31.226 (4)
C1—H10.93C11—O21.384 (4)
C2—C31.376 (5)C12—C141.326 (5)
C2—H20.93C12—O21.365 (4)
C3—C41.358 (6)C12—C131.495 (5)
C3—H30.93C13—H13A0.96
C4—C51.385 (5)C13—H13B0.96
C4—H40.93C13—H13C0.96
C5—N11.337 (4)C14—C151.439 (4)
C5—H50.93C14—H140.93
C6—N21.477 (4)C15—O11.279 (4)
C6—C71.499 (5)N1—Cu12.049 (2)
C6—H6A0.97N2—Cu12.001 (3)
C6—H6B0.97N2—H2A0.9
C7—N31.469 (4)N2—H2B0.9
C7—H7A0.97N3—Cu11.974 (2)
C7—H7B0.97O1—Cu11.914 (2)
C8—C91.512 (4)O3—Cu1i2.358 (2)
C8—H8A0.96O11—Cl11.431 (3)
C8—H8B0.96O21—Cl11.425 (3)
C8—H8C0.96O31—Cl11.407 (3)
C9—N31.288 (4)O41—Cl11.417 (3)
C9—C101.469 (4)Cu1—O3ii2.358 (2)
C10—C151.412 (4)
N1—C1—C2123.2 (3)O2—C12—C13111.8 (3)
N1—C1—H1118.4C12—C13—H13A109.5
C2—C1—H1118.4C12—C13—H13B109.5
C1—C2—C3119.2 (4)H13A—C13—H13B109.5
C1—C2—H2120.4C12—C13—H13C109.5
C3—C2—H2120.4H13A—C13—H13C109.5
C4—C3—C2118.5 (3)H13B—C13—H13C109.5
C4—C3—H3120.8C12—C14—C15120.9 (3)
C2—C3—H3120.8C12—C14—H14119.5
C3—C4—C5119.5 (3)C15—C14—H14119.5
C3—C4—H4120.3O1—C15—C10125.2 (3)
C5—C4—H4120.3O1—C15—C14116.7 (3)
N1—C5—C4123.1 (3)C10—C15—C14118.1 (3)
N1—C5—H5118.5C5—N1—C1116.6 (3)
C4—C5—H5118.5C5—N1—Cu1123.7 (2)
N2—C6—C7108.4 (3)C1—N1—Cu1119.7 (2)
N2—C6—H6A110C6—N2—Cu1108.96 (19)
C7—C6—H6A110C6—N2—H2A109.9
N2—C6—H6B110Cu1—N2—H2A109.9
C7—C6—H6B110C6—N2—H2B109.9
H6A—C6—H6B108.4Cu1—N2—H2B109.9
N3—C7—C6107.5 (3)H2A—N2—H2B108.3
N3—C7—H7A110.2C9—N3—C7121.3 (3)
C6—C7—H7A110.2C9—N3—Cu1128.7 (2)
N3—C7—H7B110.2C7—N3—Cu1109.75 (19)
C6—C7—H7B110.2C15—O1—Cu1124.85 (19)
H7A—C7—H7B108.5C12—O2—C11122.0 (2)
C9—C8—H8A109.5C11—O3—Cu1i132.6 (2)
C9—C8—H8B109.5O31—Cl1—O41110.9 (2)
H8A—C8—H8B109.5O31—Cl1—O21109.4 (2)
C9—C8—H8C109.5O41—Cl1—O21109.14 (19)
H8A—C8—H8C109.5O31—Cl1—O11108.7 (2)
H8B—C8—H8C109.5O41—Cl1—O11108.8 (2)
N3—C9—C10119.8 (3)O21—Cl1—O11109.94 (19)
N3—C9—C8121.1 (3)O1—Cu1—N389.50 (9)
C10—C9—C8119.0 (3)O1—Cu1—N2172.52 (11)
C15—C10—C11119.0 (3)N3—Cu1—N284.80 (10)
C15—C10—C9121.8 (3)O1—Cu1—N189.20 (9)
C11—C10—C9119.2 (3)N3—Cu1—N1168.32 (10)
O3—C11—O2114.0 (3)N2—Cu1—N195.41 (10)
O3—C11—C10127.6 (3)O1—Cu1—O3ii95.50 (9)
O2—C11—C10118.3 (3)N3—Cu1—O3ii95.48 (9)
C14—C12—O2121.4 (3)N2—Cu1—O3ii89.86 (10)
C14—C12—C13126.9 (3)N1—Cu1—O3ii96.20 (9)
N1—C1—C2—C30.0 (5)C6—C7—N3—Cu139.9 (3)
C1—C2—C3—C40.8 (6)C10—C15—O1—Cu125.3 (4)
C2—C3—C4—C50.1 (6)C14—C15—O1—Cu1155.8 (2)
C3—C4—C5—N11.3 (6)C14—C12—O2—C110.7 (5)
N2—C6—C7—N349.7 (4)C13—C12—O2—C11179.3 (3)
N3—C9—C10—C1523.6 (4)O3—C11—O2—C12175.7 (3)
C8—C9—C10—C15152.3 (3)C10—C11—O2—C122.1 (4)
N3—C9—C10—C11157.8 (3)O2—C11—O3—Cu1i42.7 (4)
C8—C9—C10—C1126.3 (4)C10—C11—O3—Cu1i139.8 (3)
C15—C10—C11—O3171.4 (3)C15—O1—Cu1—N331.6 (3)
C9—C10—C11—O310.0 (5)C15—O1—Cu1—N1160.0 (3)
C15—C10—C11—O26.1 (4)C15—O1—Cu1—O3ii63.8 (3)
C9—C10—C11—O2172.5 (2)C9—N3—Cu1—O116.1 (3)
O2—C12—C14—C150.6 (6)C7—N3—Cu1—O1158.9 (2)
C13—C12—C14—C15179.5 (4)C9—N3—Cu1—N2168.7 (3)
C11—C10—C15—O1173.9 (3)C7—N3—Cu1—N216.2 (2)
C9—C10—C15—O17.5 (5)C9—N3—Cu1—N199.8 (5)
C11—C10—C15—C147.2 (4)C7—N3—Cu1—N175.3 (6)
C9—C10—C15—C14171.3 (3)C9—N3—Cu1—O3ii79.4 (3)
C12—C14—C15—O1176.5 (3)C7—N3—Cu1—O3ii105.6 (2)
C12—C14—C15—C104.6 (5)C6—N2—Cu1—N311.2 (2)
C4—C5—N1—C12.0 (5)C6—N2—Cu1—N1179.5 (2)
C4—C5—N1—Cu1175.0 (3)C6—N2—Cu1—O3ii84.3 (2)
C2—C1—N1—C51.3 (5)C5—N1—Cu1—O1162.4 (3)
C2—C1—N1—Cu1175.8 (3)C1—N1—Cu1—O120.7 (2)
C7—C6—N2—Cu136.0 (3)C5—N1—Cu1—N378.7 (6)
C10—C9—N3—C7179.1 (3)C1—N1—Cu1—N3104.4 (5)
C8—C9—N3—C75.1 (4)C5—N1—Cu1—N211.7 (3)
C10—C9—N3—Cu16.4 (4)C1—N1—Cu1—N2165.2 (2)
C8—C9—N3—Cu1169.4 (2)C5—N1—Cu1—O3ii102.2 (3)
C6—C7—N3—C9144.6 (3)C1—N1—Cu1—O3ii74.7 (2)
Symmetry codes: (i) x1/2, y+1/2, z; (ii) x+1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O11iii0.902.343.182 (4)156
N2—H2A···O41iii0.902.573.338 (4)144
N2—H2B···O31iv0.902.313.142 (4)153
C1—H1···O10.932.292.842 (4)118
C5—H5···N20.932.593.121 (4)117
C8—H8B···O30.962.392.809 (4)106
Symmetry codes: (iii) x, y, z+1; (iv) x+1/2, y, z+1/2.

Experimental details

Crystal data
Chemical formula[Cu(C10H13N2O3)(C5H5N)]ClO4
Mr451.32
Crystal system, space groupOrthorhombic, Pcab
Temperature (K)295
a, b, c (Å)8.8090 (2), 19.9017 (4), 20.9053 (5)
V3)3664.99 (14)
Z8
Radiation typeMo Kα
µ (mm1)1.38
Crystal size (mm)0.12 × 0.11 × 0.05
Data collection
DiffractometerNonius KappaCCD
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
7008, 3731, 2619
Rint0.022
(sin θ/λ)max1)0.625
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.121, 1.03
No. of reflections3731
No. of parameters246
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.45, 0.49

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR2002 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997) and DIAMOND (Brandenburg & Berndt, 2001), WinGX (Farrugia, 1999).

Selected bond lengths (Å) top
N1—Cu12.049 (2)O1—Cu11.914 (2)
N2—Cu12.001 (3)O3—Cu1i2.358 (2)
N3—Cu11.974 (2)
Symmetry code: (i) x1/2, y+1/2, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N2—H2A···O11ii0.90002.34003.182 (4)156.00
N2—H2A···O41ii0.90002.57003.338 (4)144.00
N2—H2B···O31iii0.90002.31003.142 (4)153.00
C1—H1···O10.93002.29002.842 (4)118.00
C5—H5···N20.93002.59003.121 (4)117.00
C8—H8B···O30.96002.39002.809 (4)106.00
Symmetry codes: (ii) x, y, z+1; (iii) x+1/2, y, z+1/2.
 

Acknowledgements

The authors thank the Algerian Ministère de l'Enseignement Supérieur et de la Recherche Scientifique for financial support and Professor L. Ouahab (Laboratoire des Sciences Chimiques, Rennes1, France) for helpful discussions.

References

First citationBrandenburg, K. & Berndt, M. (2001). DIAMOND. Crystal Impact, Bonn, Germany.  Google Scholar
First citationBurla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381–388.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationDanilova, T. I., Rosenberg, D. I., Vorontsov, V., Starikova, Z. A. & Hopf, H. (2003). Tetrahedron Asymmetry, 14, 1375–1383.  Web of Science CSD CrossRef CAS Google Scholar
First citationDas, M. & Livingstoone, S. E. (1976). Inorg. Chim. Acta, 19, 5–10.  CrossRef CAS Web of Science Google Scholar
First citationDjerrari, B., Essassi, E. M. J., Fifani, J. & Carrigues, B. (2002). C. R. Chim. 5, 177–183.  Web of Science CrossRef CAS Google Scholar
First citationEl-Abbassi, M. E. M., Essassi, E. M. & Fifani, J. (1987). Tetrahedron Lett. 28, 1389–1392.  CAS Google Scholar
First citationEl-Kihel, A., Benchidmi, M., Essassi, E. M. & Bougout, R. D. (1999). Synth. Commun. 29, 2435–2444.  CAS Google Scholar
First citationEl-Kubaisi, A. & Ismail, K. Z. (1994). Can. J. Chem. 72, 1785–1788.  Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationFarrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.  CrossRef CAS IUCr Journals Google Scholar
First citationFettouhi, M., Boukhari, A., El Otmani, B. & Essassi, E. M. (1996). Acta Cryst. C52, 1031–1032.  CSD CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationMaiti, A., Guha, A. K. & Ghosh, S. (1988). J. Inorg. Biochem. 33, 57–65.  CrossRef CAS PubMed Web of Science Google Scholar
First citationMohan, M., Agarwal, A. & Jha, N. K. (1981). J. Inorg. Biochem. 34, 41–54.  CrossRef Web of Science Google Scholar
First citationMoutet, J. C. & Ali Ourari, A. (1997). Electrochim. Acta, 42, 2525–2531.  CrossRef CAS Web of Science Google Scholar
First citationMunde, A. A., Jagdale, A. N., Jahdav, S. M. & Chondhekar, T. K. (2010). J. Serb. Chem. Soc. 75, 349–359.  Web of Science CrossRef CAS Google Scholar
First citationNonius (1998). KappaCCD Reference Manual. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationOurari, A., Baameur, L., Bouet, G. & Khan, A. M. (2008). Electrochem. Commun. 10, 1736–1739.  Web of Science CrossRef CAS Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTan, S. F. & Kok-Peng Ang, K. P. (1988). Transition Met. Chem. 13, 64–68.  CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds