organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890

1,3-Di­phenyl-8-tri­fluoro­methyl-1H-pyrazolo­[3,4-b]quinoline

aDepartment of Chemistry and Physics, Agricultural University, 30-149 Kraków, Poland, and bFaculty of Chemistry, Jagiellonian University, 30-060 Kraków, Poland
*Correspondence e-mail: pszlachcic@ar.krakow.pl

(Received 17 May 2012; accepted 21 June 2012; online 30 June 2012)

The 1H-pyrazolo­[3,4-b]quinoline (PQ) core of the title mol­ecule, C23H14F3N3, is aromatic and essentially planar (r.m.s. deviation = 0.015 Å) and the two phenyl substituents at positions 1 and 3 are twisted relative to this fragment by 29.74 (7) and 25.63 (7)°, respectively. In the crystal, mol­ecules are arranged along the b axis into stacks via ππ inter­actions, with an inter­planar distance of the PQ core of 3.489 (4) Å.

Related literature

For selected photophysical properties of trifluoro­methyl derivatives of 1H-pyrazolo-[3,4-b]quinoline, see: Koścień, Gondek, Jarosz et al. (2009[Koścień, E., Gondek, E., Jarosz, B., Danel, A., Nizioł, J. & Kityk, A. V. (2009). Spectrochim. Acta Part A, 72, 582-590.]); Koścień, Gondek, Pokladko et al. (2009[Koścień, E., Gondek, E., Pokladko, M., Jarosz, B., Vlokh, R. O. & Kityk, A. V. (2009). Mater. Chem. Phys. 114, 860-867.]). For the use of trifluoro­methyl derivatives of 1H-pyrazolo-[3,4-b]quinoline in organic light-emitting diode (OLED) preparation, see: Tao et al. (2001[Tao, Y. T., Balasubramaniam, E., Danel, A., Jarosz, B. & Tomasik, P. (2001). Chem. Mater. 13, 1207-1212.]). For the synthesis of 1H-pyrazolo-[3,4-b]quinoline derivatives, see: Brack (1965[Brack, A. (1965). Liebigs Ann. Chem. 681, 105-110.]).

[Scheme 1]

Experimental

Crystal data
  • C23H14F3N3

  • Mr = 389.37

  • Monoclinic, P 21

  • a = 11.8299 (5) Å

  • b = 6.9788 (3) Å

  • c = 12.1306 (4) Å

  • β = 112.765 (2)°

  • V = 923.47 (6) Å3

  • Z = 2

  • Mo Kα radiation

  • μ = 0.11 mm−1

  • T = 293 K

  • 0.27 × 0.25 × 0.20 mm

Data collection
  • Nonius KappaCCD diffractometer

  • Absorption correction: multi-scan (DENZO and SCALEPACK; Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) Tmin = 0.972, Tmax = 0.979

  • 4497 measured reflections

  • 4497 independent reflections

  • 2183 reflections with I > 2σ(I)

  • Rint = 0.018

Refinement
  • R[F2 > 2σ(F2)] = 0.044

  • wR(F2) = 0.104

  • S = 1.05

  • 2876 reflections

  • 262 parameters

  • 1 restraint

  • H-atom parameters constrained

  • Δρmax = 0.16 e Å−3

  • Δρmin = −0.18 e Å−3

Data collection: COLLECT (Nonius, 1998[Nonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.]); cell refinement: SCALEPACK (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]) and SCALEPACK; program(s) used to solve structure: SIR92 (Altomare et al., 1994[Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.]); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008[Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.]); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997[Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.]); software used to prepare material for publication: SHELXL97.

Supporting information


Comment top

The derivatives of 1H-pyrazolo[3,4-b]quinoline (PQ) containing trifluoromethyl substituents at C7 were found to have interesting photophysical properties (Koścień, Gondek, Jarosz et al., 2009; Koścień, Gondek, Pokladko et al., 2009). A relatively high quantum efficiency allowed to propose the CF3 derivatives as blue-light luminophore and to use the derivatives as the chromophore for organic light-emitting diodes (OLED). To synthesize PQ derivatives with H atom in C-4 position, a known method of preparation was used (Brack, 1965). Previously it was found, that in the case of 7-trifluoromethyl-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline, the incorporation of CF3 substituent into PQ molecule rises the values of HOMO/LUMO and ionization potential of the luminophore in comparison to PQ itself (Tao et al., 2001), so 8-trifluoromethyl-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline was synthesized as the compound promising useful properties for the construction of OLED cells with Mg/Ag alloy kathode or even Al kathode. The results of using the trifluoromethyl derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline for OLED preparation will be published elsewhere.

The shape of the title molecule is shown in Fig. 1. The core of the molecule, 1H-pyrazolo[3,4-b]quinoline, is planar and aromatic. Although the planes of both phenyl substituents should be coplanar with the core moiety (due to the conjugation between aromatic core and aromatic phenyl rings), they are slightly twisted with the torsion angles N2—N1—C11—C16 = 27.6 (4), N2—C3—C31—C32 = -23.9 (4)°. In the case of the phenyl substituent at C3 the effect is caused by the steric hindrance between the hydrogen atoms H4 and H36 (H4···H36 = 2.26 Å). The overall shape of the molecule is also influenced by weak intramolecular interaction C12—H12···N9 (Table 1). The trifluoromethyl group forms two hydrogen-bond-like intermolecular interactions of C—H···F type: intramolecular one C7—H7···F83 and intermolecular one C36—H36···F82 (-x, y + 1/2, -z + 1) with the geometrical parameters given in Table 1.

The packing of the molecules (Fig. 2 and Fig. 3) is determined mainly by intermolecular ππ stacking with the geometry given below (Cg···Cg···Cg/Å, <CgCgCg /°, respectively):

Cg3(C4a—C5—C6—C7—C8—C8a at -x, y - 1/2, -z + 1)···Cg1(N1—N2—C3—C3a—C9a)···Cg3(C4a—C5—C6—C7—C8—C8a at -x, y + 1/2, -z + 1): 3.751 (4), 3.906 (5), 131.4 (3);

Cg2(C3a—C4—C4a—C8a—N9—C9a at -x, y - 1/2, -z + 1)···Cg2(C3a—C4—C4a—C8a—N9—C9a)···Cg2(C3a—C4—C4a—C8a—N9—C9a at -x, y + 1/2, -z + 1): 3.799 (4), 3.799 (4), 133.5 (3);

Cg3(C4a—C5—C6—C7—C8—C8a at -x, y - 1/2, -z + 1)···Cg2(C3a—C4—C4a—C8a—N9—C9a)···Cg3(C4a—C5—C6—C7—C8—C8a at -x, y + 1/2, -z + 1): 3.732 (4), 3.787 (4), 136.3 (3).

The structure is additionaly stabilized by two C—H···π interactions: C13—H13···Cg4 (-x, y + 1/2, -z + 2) and C33—H33···Cg4 (-x - 1, y - 1/2, -z + 1/2) given in Table 1.

Related literature top

For selected photophysical properties of trifluoromethyl derivatives of 1H-pyrazolo-[3,4-b]quinoline, see: Koścień, Gondek, Jarosz et al. (2009); Koścień, Gondek, Pokladko et al. (2009) . For the use of trifluoromethyl derivatives of 1H-pyrazolo-[3,4-b]quinoline derivatives in OLED [organic light-emitting diode?] preparation, see: Tao et al. (2001). For the synthesis of 1H-pyrazolo-[3,4-b]quinoline derivatives, see: Brack (1965).

Experimental top

The title compound was synthesized using procedure already described in literature (Brack, 1965) from 2-(trifluoromethyl)aniline and 5-chloro-1,3-diphenyl-1H-pyrazol-4-carbaldehyde (5 mmol of each substrate, sulfolane as a solvent). The product was purified by column chromatography (SilicaGel 60, toluene/petroleum ether 1:1 as the eluent) followed by preparative TLC (SilicaGel 60, 2 mm, toluene/petroleum ether 1:1 as the eluent) to give 50 mg (2.6% yield - the low yield is caused by strong induction electron-withdrawing effect of the trifluoromethyl group in ortho-position to the amine group) of yellow crystalline solid, mp. 452–454 K. 1H NMR (CDCl3): δ 7.31 (tt, J = 7.4, 1.2 Hz, 1H), 7.48–7.63 (m, 6H), 8.13–8.19 (m, 4H), 8.74–8.77 (m, 2H), 8.95 (s, 1H); 13C NMR (CDCl3): δ 116.9, 119.9, 122.7, 124.8, 125.4, 127.5, 129.0, 129.1, 129.3, 129.6 (q, JCF = 5.4 Hz), 131.3, 132.2, 133.7, 139.8, 144.0, 144.5, 150.1. Single crystals suitable for X-ray diffraction were grown by slow evaporation from toluene solution.

Refinement top

As the structure contains only C, H, N and F atoms Friedel pairs were merged and absolute structure was not determined. H atoms were included into refinement in geometrically calculated positions, with C—H = 0.93 Å, and Uiso(H) = 1.2Ueq( C) for the aromatic CH groups, and constrained as a part of a riding model.

Structure description top

The derivatives of 1H-pyrazolo[3,4-b]quinoline (PQ) containing trifluoromethyl substituents at C7 were found to have interesting photophysical properties (Koścień, Gondek, Jarosz et al., 2009; Koścień, Gondek, Pokladko et al., 2009). A relatively high quantum efficiency allowed to propose the CF3 derivatives as blue-light luminophore and to use the derivatives as the chromophore for organic light-emitting diodes (OLED). To synthesize PQ derivatives with H atom in C-4 position, a known method of preparation was used (Brack, 1965). Previously it was found, that in the case of 7-trifluoromethyl-1-methyl-3-phenyl-1H-pyrazolo[3,4-b]quinoline, the incorporation of CF3 substituent into PQ molecule rises the values of HOMO/LUMO and ionization potential of the luminophore in comparison to PQ itself (Tao et al., 2001), so 8-trifluoromethyl-1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline was synthesized as the compound promising useful properties for the construction of OLED cells with Mg/Ag alloy kathode or even Al kathode. The results of using the trifluoromethyl derivatives of 1,3-diphenyl-1H-pyrazolo[3,4-b]quinoline for OLED preparation will be published elsewhere.

The shape of the title molecule is shown in Fig. 1. The core of the molecule, 1H-pyrazolo[3,4-b]quinoline, is planar and aromatic. Although the planes of both phenyl substituents should be coplanar with the core moiety (due to the conjugation between aromatic core and aromatic phenyl rings), they are slightly twisted with the torsion angles N2—N1—C11—C16 = 27.6 (4), N2—C3—C31—C32 = -23.9 (4)°. In the case of the phenyl substituent at C3 the effect is caused by the steric hindrance between the hydrogen atoms H4 and H36 (H4···H36 = 2.26 Å). The overall shape of the molecule is also influenced by weak intramolecular interaction C12—H12···N9 (Table 1). The trifluoromethyl group forms two hydrogen-bond-like intermolecular interactions of C—H···F type: intramolecular one C7—H7···F83 and intermolecular one C36—H36···F82 (-x, y + 1/2, -z + 1) with the geometrical parameters given in Table 1.

The packing of the molecules (Fig. 2 and Fig. 3) is determined mainly by intermolecular ππ stacking with the geometry given below (Cg···Cg···Cg/Å, <CgCgCg /°, respectively):

Cg3(C4a—C5—C6—C7—C8—C8a at -x, y - 1/2, -z + 1)···Cg1(N1—N2—C3—C3a—C9a)···Cg3(C4a—C5—C6—C7—C8—C8a at -x, y + 1/2, -z + 1): 3.751 (4), 3.906 (5), 131.4 (3);

Cg2(C3a—C4—C4a—C8a—N9—C9a at -x, y - 1/2, -z + 1)···Cg2(C3a—C4—C4a—C8a—N9—C9a)···Cg2(C3a—C4—C4a—C8a—N9—C9a at -x, y + 1/2, -z + 1): 3.799 (4), 3.799 (4), 133.5 (3);

Cg3(C4a—C5—C6—C7—C8—C8a at -x, y - 1/2, -z + 1)···Cg2(C3a—C4—C4a—C8a—N9—C9a)···Cg3(C4a—C5—C6—C7—C8—C8a at -x, y + 1/2, -z + 1): 3.732 (4), 3.787 (4), 136.3 (3).

The structure is additionaly stabilized by two C—H···π interactions: C13—H13···Cg4 (-x, y + 1/2, -z + 2) and C33—H33···Cg4 (-x - 1, y - 1/2, -z + 1/2) given in Table 1.

For selected photophysical properties of trifluoromethyl derivatives of 1H-pyrazolo-[3,4-b]quinoline, see: Koścień, Gondek, Jarosz et al. (2009); Koścień, Gondek, Pokladko et al. (2009) . For the use of trifluoromethyl derivatives of 1H-pyrazolo-[3,4-b]quinoline derivatives in OLED [organic light-emitting diode?] preparation, see: Tao et al. (2001). For the synthesis of 1H-pyrazolo-[3,4-b]quinoline derivatives, see: Brack (1965).

Computing details top

Data collection: COLLECT (Nonius, 1998); cell refinement: SCALEPACK (Otwinowski & Minor, 1997); data reduction: DENZO and SCALEPACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008).

Figures top
[Figure 1] Fig. 1. The best view of the molecule of title compound showing displacement ellipsoids at the 50% probability level.
[Figure 2] Fig. 2. Projection of the unit-cell contents along [010]. The mutual arrangement of the molecules forming ππ interactions is illustrated. The unit cell origin is at the lower left-hand corner of the cell with b axis pointed down.
[Figure 3] Fig. 3. Projection of the unit-cell contents along [100] showing layered structure. The unit cell origin is at the lower right-hand corner of the cell with a axis pointed down.
1,3-Diphenyl-8-trifluoromethyl-1H-pyrazolo[3,4-b]quinoline top
Crystal data top
C23H14F3N3F(000) = 400
Mr = 389.37Dx = 1.400 Mg m3
Monoclinic, P21Melting point = 452–454 K
Hall symbol: P 2ybMo Kα radiation, λ = 0.71073 Å
a = 11.8299 (5) ÅCell parameters from 2631 reflections
b = 6.9788 (3) Åθ = 0.1–30.0°
c = 12.1306 (4) ŵ = 0.11 mm1
β = 112.765 (2)°T = 293 K
V = 923.47 (6) