metal-organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

Octa-μ3-selenido-penta­kis­(tri­ethyl­phos­phane-κP)(tri­methyl­aceto­nitrile-κN)-octa­hedro-hexa­rhenium(III) bis­­(hexa­fluorido­anti­monate) tri­methyl­aceto­nitrile monosolvate

aDepartment of Chemistry, Campus Box 4160, Illinois State University, Normal, IL 61790-4160, USA
*Correspondence e-mail: lfszcze@ilstu.edu

(Received 24 April 2014; accepted 22 May 2014; online 4 June 2014)

The crystal structure of the title compound, [Re6Se8{NCC(CH3)3}(Et3P)5](SbF6)2·NCC(CH3)3, contains a face-capped octa­hedral [Re6(μ3-Se)8]2+ cluster core. The pseudo-centrosymmetric [Re6Se8]2+ cluster core is bonded through the Re atoms to five tri­ethyl­phosphane ligands and one tri­methyl­aceto­nitrile ligand. No significant interactions are observed between the cationic cluster, the SbF6 anions and the trimethylacetonitrile solvent molecule.

Related literature

For the preparation of site-differentiated rhenium chalcogenide cluster complexes, see: Zheng et al. (1997[Zheng, Z., Long, J. R. & Holm, R. H. (1997). J. Am. Chem. Soc. 119, 2163-2171.]); Willer et al. (1998[Willer, M. W., Long, J. R., McLauchlan, C. C. & Holm, R. H. (1998). Inorg. Chem. 37, 328-333.]); Szczepura et al. (2010[Szczepura, L. F., Cedeño, D. L., Johnson, D. B., McDonald, R., Knott, S. A., Jeans, K. M. & Durham, J. L. (2010). Inorg. Chem. 49, 11386-11394.]). For the structure of the first [Re6Se8]2+-based cluster complex containing a nitrile ligand (MeCN), see: Zheng et al. (1997[Zheng, Z., Long, J. R. & Holm, R. H. (1997). J. Am. Chem. Soc. 119, 2163-2171.]). For the crystal structures of other rhenium chalcogenide cluster complexes, see: Long et al. (1996[Long, J. R., McCarty, L. S. & Holm, R. H. (1996). J. Am. Chem. Soc. 118, 4603-4616.]); Brylev et al. (2003[Brylev, K. A., Naumov, N. G., Peris, G., Llusar, R. & Fedorov, V. E. (2003). Polyhedron, 22, 3383-3387.]); Dorson et al. (2009[Dorson, F., Molard, Y., Cordier, S., Fabre, B., Efremova, O., Rondeau, D., Mironov, Y., Circu, V., Naumov, N. & Perrin, C. (2009). Dalton Trans. pp. 1297-1299.]) and for additional [Re6Se8]2+-based complexes containing nitrile ligands, see: Zheng & Holm (1997[Zheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173-5178.]); Zheng et al. (1999[Zheng, Z., Gray, T. G. & Holm, R. H. (1999). Inorg. Chem. 38, 4888-4895.]); Durham et al. (2012[Durham, J. L., Tirado, J. N., Knott, S. A., Oh, M. K., McDonald, R. & Szczepura, L. F. (2012). Inorg. Chem. 51, 7825-7836.]); Wilson et al. (2014[Wilson, W. B., Stark, K., Johnson, D. B., Ren, Y., Ishida, H., Cedeño, D. L. & Szczepura, L. F. (2014). Eur. J. Inorg. Chem. pp. 2254-2261.]). For the reactivity of transition metal nitrile complexes, see: Endres (1987[Endres, H. (1987). Comprehensive Coordination Chemistry I, edited by G. Wilkinson, p. 261. New York: Pergamon Press.]).

[Scheme 1]

Experimental

Crystal data
  • [Re6Se8(C5H9N)(C6H15P)5](SbF6)2·C5H9N

  • Mr = 2977.39

  • Triclinic, [P \overline 1]

  • a = 14.3341 (10) Å

  • b = 16.6498 (11) Å

  • c = 17.0533 (11) Å

  • α = 82.157 (1)°

  • β = 72.859 (1)°

  • γ = 71.608 (1)°

  • V = 3686.3 (4) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 14.65 mm−1

  • T = 173 K

  • 0.56 × 0.30 × 0.25 mm

Data collection
  • Bruker APEXII CCD diffractometer

  • Absorption correction: integration (SADABS; Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]) Tmin = 0.020, Tmax = 0.104

  • 33157 measured reflections

  • 16902 independent reflections

  • 14674 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.024

  • wR(F2) = 0.056

  • S = 1.08

  • 16902 reflections

  • 676 parameters

  • H-atom parameters constrained

  • Δρmax = 3.10 e Å−3

  • Δρmin = −1.92 e Å−3

Data collection: APEX2 (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); cell refinement: SAINT (Bruker, 2008[Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.]); data reduction: SAINT; program(s) used to solve structure: DIRDIF08 (Beurskens et al., 2008[Beurskens, P. T., Beurskens, G., de Gelder, R., Smith, J. M. M., Garcia-Granda, S. & Gould, R. O. (2008). DIRDIF08. University of Nijmegen, The Netherlands.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]); software used to prepare material for publication: WinGX (Farrugia, 2012[Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849-854.]).

Supporting information


Comment top

Discrete clusters based on the [Re6Q8]2+ (Q = S or Se) are relatively robust and undergo substitution chemistry (Zheng et al., 1997; Willer et al., 1998; Szczepura et al., 2010). Substitution of the terminal halide ligands with inert phosphane ligands on these cores has greatly facilitated research in this area. Because nitrile ligands are often readily substituted by stronger ligands, complexes containing organonitrile ligands are typically used as precursors in the preparation of coordination complexes (Endres, 1987). The present paper describes the crystal structure of the title compound from single-crystal X-ray diffraction data. The cluster complex shows core bond lengths (Re–Re) and (Re–Se) and angles (Re–Re–Re, Re–Re–Se, Se–Re–Se, and Re–Se–Re) are within the range typically found for [Re6Se8]2+ based cluster complexes (Long et al., 1996; Brylev et al., 2003; Dorson et al., 2009). The observed Re–P (2.414–2.512 Å) and Re—N (2.125 Å) bond lengths both fall within ranges previously observed for [Re6Se8]2+ based cluster complexes containing terminal triethylphosphane as well as nitrile ligands (Zheng et al., 1997; Zheng et al., 1999; Zheng & Holm, 1997; Durham et al., 2012; Wilson et al., 2014). As with other nitrile ligands bound to rhenium selenide cores, the Re—N—C bond angle of 170.0 (4)° indicates an arrangement that is close to linear.

Related literature top

For the preparation of site-differentiated rhenium chalcogenide cluster complexes, see: Zheng et al. (1997); Willer et al. (1998); Szczepura et al. (2010). For the structure of the first [Re6Se8]2+ based cluster complex containing a nitrile ligand (MeCN), see: Zheng et al. (1997). For the crystal structures of other rhenium chalcogenide cluster complexes, see: Long et al. (1996); Brylev et al. (2003); Dorson et al. (2009) and for additional [Re6Se8]2+-based complexes containing nitrile ligands, see: Zheng & Holm (1997); Zheng et al. (1997, 1999); Durham et al. (2012); Wilson et al. (2014). For the reactivity of transition metal nitrile complexes, see: Endres (1987).

Experimental top

The [Re6Se8(PEt3)5I]I complex was obtained according to a previously published procedure (Zheng et al., 1997). The title compound was prepared by dissolving [Re6Se8(PEt3)5I]I (300 mg, 0.115 mmol) in 15 ml of CH2Cl2. Separately, 94.2 mg of AgSbF6 (0.274 mmol) was dissolved in 540 µL of trimethylacetonitrile. These solutions were combined, covered with aluminium foil, and stirred at room temperature for 3 h under N2 gas. The resulting mixture was then filtered through Celite; the filtrate was reduced to dryness on the Schlenk line. The remaining residue was dissolved in 1.5 ml of CH2Cl2 and added drop-wise into Et2O to afford a solid. Single crystals of [Re6Se8(PEt3)5(NCC(CH3)3)](SbF6)2·NCC(CH3)3 suitable for X-ray analysis were grown via the vapor diffusion technique using trimethylacetonitrile and Et2O at -20 °C. The single crystals obtained are of orange color. MS (ESI(+)): m/z 1212.0 ([Re6Se8(PEt3)5(NCC(CH3)3)]2+). Anal. Calcd for C35H84F12NP5Re6Sb2Se8: C, 14.52; H, 2.93; N, 0.48. Found: C, 14.44; H, 2.82; N, 0.49.

Refinement top

The highest peak of 3.10 e-/Å3 is 0.88 Å from atom Sb2 and the deepest hole of -1.31 e-/Å3 is 0.32 Å from Sb2. All H-atoms were refined using constrained model.

Structure description top

Discrete clusters based on the [Re6Q8]2+ (Q = S or Se) are relatively robust and undergo substitution chemistry (Zheng et al., 1997; Willer et al., 1998; Szczepura et al., 2010). Substitution of the terminal halide ligands with inert phosphane ligands on these cores has greatly facilitated research in this area. Because nitrile ligands are often readily substituted by stronger ligands, complexes containing organonitrile ligands are typically used as precursors in the preparation of coordination complexes (Endres, 1987). The present paper describes the crystal structure of the title compound from single-crystal X-ray diffraction data. The cluster complex shows core bond lengths (Re–Re) and (Re–Se) and angles (Re–Re–Re, Re–Re–Se, Se–Re–Se, and Re–Se–Re) are within the range typically found for [Re6Se8]2+ based cluster complexes (Long et al., 1996; Brylev et al., 2003; Dorson et al., 2009). The observed Re–P (2.414–2.512 Å) and Re—N (2.125 Å) bond lengths both fall within ranges previously observed for [Re6Se8]2+ based cluster complexes containing terminal triethylphosphane as well as nitrile ligands (Zheng et al., 1997; Zheng et al., 1999; Zheng & Holm, 1997; Durham et al., 2012; Wilson et al., 2014). As with other nitrile ligands bound to rhenium selenide cores, the Re—N—C bond angle of 170.0 (4)° indicates an arrangement that is close to linear.

For the preparation of site-differentiated rhenium chalcogenide cluster complexes, see: Zheng et al. (1997); Willer et al. (1998); Szczepura et al. (2010). For the structure of the first [Re6Se8]2+ based cluster complex containing a nitrile ligand (MeCN), see: Zheng et al. (1997). For the crystal structures of other rhenium chalcogenide cluster complexes, see: Long et al. (1996); Brylev et al. (2003); Dorson et al. (2009) and for additional [Re6Se8]2+-based complexes containing nitrile ligands, see: Zheng & Holm (1997); Zheng et al. (1997, 1999); Durham et al. (2012); Wilson et al. (2014). For the reactivity of transition metal nitrile complexes, see: Endres (1987).

Computing details top

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: DIRDIF08 (Beurskens et al., 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 2012); software used to prepare material for publication: WinGX (Farrugia, 2012).

Figures top
[Figure 1] Fig. 1. Fig. 1. ORTEP diagram of the [Re6Se8(PEt3)5(NCC(CH3)3)]2+ cation with hydrogen atoms omitted for clarity. Non-hydrogen atoms are represented by ellipsoids at the 50% probability level.
Octa-µ3-selenido-pentakis(triethylphosphane-κP)(trimethylacetonitrile-κN)-octahedro-hexarhenium(III) bis(hexafluoridoantimonate) trimethylacetonitrile monosolvate top
Crystal data top
[Re6Se8(C5H9N)(C6H15P)5](SbF6)2·C5H9NZ = 2
Mr = 2977.39F(000) = 2708
Triclinic, P1Dx = 2.682 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 14.3341 (10) ÅCell parameters from 9836 reflections
b = 16.6498 (11) Åθ = 2.2–27.5°
c = 17.0533 (11) ŵ = 14.65 mm1
α = 82.157 (1)°T = 173 K
β = 72.859 (1)°Prism, orange
γ = 71.608 (1)°0.56 × 0.30 × 0.25 mm
V = 3686.3 (4) Å3
Data collection top
Bruker APEXII CCD
diffractometer
14674 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.018
ω scansθmax = 27.5°, θmin = 1.3°
Absorption correction: integration
(SADABS; Bruker, 2008)
h = 1818
Tmin = 0.020, Tmax = 0.104k = 2121
33157 measured reflectionsl = 2222
16902 independent reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.024Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.015P)2 + 11.3814P]
where P = (Fo2 + 2Fc2)/3
16902 reflections(Δ/σ)max = 0.023
676 parametersΔρmax = 3.10 e Å3
0 restraintsΔρmin = 1.92 e Å3
Crystal data top
[Re6Se8(C5H9N)(C6H15P)5](SbF6)2·C5H9Nγ = 71.608 (1)°
Mr = 2977.39V = 3686.3 (4) Å3
Triclinic, P1Z = 2
a = 14.3341 (10) ÅMo Kα radiation
b = 16.6498 (11) ŵ = 14.65 mm1
c = 17.0533 (11) ÅT = 173 K
α = 82.157 (1)°0.56 × 0.30 × 0.25 mm
β = 72.859 (1)°
Data collection top
Bruker APEXII CCD
diffractometer
16902 independent reflections
Absorption correction: integration
(SADABS; Bruker, 2008)
14674 reflections with I > 2σ(I)
Tmin = 0.020, Tmax = 0.104Rint = 0.018
33157 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0240 restraints
wR(F2) = 0.056H-atom parameters constrained
S = 1.08 w = 1/[σ2(Fo2) + (0.015P)2 + 11.3814P]
where P = (Fo2 + 2Fc2)/3
16902 reflectionsΔρmax = 3.10 e Å3
676 parametersΔρmin = 1.92 e Å3
Special details top

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C11.1228 (4)0.5555 (3)0.5509 (3)0.0418 (13)
H1A1.15010.50420.51950.063*
H1B1.06460.55020.59690.063*
H1C1.17590.56290.57210.063*
C21.0880 (4)0.6322 (3)0.4951 (3)0.0320 (11)
H2A1.03590.62290.47290.038*
H2B1.14710.63540.4480.038*
C31.1370 (3)0.7479 (4)0.5787 (3)0.0320 (11)
H3A1.1140.80510.60030.038*
H3B1.14730.70640.62510.038*
C41.2399 (4)0.7375 (5)0.5148 (4)0.0511 (16)
H4A1.28890.7460.54010.077*
H4B1.23170.77950.46920.077*
H4C1.26510.68040.4940.077*
C51.0268 (4)0.8076 (3)0.4538 (3)0.0282 (10)
H5A1.09260.79090.41120.034*
H5B0.97340.80140.43120.034*
C61.0030 (4)0.9008 (3)0.4699 (3)0.0379 (12)
H6A1.00050.9350.41860.057*
H6B1.05630.90830.49080.057*
H6C0.93690.91890.51060.057*
C70.7390 (4)1.0918 (3)0.6885 (3)0.0298 (10)
H7A0.80761.06690.6520.036*
H7B0.71271.15040.66690.036*
C80.7500 (5)1.0961 (3)0.7741 (3)0.0447 (14)
H8A0.79611.12980.77080.067*
H8B0.77811.03860.79570.067*
H8C0.6831.12240.81070.067*
C90.5643 (5)1.0300 (3)0.5562 (4)0.0454 (14)
H9A0.56351.04820.49920.068*
H9B0.49681.05470.59290.068*
H9C0.58180.96810.56230.068*
C100.5307 (4)1.0819 (3)0.7486 (4)0.0373 (12)
H10A0.48261.05140.74620.045*
H10B0.53591.07540.80590.045*
C110.4850 (5)1.1758 (3)0.7288 (4)0.0510 (15)
H11A0.41821.19690.7680.077*
H11B0.4771.18340.67290.077*
H11C0.53041.20750.73290.077*
C120.6435 (4)1.0595 (3)0.5783 (3)0.0355 (12)
H12A0.6261.1220.57010.043*
H12B0.71081.03560.53950.043*
C130.5609 (5)0.5876 (4)0.5062 (4)0.0490 (15)
H13A0.56990.52640.50960.074*
H13B0.59380.60480.45020.074*
H13C0.48790.61810.51990.074*
C140.4643 (3)0.7743 (3)0.5917 (3)0.0266 (10)
H14A0.45410.83540.59560.032*
H14B0.44030.76840.54450.032*
C150.3978 (4)0.7430 (4)0.6699 (3)0.0391 (12)
H15A0.32630.7760.67630.059*
H15B0.41930.750.71740.059*
H15C0.40530.6830.66620.059*
C160.6459 (4)0.7546 (3)0.4635 (3)0.0291 (10)
H16A0.59960.74890.43270.035*
H16B0.64030.81560.46190.035*
C170.7553 (4)0.7075 (4)0.4187 (3)0.0381 (12)
H17A0.77190.7310.36210.057*
H17B0.76170.64720.41810.057*
H17C0.80250.71420.44720.057*
C180.6094 (4)0.6083 (3)0.5667 (3)0.0320 (11)
H18A0.68240.57540.5530.038*
H18B0.5770.58840.62250.038*
C190.4316 (4)0.8789 (3)0.9937 (3)0.0350 (11)
H19A0.37530.87331.04240.042*
H19B0.48770.88381.01370.042*
C200.3940 (4)0.9598 (3)0.9445 (4)0.0440 (14)
H20A0.37071.00840.97920.066*
H20B0.33720.95640.92550.066*
H20C0.44970.96690.8970.066*
C210.3689 (3)0.7825 (3)0.9000 (3)0.0313 (11)
H21A0.35830.82960.85830.038*
H21B0.38680.7290.87230.038*
C220.2677 (4)0.7912 (5)0.9667 (4)0.0512 (16)
H22A0.21460.7910.94150.077*
H22B0.2480.84460.99380.077*
H22C0.27610.74371.00730.077*
C230.4835 (4)0.7007 (3)1.0184 (3)0.0385 (12)
H23A0.53850.7011.04230.046*
H23B0.41840.71631.06190.046*
C240.5023 (5)0.6109 (4)0.9952 (4)0.0537 (16)
H24A0.5040.57251.04410.081*
H24B0.56770.59350.95360.081*
H24C0.44730.60890.97310.081*
C250.8896 (4)0.9178 (3)0.9126 (3)0.0351 (11)
H25A0.91740.94020.85670.042*
H25B0.81550.9470.92920.042*
C260.9392 (5)0.9411 (4)0.9713 (4)0.0581 (18)
H26A0.92531.00270.96930.087*
H26B1.01310.91420.95460.087*
H26C0.91090.92111.02740.087*
C270.8660 (4)0.7665 (3)1.0143 (3)0.0315 (11)
H27A0.87630.70481.01470.038*
H27B0.91130.77461.04470.038*
C280.7571 (4)0.8076 (4)1.0603 (3)0.0403 (12)
H28A0.74360.78261.11650.06*
H28B0.71090.79831.03230.06*
H28C0.7460.86861.06210.06*
C291.0448 (4)0.7550 (4)0.8856 (3)0.0356 (12)
H29A1.06780.76280.93260.043*
H29B1.05840.69340.88170.043*
C301.1086 (4)0.7886 (4)0.8070 (3)0.0489 (15)
H30A1.1810.7580.80020.073*
H30B1.0980.84920.81090.073*
H30C1.08770.78020.75970.073*
C310.8895 (4)0.4422 (3)0.7933 (3)0.0260 (9)
C320.9532 (4)0.3526 (3)0.7960 (3)0.0354 (11)
C330.9655 (5)0.3144 (4)0.7159 (4)0.0593 (18)
H33A1.0070.2550.71610.089*
H33B0.99920.34610.66940.089*
H33C0.89810.31750.71060.089*
C340.9016 (5)0.3055 (4)0.8705 (5)0.067 (2)
H34A0.94340.24630.87250.101*
H34B0.83420.30740.86630.101*
H34C0.8940.33230.92060.101*
C351.0566 (4)0.3539 (4)0.8030 (4)0.0498 (15)
H35A1.10090.29570.80540.075*
H35B1.04690.38170.85320.075*
H35C1.08830.38520.75510.075*
C360.2404 (8)0.5082 (7)0.8503 (7)0.092 (3)
C370.2987 (11)0.4088 (9)0.8427 (12)0.205 (8)
H37A0.36680.40090.80450.307*
H37B0.25980.38140.82210.307*
H37C0.30530.38320.89690.307*
C380.2927 (9)0.5410 (9)0.9031 (10)0.175 (7)
H38A0.36280.53830.87170.263*
H38B0.29340.50550.95380.263*
H38C0.25440.59980.91670.263*
C390.2562 (9)0.5371 (9)0.7575 (10)0.163 (6)
H39A0.32940.52480.73040.244*
H39B0.22320.59810.75240.244*
H39C0.2260.50640.73150.244*
C400.1561 (15)0.5159 (17)0.915 (3)0.36 (3)
F10.2531 (8)0.9573 (4)0.6624 (5)0.212 (5)
F20.1538 (4)1.1178 (3)0.6526 (3)0.0942 (16)
F30.0733 (5)1.0160 (5)0.7581 (6)0.165 (3)
F40.1339 (6)1.1252 (4)0.8083 (4)0.138 (3)
F50.3127 (5)1.0646 (6)0.7098 (7)0.230 (5)
F60.2306 (6)0.9624 (4)0.8152 (4)0.153 (3)
F70.7219 (3)0.4491 (2)0.6701 (3)0.0738 (13)
F80.6806 (4)0.3849 (4)0.8198 (3)0.0912 (16)
F90.7393 (3)0.2881 (2)0.6927 (3)0.0734 (12)
F100.5506 (4)0.3231 (3)0.7889 (3)0.0803 (13)
F110.5893 (4)0.3878 (4)0.6390 (3)0.1015 (17)
F120.5300 (3)0.4862 (3)0.7596 (3)0.0943 (17)
N10.8484 (3)0.5115 (2)0.7873 (2)0.0238 (8)
N20.073 (2)0.5245 (12)0.9253 (14)0.285 (12)
P10.60080 (8)0.71945 (7)0.57038 (7)0.0193 (2)
P20.90693 (9)0.80503 (8)0.90742 (7)0.0234 (2)
P30.65518 (9)1.03080 (7)0.68263 (7)0.0220 (2)
P40.47734 (9)0.78248 (7)0.93582 (7)0.0229 (2)
P51.03484 (8)0.73423 (7)0.54307 (7)0.0213 (2)
Re10.688385 (11)0.743153 (9)0.666496 (9)0.01376 (4)
Re20.714718 (12)0.876729 (9)0.714493 (9)0.01413 (4)
Re30.822021 (12)0.777146 (10)0.811523 (9)0.01500 (4)
Re40.795584 (12)0.644280 (10)0.762819 (9)0.01549 (4)
Re50.874630 (12)0.748784 (10)0.653646 (9)0.01477 (4)
Re60.636216 (12)0.770712 (9)0.824427 (9)0.01418 (4)
Sb10.19415 (3)1.04004 (3)0.73351 (3)0.04855 (10)
Sb20.63357 (3)0.38715 (2)0.72789 (2)0.04228 (9)
Se10.97085 (3)0.65466 (3)0.75048 (3)0.02030 (8)
Se20.74483 (3)0.67505 (3)0.91214 (2)0.01991 (8)
Se30.61689 (3)0.64309 (2)0.77419 (2)0.01832 (8)
Se40.84312 (3)0.62241 (3)0.61136 (2)0.01910 (8)
Se50.76775 (3)0.84359 (3)0.56541 (2)0.01809 (8)
Se60.89391 (3)0.87685 (3)0.70301 (2)0.01902 (8)
Se70.66682 (3)0.89756 (3)0.86628 (2)0.01834 (8)
Se80.53968 (3)0.86534 (2)0.72856 (2)0.01701 (8)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.036 (3)0.033 (3)0.046 (3)0.006 (2)0.008 (2)0.011 (2)
C20.029 (2)0.034 (3)0.026 (2)0.004 (2)0.0006 (19)0.010 (2)
C30.021 (2)0.053 (3)0.026 (2)0.016 (2)0.0067 (19)0.002 (2)
C40.024 (3)0.093 (5)0.040 (3)0.028 (3)0.005 (2)0.000 (3)
C50.024 (2)0.038 (3)0.020 (2)0.011 (2)0.0005 (18)0.0017 (19)
C60.040 (3)0.035 (3)0.034 (3)0.018 (2)0.001 (2)0.005 (2)
C70.043 (3)0.021 (2)0.031 (2)0.017 (2)0.011 (2)0.0021 (18)
C80.074 (4)0.032 (3)0.046 (3)0.027 (3)0.030 (3)0.000 (2)
C90.067 (4)0.029 (3)0.054 (3)0.013 (3)0.043 (3)0.009 (2)
C100.032 (3)0.020 (2)0.054 (3)0.005 (2)0.005 (2)0.001 (2)
C110.057 (4)0.023 (3)0.062 (4)0.000 (3)0.012 (3)0.001 (3)
C120.060 (3)0.021 (2)0.032 (3)0.013 (2)0.026 (2)0.0101 (19)
C130.059 (4)0.043 (3)0.064 (4)0.020 (3)0.033 (3)0.013 (3)
C140.021 (2)0.034 (2)0.030 (2)0.0072 (19)0.0161 (19)0.0001 (19)
C150.022 (2)0.058 (3)0.039 (3)0.017 (2)0.005 (2)0.005 (3)
C160.032 (3)0.038 (3)0.020 (2)0.012 (2)0.0107 (19)0.0018 (19)
C170.037 (3)0.052 (3)0.025 (2)0.015 (3)0.005 (2)0.006 (2)
C180.039 (3)0.029 (2)0.039 (3)0.016 (2)0.021 (2)0.003 (2)
C190.029 (3)0.050 (3)0.020 (2)0.012 (2)0.0058 (19)0.010 (2)
C200.039 (3)0.038 (3)0.049 (3)0.005 (2)0.000 (3)0.019 (3)
C210.022 (2)0.045 (3)0.028 (2)0.017 (2)0.0011 (19)0.001 (2)
C220.029 (3)0.084 (5)0.042 (3)0.029 (3)0.002 (2)0.004 (3)
C230.033 (3)0.051 (3)0.026 (3)0.016 (2)0.002 (2)0.013 (2)
C240.062 (4)0.043 (3)0.052 (4)0.026 (3)0.008 (3)0.020 (3)
C250.046 (3)0.034 (3)0.039 (3)0.022 (2)0.020 (2)0.004 (2)
C260.074 (5)0.060 (4)0.066 (4)0.034 (4)0.036 (4)0.015 (3)
C270.034 (3)0.043 (3)0.022 (2)0.013 (2)0.013 (2)0.001 (2)
C280.042 (3)0.050 (3)0.025 (3)0.009 (3)0.005 (2)0.007 (2)
C290.026 (2)0.057 (3)0.030 (3)0.014 (2)0.014 (2)0.004 (2)
C300.035 (3)0.083 (5)0.037 (3)0.030 (3)0.007 (2)0.006 (3)
C310.030 (2)0.027 (2)0.020 (2)0.008 (2)0.0069 (18)0.0022 (18)
C320.042 (3)0.021 (2)0.036 (3)0.001 (2)0.010 (2)0.002 (2)
C330.068 (4)0.044 (3)0.063 (4)0.012 (3)0.033 (4)0.023 (3)
C340.065 (4)0.042 (4)0.079 (5)0.014 (3)0.014 (4)0.033 (3)
C350.043 (3)0.050 (4)0.050 (3)0.002 (3)0.023 (3)0.003 (3)
C360.084 (7)0.092 (7)0.086 (7)0.032 (6)0.007 (5)0.013 (5)
C370.135 (13)0.130 (13)0.31 (2)0.012 (10)0.011 (14)0.042 (14)
C380.101 (10)0.179 (14)0.261 (19)0.005 (9)0.094 (11)0.043 (13)
C390.082 (8)0.180 (14)0.239 (19)0.045 (9)0.063 (10)0.011 (13)
C400.097 (13)0.149 (18)0.71 (7)0.007 (13)0.01 (2)0.07 (3)
F10.334 (12)0.087 (5)0.122 (6)0.063 (6)0.040 (7)0.045 (4)
F20.127 (4)0.074 (3)0.073 (3)0.008 (3)0.049 (3)0.021 (2)
F30.116 (5)0.160 (6)0.247 (9)0.091 (5)0.062 (6)0.048 (6)
F40.219 (7)0.084 (4)0.103 (4)0.011 (4)0.076 (5)0.034 (3)
F50.082 (5)0.226 (10)0.394 (15)0.079 (6)0.088 (7)0.087 (9)
F60.205 (7)0.100 (4)0.132 (5)0.012 (5)0.093 (5)0.041 (4)
F70.056 (2)0.043 (2)0.090 (3)0.0109 (18)0.019 (2)0.011 (2)
F80.094 (3)0.156 (5)0.053 (2)0.073 (3)0.015 (2)0.022 (3)
F90.095 (3)0.0270 (17)0.086 (3)0.0060 (19)0.016 (2)0.0080 (18)
F100.106 (3)0.087 (3)0.070 (3)0.076 (3)0.013 (2)0.012 (2)
F110.110 (4)0.114 (4)0.072 (3)0.010 (3)0.035 (3)0.003 (3)
F120.045 (2)0.060 (3)0.154 (5)0.014 (2)0.024 (3)0.044 (3)
N10.0262 (19)0.0220 (19)0.0246 (19)0.0065 (16)0.0097 (15)0.0000 (15)
N20.49 (4)0.151 (15)0.29 (2)0.08 (2)0.24 (3)0.033 (15)
P10.0204 (5)0.0222 (5)0.0198 (5)0.0084 (4)0.0097 (4)0.0008 (4)
P20.0248 (6)0.0311 (6)0.0203 (5)0.0120 (5)0.0106 (4)0.0017 (5)
P30.0284 (6)0.0154 (5)0.0244 (6)0.0088 (4)0.0091 (5)0.0022 (4)
P40.0213 (5)0.0295 (6)0.0175 (5)0.0107 (5)0.0018 (4)0.0010 (4)
P50.0172 (5)0.0289 (6)0.0179 (5)0.0080 (4)0.0025 (4)0.0028 (4)
Re10.01486 (7)0.01414 (7)0.01429 (7)0.00571 (6)0.00525 (6)0.00074 (6)
Re20.01648 (8)0.01339 (7)0.01429 (7)0.00661 (6)0.00464 (6)0.00011 (6)
Re30.01664 (8)0.01715 (8)0.01394 (7)0.00719 (6)0.00573 (6)0.00066 (6)
Re40.01729 (8)0.01348 (7)0.01706 (8)0.00484 (6)0.00662 (6)0.00015 (6)
Re50.01446 (7)0.01705 (8)0.01413 (7)0.00593 (6)0.00397 (6)0.00157 (6)
Re60.01552 (8)0.01466 (7)0.01357 (7)0.00644 (6)0.00383 (6)0.00016 (6)
Sb10.0484 (2)0.0368 (2)0.0549 (2)0.00317 (17)0.01924 (19)0.00604 (18)
Sb20.0558 (2)0.03129 (18)0.03719 (19)0.01950 (17)0.00054 (17)0.00348 (15)
Se10.01711 (19)0.0226 (2)0.0218 (2)0.00381 (16)0.00813 (16)0.00154 (16)
Se20.0243 (2)0.0214 (2)0.01611 (19)0.00918 (17)0.00779 (16)0.00362 (15)
Se30.0207 (2)0.01633 (19)0.0212 (2)0.00994 (16)0.00657 (16)0.00130 (15)
Se40.0200 (2)0.01796 (19)0.0203 (2)0.00409 (16)0.00628 (16)0.00549 (15)
Se50.0204 (2)0.02048 (19)0.01486 (18)0.00841 (16)0.00521 (15)0.00141 (15)
Se60.0206 (2)0.0219 (2)0.01907 (19)0.01239 (16)0.00522 (16)0.00080 (16)
Se70.0218 (2)0.01805 (19)0.01662 (19)0.00722 (16)0.00446 (16)0.00362 (15)
Se80.01577 (19)0.01644 (18)0.01924 (19)0.00473 (15)0.00557 (15)0.00014 (15)
Geometric parameters (Å, º) top
C1—C21.527 (7)C27—H27B0.99
C1—H1A0.98C28—H28A0.98
C1—H1B0.98C28—H28B0.98
C1—H1C0.98C28—H28C0.98
C2—P51.825 (5)C29—C301.531 (7)
C2—H2A0.99C29—P21.830 (5)
C2—H2B0.99C29—H29A0.99
C3—C41.529 (6)C29—H29B0.99
C3—P51.826 (5)C30—H30A0.98
C3—H3A0.99C30—H30B0.98
C3—H3B0.99C30—H30C0.98
C4—H4A0.98C31—N11.123 (6)
C4—H4B0.98C31—C321.486 (6)
C4—H4C0.98C32—C341.522 (8)
C5—C61.525 (7)C32—C331.527 (8)
C5—P51.825 (5)C32—C351.529 (8)
C5—H5A0.99C33—H33A0.98
C5—H5B0.99C33—H33B0.98
C6—H6A0.98C33—H33C0.98
C6—H6B0.98C34—H34A0.98
C6—H6C0.98C34—H34B0.98
C7—C81.527 (7)C34—H34C0.98
C7—P31.831 (5)C35—H35A0.98
C7—H7A0.99C35—H35B0.98
C7—H7B0.99C35—H35C0.98
C8—H8A0.98C36—C401.36 (3)
C8—H8B0.98C36—C391.560 (16)
C8—H8C0.98C36—C381.569 (15)
C9—C121.525 (7)C36—C371.606 (16)
C9—H9A0.98C37—H37A0.98
C9—H9B0.98C37—H37B0.98
C9—H9C0.98C37—H37C0.98
C10—C111.525 (7)C38—H38A0.98
C10—P31.815 (5)C38—H38B0.98
C10—H10A0.99C38—H38C0.98
C10—H10B0.99C39—H39A0.98
C11—H11A0.98C39—H39B0.98
C11—H11B0.98C39—H39C0.98
C11—H11C0.98C40—N21.12 (3)
C12—P31.821 (5)F1—Sb11.788 (6)
C12—H12A0.99F2—Sb11.851 (4)
C12—H12B0.99F3—Sb11.816 (6)
C13—C181.530 (6)F4—Sb11.858 (5)
C13—H13A0.98F5—Sb11.791 (6)
C13—H13B0.98F6—Sb11.843 (5)
C13—H13C0.98F7—Sb21.857 (4)
C14—C151.528 (7)F8—Sb21.871 (4)
C14—P11.828 (4)F9—Sb21.879 (4)
C14—H14A0.99F10—Sb21.844 (4)
C14—H14B0.99F11—Sb21.804 (5)
C15—H15A0.98F12—Sb21.856 (4)
C15—H15B0.98N1—Re42.125 (4)
C15—H15C0.98P1—Re12.4741 (10)
C16—C171.530 (7)P2—Re32.4715 (11)
C16—P11.827 (5)P3—Re22.4729 (11)
C16—H16A0.99P4—Re62.4705 (11)
C16—H16B0.99P5—Re52.4717 (11)
C17—H17A0.98Re1—Se42.5136 (4)
C17—H17B0.98Re1—Se52.5139 (4)
C17—H17C0.98Re1—Se82.5148 (4)
C18—P11.824 (5)Re1—Se32.5163 (4)
C18—H18A0.99Re1—Re42.6311 (2)
C18—H18B0.99Re1—Re62.6376 (3)
C19—C201.520 (8)Re1—Re22.6396 (2)
C19—P41.836 (5)Re1—Re52.6441 (3)
C19—H19A0.99Re2—Se82.5143 (5)
C19—H19B0.99Re2—Se52.5149 (4)
C20—H20A0.98Re2—Se72.5178 (4)
C20—H20B0.98Re2—Se62.5185 (5)
C20—H20C0.98Re2—Re52.6436 (2)
C21—C221.535 (6)Re2—Re32.6448 (2)
C21—P41.830 (5)Re2—Re62.6464 (2)
C21—H21A0.99Re3—Se72.5125 (4)
C21—H21B0.99Re3—Se12.5137 (4)
C22—H22A0.98Re3—Se22.5159 (4)
C22—H22B0.98Re3—Se62.5218 (4)
C22—H22C0.98Re3—Re42.6350 (3)
C23—C241.519 (8)Re3—Re52.6393 (3)
C23—P41.821 (5)Re3—Re62.6422 (3)
C23—H23A0.99Re4—Se22.5109 (4)
C23—H23B0.99Re4—Se42.5161 (4)
C24—H24A0.98Re4—Se32.5174 (5)
C24—H24B0.98Re4—Se12.5176 (5)
C24—H24C0.98Re4—Re52.6256 (2)
C25—C261.535 (7)Re4—Re62.6283 (2)
C25—P21.825 (5)Re5—Se52.5075 (4)
C25—H25A0.99Re5—Se62.5161 (4)
C25—H25B0.99Re5—Se42.5213 (4)
C26—H26A0.98Re5—Se12.5215 (4)
C26—H26B0.98Re6—Se82.5149 (4)
C26—H26C0.98Re6—Se32.5168 (4)
C27—C281.507 (7)Re6—Se72.5186 (4)
C27—P21.834 (5)Re6—Se22.5211 (4)
C27—H27A0.99
C2—C1—H1A109.5Se5—Re1—Se890.371 (14)
C2—C1—H1B109.5P1—Re1—Se391.74 (3)
H1A—C1—H1B109.5Se4—Re1—Se389.745 (15)
C2—C1—H1C109.5Se5—Re1—Se3175.827 (14)
H1A—C1—H1C109.5Se8—Re1—Se390.025 (14)
H1B—C1—H1C109.5P1—Re1—Re4134.73 (3)
C1—C2—P5115.8 (3)Se4—Re1—Re458.504 (11)
C1—C2—H2A108.3Se5—Re1—Re4117.796 (12)
P5—C2—H2A108.3Se8—Re1—Re4118.201 (12)
C1—C2—H2B108.3Se3—Re1—Re458.506 (11)
P5—C2—H2B108.3P1—Re1—Re6135.18 (3)
H2A—C2—H2B107.4Se4—Re1—Re6118.346 (11)
C4—C3—P5116.1 (4)Se5—Re1—Re6118.525 (11)
C4—C3—H3A108.3Se8—Re1—Re658.374 (10)
P5—C3—H3A108.3Se3—Re1—Re658.405 (11)
C4—C3—H3B108.3Re4—Re1—Re659.847 (7)
P5—C3—H3B108.3P1—Re1—Re2135.38 (3)
H3A—C3—H3B107.4Se4—Re1—Re2118.501 (12)
C3—C4—H4A109.5Se5—Re1—Re258.358 (10)
C3—C4—H4B109.5Se8—Re1—Re258.332 (11)
H4A—C4—H4B109.5Se3—Re1—Re2118.588 (12)
C3—C4—H4C109.5Re4—Re1—Re289.889 (8)
H4A—C4—H4C109.5Re6—Re1—Re260.196 (6)
H4B—C4—H4C109.5P1—Re1—Re5134.89 (3)
C6—C5—P5115.5 (3)Se4—Re1—Re558.464 (11)
C6—C5—H5A108.4Se5—Re1—Re558.108 (10)
P5—C5—H5A108.4Se8—Re1—Re5118.355 (11)
C6—C5—H5B108.4Se3—Re1—Re5118.198 (11)
P5—C5—H5B108.4Re4—Re1—Re559.699 (6)
H5A—C5—H5B107.5Re6—Re1—Re589.926 (7)
C5—C6—H6A109.5Re2—Re1—Re560.045 (6)
C5—C6—H6B109.5P3—Re2—Se890.14 (3)
H6A—C6—H6B109.5P3—Re2—Se592.31 (3)
C5—C6—H6C109.5Se8—Re2—Se590.360 (14)
H6A—C6—H6C109.5P3—Re2—Se792.21 (3)
H6B—C6—H6C109.5Se8—Re2—Se789.763 (14)
C8—C7—P3115.7 (3)Se5—Re2—Se7175.479 (14)
C8—C7—H7A108.4P3—Re2—Se693.99 (3)
P3—C7—H7A108.4Se8—Re2—Se6175.871 (14)
C8—C7—H7B108.4Se5—Re2—Se689.567 (14)
P3—C7—H7B108.4Se7—Re2—Se689.985 (14)
H7A—C7—H7B107.4P3—Re2—Re1133.58 (3)
C7—C8—H8A109.5Se8—Re2—Re158.351 (10)
C7—C8—H8B109.5Se5—Re2—Re158.321 (10)
H8A—C8—H8B109.5Se7—Re2—Re1118.168 (11)
C7—C8—H8C109.5Se6—Re2—Re1118.335 (11)
H8A—C8—H8C109.5P3—Re2—Re5136.47 (3)
H8B—C8—H8C109.5Se8—Re2—Re5118.392 (11)
C12—C9—H9A109.5Se5—Re2—Re558.103 (10)
C12—C9—H9B109.5Se7—Re2—Re5118.043 (11)
H9A—C9—H9B109.5Se6—Re2—Re558.282 (11)
C12—C9—H9C109.5Re1—Re2—Re560.063 (7)
H9A—C9—H9C109.5P3—Re2—Re3136.37 (3)
H9B—C9—H9C109.5Se8—Re2—Re3118.169 (11)
C11—C10—P3116.3 (4)Se5—Re2—Re3117.968 (12)
C11—C10—H10A108.2Se7—Re2—Re358.183 (11)
P3—C10—H10A108.2Se6—Re2—Re358.410 (11)
C11—C10—H10B108.2Re1—Re2—Re390.011 (8)
P3—C10—H10B108.2Re5—Re2—Re359.876 (7)
H10A—C10—H10B107.4P3—Re2—Re6133.76 (3)
C10—C11—H11A109.5Se8—Re2—Re658.262 (10)
C10—C11—H11B109.5Se5—Re2—Re6118.157 (11)
H11A—C11—H11B109.5Se7—Re2—Re658.316 (10)
C10—C11—H11C109.5Se6—Re2—Re6118.306 (12)
H11A—C11—H11C109.5Re1—Re2—Re659.865 (7)
H11B—C11—H11C109.5Re5—Re2—Re689.746 (8)
C9—C12—P3115.3 (4)Re3—Re2—Re659.916 (7)
C9—C12—H12A108.4P2—Re3—Se790.34 (3)
P3—C12—H12A108.4P2—Re3—Se193.59 (3)
C9—C12—H12B108.4Se7—Re3—Se1176.066 (14)
P3—C12—H12B108.4P2—Re3—Se293.07 (3)
H12A—C12—H12B107.5Se7—Re3—Se290.253 (15)
C18—C13—H13A109.5Se1—Re3—Se289.364 (15)
C18—C13—H13B109.5P2—Re3—Se691.17 (3)
H13A—C13—H13B109.5Se7—Re3—Se690.030 (15)
C18—C13—H13C109.5Se1—Re3—Se690.064 (15)
H13A—C13—H13C109.5Se2—Re3—Se6175.753 (14)
H13B—C13—H13C109.5P2—Re3—Re4137.20 (3)
C15—C14—P1115.2 (3)Se7—Re3—Re4118.152 (12)
C15—C14—H14A108.5Se1—Re3—Re458.490 (11)
P1—C14—H14A108.5Se2—Re3—Re458.294 (11)
C15—C14—H14B108.5Se6—Re3—Re4117.994 (12)
P1—C14—H14B108.5P2—Re3—Re5135.51 (3)
H14A—C14—H14B107.5Se7—Re3—Re5118.400 (11)
C14—C15—H15A109.5Se1—Re3—Re558.531 (10)
C14—C15—H15B109.5Se2—Re3—Re5118.002 (12)
H15A—C15—H15B109.5Se6—Re3—Re558.303 (11)
C14—C15—H15C109.5Re4—Re3—Re559.712 (6)
H15A—C15—H15C109.5P2—Re3—Re6134.50 (3)
H15B—C15—H15C109.5Se7—Re3—Re658.431 (11)
C17—C16—P1115.9 (3)Se1—Re3—Re6118.228 (12)
C17—C16—H16A108.3Se2—Re3—Re658.456 (11)
P1—C16—H16A108.3Se6—Re3—Re6118.343 (12)
C17—C16—H16B108.3Re4—Re3—Re659.741 (6)
P1—C16—H16B108.3Re5—Re3—Re689.931 (7)
H16A—C16—H16B107.4P2—Re3—Re2133.10 (3)
C16—C17—H17A109.5Se7—Re3—Re258.376 (11)
C16—C17—H17B109.5Se1—Re3—Re2118.558 (12)
H17A—C17—H17B109.5Se2—Re3—Re2118.508 (12)
C16—C17—H17C109.5Se6—Re3—Re258.290 (11)
H17A—C17—H17C109.5Re4—Re3—Re289.692 (8)
H17B—C17—H17C109.5Re5—Re3—Re260.040 (7)
C13—C18—P1116.6 (4)Re6—Re3—Re260.072 (6)
C13—C18—H18A108.1N1—Re4—Se292.72 (10)
P1—C18—H18A108.1N1—Re4—Se490.55 (10)
C13—C18—H18B108.1Se2—Re4—Se4176.729 (15)
P1—C18—H18B108.1N1—Re4—Se393.89 (10)
H18A—C18—H18B107.3Se2—Re4—Se390.179 (14)
C20—C19—P4114.1 (3)Se4—Re4—Se389.663 (14)
C20—C19—H19A108.7N1—Re4—Se189.41 (10)
P4—C19—H19A108.7Se2—Re4—Se189.388 (14)
C20—C19—H19B108.7Se4—Re4—Se190.582 (14)
P4—C19—H19B108.7Se3—Re4—Se1176.691 (14)
H19A—C19—H19B107.6N1—Re4—Re5132.32 (10)
C19—C20—H20A109.5Se2—Re4—Re5118.699 (12)
C19—C20—H20B109.5Se4—Re4—Re558.682 (11)
H20A—C20—H20B109.5Se3—Re4—Re5118.853 (11)
C19—C20—H20C109.5Se1—Re4—Re558.669 (11)
H20A—C20—H20C109.5N1—Re4—Re6137.14 (10)
H20B—C20—H20C109.5Se2—Re4—Re658.701 (11)
C22—C21—P4115.6 (4)Se4—Re4—Re6118.604 (11)
C22—C21—H21A108.4Se3—Re4—Re658.516 (11)
P4—C21—H21A108.4Se1—Re4—Re6118.608 (12)
C22—C21—H21B108.4Re5—Re4—Re690.533 (8)
P4—C21—H21B108.4N1—Re4—Re1135.52 (10)
H21A—C21—H21B107.4Se2—Re4—Re1118.887 (12)
C21—C22—H22A109.5Se4—Re4—Re158.411 (11)
C21—C22—H22B109.5Se3—Re4—Re158.465 (11)
H22A—C22—H22B109.5Se1—Re4—Re1119.047 (12)
C21—C22—H22C109.5Re5—Re4—Re160.396 (7)
H22A—C22—H22C109.5Re6—Re4—Re160.198 (7)
H22B—C22—H22C109.5N1—Re4—Re3133.98 (10)
C24—C23—P4116.5 (4)Se2—Re4—Re358.478 (10)
C24—C23—H23A108.2Se4—Re4—Re3118.890 (11)
P4—C23—H23A108.2Se3—Re4—Re3118.772 (11)
C24—C23—H23B108.2Se1—Re4—Re358.346 (10)
P4—C23—H23B108.2Re5—Re4—Re360.225 (7)
H23A—C23—H23B107.3Re6—Re4—Re360.266 (7)
C23—C24—H24A109.5Re1—Re4—Re390.408 (8)
C23—C24—H24B109.5P5—Re5—Se593.02 (3)
H24A—C24—H24B109.5P5—Re5—Se690.98 (3)
C23—C24—H24C109.5Se5—Re5—Se689.788 (15)
H24A—C24—H24C109.5P5—Re5—Se493.03 (3)
H24B—C24—H24C109.5Se5—Re5—Se489.543 (14)
C26—C25—P2116.2 (4)Se6—Re5—Se4175.969 (14)
C26—C25—H25A108.2P5—Re5—Se190.99 (3)
P2—C25—H25A108.2Se5—Re5—Se1175.990 (15)
C26—C25—H25B108.2Se6—Re5—Se190.015 (15)
P2—C25—H25B108.2Se4—Re5—Se190.374 (15)
H25A—C25—H25B107.4P5—Re5—Re4135.00 (3)
C25—C26—H26A109.5Se5—Re5—Re4118.239 (12)
C25—C26—H26B109.5Se6—Re5—Re4118.553 (12)
H26A—C26—H26B109.5Se4—Re5—Re458.488 (11)
C25—C26—H26C109.5Se1—Re5—Re458.525 (11)
H26A—C26—H26C109.5P5—Re5—Re3133.52 (3)
H26B—C26—H26C109.5Se5—Re5—Re3118.448 (12)
C28—C27—P2116.3 (4)Se6—Re5—Re358.511 (10)
C28—C27—H27A108.2Se4—Re5—Re3118.534 (11)
P2—C27—H27A108.2Se1—Re5—Re358.245 (11)
C28—C27—H27B108.2Re4—Re5—Re360.063 (6)
P2—C27—H27B108.2P5—Re5—Re2135.05 (3)
H27A—C27—H27B107.4Se5—Re5—Re258.377 (11)
C27—C28—H28A109.5Se6—Re5—Re258.369 (11)
C27—C28—H28B109.5Se4—Re5—Re2118.063 (12)
H28A—C28—H28B109.5Se1—Re5—Re2118.314 (12)
C27—C28—H28C109.5Re4—Re5—Re289.919 (8)
H28A—C28—H28C109.5Re3—Re5—Re260.083 (6)
H28B—C28—H28C109.5P5—Re5—Re1136.44 (3)
C30—C29—P2115.2 (4)Se5—Re5—Re158.345 (11)
C30—C29—H29A108.5Se6—Re5—Re1118.252 (11)
P2—C29—H29A108.5Se4—Re5—Re158.179 (10)
C30—C29—H29B108.5Se1—Re5—Re1118.413 (12)
P2—C29—H29B108.5Re4—Re5—Re159.905 (6)
H29A—C29—H29B107.5Re3—Re5—Re190.032 (7)
C29—C30—H30A109.5Re2—Re5—Re159.892 (7)
C29—C30—H30B109.5P4—Re6—Se891.62 (3)
H30A—C30—H30B109.5P4—Re6—Se390.53 (3)
C29—C30—H30C109.5Se8—Re6—Se390.011 (14)
H30A—C30—H30C109.5P4—Re6—Se793.56 (3)
H30B—C30—H30C109.5Se8—Re6—Se789.731 (14)
N1—C31—C32174.3 (5)Se3—Re6—Se7175.909 (14)
C31—C32—C34109.2 (4)P4—Re6—Se292.58 (3)
C31—C32—C33107.7 (4)Se8—Re6—Se2175.794 (14)
C34—C32—C33111.8 (5)Se3—Re6—Se289.961 (15)
C31—C32—C35107.0 (4)Se7—Re6—Se289.997 (15)
C34—C32—C35110.5 (5)P4—Re6—Re4134.44 (3)
C33—C32—C35110.6 (5)Se8—Re6—Re4118.303 (12)
C32—C33—H33A109.5Se3—Re6—Re458.538 (11)
C32—C33—H33B109.5Se7—Re6—Re4118.180 (12)
H33A—C33—H33B109.5Se2—Re6—Re458.323 (11)
C32—C33—H33C109.5P4—Re6—Re1133.65 (3)
H33A—C33—H33C109.5Se8—Re6—Re158.370 (10)
H33B—C33—H33C109.5Se3—Re6—Re158.386 (10)
C32—C34—H34A109.5Se7—Re6—Re1118.212 (11)
C32—C34—H34B109.5Se2—Re6—Re1118.266 (12)
H34A—C34—H34B109.5Re4—Re6—Re159.954 (6)
C32—C34—H34C109.5P4—Re6—Re3136.23 (3)
H34A—C34—H34C109.5Se8—Re6—Re3118.242 (11)
H34B—C34—H34C109.5Se3—Re6—Re3118.521 (11)
C32—C35—H35A109.5Se7—Re6—Re358.208 (10)
C32—C35—H35B109.5Se2—Re6—Re358.265 (11)
H35A—C35—H35B109.5Re4—Re6—Re359.993 (7)
C32—C35—H35C109.5Re1—Re6—Re390.109 (7)
H35A—C35—H35C109.5P4—Re6—Re2135.72 (3)
H35B—C35—H35C109.5Se8—Re6—Re258.239 (11)
C40—C36—C39132.9 (19)Se3—Re6—Re2118.312 (12)
C40—C36—C3890.2 (19)Se7—Re6—Re258.286 (11)
C39—C36—C38119.0 (10)Se2—Re6—Re2118.257 (12)
C40—C36—C37106.9 (15)Re4—Re6—Re289.802 (8)
C39—C36—C37100.2 (10)Re1—Re6—Re259.939 (6)
C38—C36—C37105.2 (11)Re3—Re6—Re260.012 (6)
C36—C37—H37A109.5F1—Sb1—F589.4 (5)
C36—C37—H37B109.5F1—Sb1—F391.1 (5)
H37A—C37—H37B109.5F5—Sb1—F3179.5 (5)
C36—C37—H37C109.5F1—Sb1—F688.7 (3)
H37A—C37—H37C109.5F5—Sb1—F690.7 (4)
H37B—C37—H37C109.5F3—Sb1—F689.3 (4)
C36—C38—H38A109.5F1—Sb1—F291.6 (3)
C36—C38—H38B109.5F5—Sb1—F290.8 (3)
H38A—C38—H38B109.5F3—Sb1—F289.1 (3)
C36—C38—H38C109.5F6—Sb1—F2178.4 (3)
H38A—C38—H38C109.5F1—Sb1—F4179.2 (3)
H38B—C38—H38C109.5F5—Sb1—F490.3 (5)
C36—C39—H39A109.5F3—Sb1—F489.1 (4)
C36—C39—H39B109.5F6—Sb1—F490.6 (3)
H39A—C39—H39B109.5F2—Sb1—F489.1 (2)
C36—C39—H39C109.5F11—Sb2—F1091.2 (2)
H39A—C39—H39C109.5F11—Sb2—F1289.6 (2)
H39B—C39—H39C109.5F10—Sb2—F1290.7 (2)
N2—C40—C36138 (5)F11—Sb2—F791.7 (2)
C31—N1—Re4170.0 (4)F10—Sb2—F7176.8 (2)
C18—P1—C16105.1 (2)F12—Sb2—F790.78 (17)
C18—P1—C14104.4 (2)F11—Sb2—F8179.2 (3)
C16—P1—C14101.1 (2)F10—Sb2—F888.6 (2)
C18—P1—Re1113.18 (16)F12—Sb2—F891.2 (2)
C16—P1—Re1115.75 (16)F7—Sb2—F888.5 (2)
C14—P1—Re1115.83 (15)F11—Sb2—F989.3 (2)
C25—P2—C29105.2 (3)F10—Sb2—F990.5 (2)
C25—P2—C27105.3 (2)F12—Sb2—F9178.4 (2)
C29—P2—C27100.2 (2)F7—Sb2—F988.10 (17)
C25—P2—Re3112.62 (16)F8—Sb2—F989.9 (2)
C29—P2—Re3116.10 (16)Re3—Se1—Re463.164 (12)
C27—P2—Re3115.91 (16)Re3—Se1—Re563.224 (11)
C10—P3—C12105.2 (3)Re4—Se1—Re562.806 (11)
C10—P3—C7105.7 (2)Re4—Se2—Re363.228 (11)
C12—P3—C7101.1 (2)Re4—Se2—Re662.976 (11)
C10—P3—Re2113.02 (16)Re3—Se2—Re663.279 (11)
C12—P3—Re2114.80 (16)Re1—Se3—Re663.209 (11)
C7—P3—Re2115.75 (16)Re1—Se3—Re463.028 (11)
C23—P4—C21105.2 (2)Re6—Se3—Re462.945 (10)
C23—P4—C19101.2 (2)Re1—Se4—Re463.084 (10)
C21—P4—C19104.5 (2)Re1—Se4—Re563.358 (11)
C23—P4—Re6116.11 (18)Re4—Se4—Re562.830 (10)
C21—P4—Re6113.55 (15)Re5—Se5—Re163.547 (12)
C19—P4—Re6114.80 (16)Re5—Se5—Re263.520 (11)
C2—P5—C5101.4 (2)Re1—Se5—Re263.320 (11)
C2—P5—C3105.3 (2)Re5—Se6—Re263.349 (10)
C5—P5—C3105.4 (2)Re5—Se6—Re363.186 (11)
C2—P5—Re5114.95 (17)Re2—Se6—Re363.301 (11)
C5—P5—Re5115.96 (15)Re3—Se7—Re263.440 (10)
C3—P5—Re5112.57 (15)Re3—Se7—Re663.361 (11)
P1—Re1—Se491.41 (3)Re2—Se7—Re663.399 (10)
P1—Re1—Se592.39 (3)Re2—Se8—Re163.317 (11)
Se4—Re1—Se589.573 (15)Re2—Se8—Re663.499 (11)
P1—Re1—Se892.54 (3)Re1—Se8—Re663.256 (11)
Se4—Re1—Se8176.044 (14)

Experimental details

Crystal data
Chemical formula[Re6Se8(C5H9N)(C6H15P)5](SbF6)2·C5H9N
Mr2977.39
Crystal system, space groupTriclinic, P1
Temperature (K)173
a, b, c (Å)14.3341 (10), 16.6498 (11), 17.0533 (11)
α, β, γ (°)82.157 (1), 72.859 (1), 71.608 (1)
V3)3686.3 (4)
Z2
Radiation typeMo Kα
µ (mm1)14.65
Crystal size (mm)0.56 × 0.30 × 0.25
Data collection
DiffractometerBruker APEXII CCD
Absorption correctionIntegration
(SADABS; Bruker, 2008)
Tmin, Tmax0.020, 0.104
No. of measured, independent and
observed [I > 2σ(I)] reflections
33157, 16902, 14674
Rint0.018
(sin θ/λ)max1)0.651
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.024, 0.056, 1.08
No. of reflections16902
No. of parameters676
H-atom treatmentH-atom parameters constrained
w = 1/[σ2(Fo2) + (0.015P)2 + 11.3814P]
where P = (Fo2 + 2Fc2)/3
Δρmax, Δρmin (e Å3)3.10, 1.92

Computer programs: APEX2 (Bruker, 2008), SAINT (Bruker, 2008), DIRDIF08 (Beurskens et al., 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 2012), WinGX (Farrugia, 2012).

 

Acknowledgements

This material is based upon work supported by the National Science Foundation under CHE RUI-0957729. We also thank Dr Robert McDonald, University of Alberta, for the collection of this data set and for assistance in compiling the data for publication.

References

First citationBeurskens, P. T., Beurskens, G., de Gelder, R., Smith, J. M. M., Garcia-Granda, S. & Gould, R. O. (2008). DIRDIF08. University of Nijmegen, The Netherlands.  Google Scholar
First citationBruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.  Google Scholar
First citationBrylev, K. A., Naumov, N. G., Peris, G., Llusar, R. & Fedorov, V. E. (2003). Polyhedron, 22, 3383–3387.  Web of Science CSD CrossRef CAS Google Scholar
First citationDorson, F., Molard, Y., Cordier, S., Fabre, B., Efremova, O., Rondeau, D., Mironov, Y., Circu, V., Naumov, N. & Perrin, C. (2009). Dalton Trans. pp. 1297–1299.  Web of Science CSD CrossRef Google Scholar
First citationDurham, J. L., Tirado, J. N., Knott, S. A., Oh, M. K., McDonald, R. & Szczepura, L. F. (2012). Inorg. Chem. 51, 7825–7836.  CSD CrossRef CAS PubMed Google Scholar
First citationEndres, H. (1987). Comprehensive Coordination Chemistry I, edited by G. Wilkinson, p. 261. New York: Pergamon Press.  Google Scholar
First citationFarrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationLong, J. R., McCarty, L. S. & Holm, R. H. (1996). J. Am. Chem. Soc. 118, 4603–4616.  CSD CrossRef CAS Web of Science Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationSzczepura, L. F., Cedeño, D. L., Johnson, D. B., McDonald, R., Knott, S. A., Jeans, K. M. & Durham, J. L. (2010). Inorg. Chem. 49, 11386–11394.  Web of Science CSD CrossRef CAS PubMed Google Scholar
First citationWiller, M. W., Long, J. R., McLauchlan, C. C. & Holm, R. H. (1998). Inorg. Chem. 37, 328–333.  Web of Science CSD CrossRef CAS Google Scholar
First citationWilson, W. B., Stark, K., Johnson, D. B., Ren, Y., Ishida, H., Cedeño, D. L. & Szczepura, L. F. (2014). Eur. J. Inorg. Chem. pp. 2254–2261.  Web of Science CSD CrossRef Google Scholar
First citationZheng, Z., Gray, T. G. & Holm, R. H. (1999). Inorg. Chem. 38, 4888–4895.  Web of Science CSD CrossRef PubMed CAS Google Scholar
First citationZheng, Z. & Holm, R. H. (1997). Inorg. Chem. 36, 5173–5178.  CSD CrossRef CAS Web of Science Google Scholar
First citationZheng, Z., Long, J. R. & Holm, R. H. (1997). J. Am. Chem. Soc. 119, 2163–2171.  CSD CrossRef CAS Web of Science Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds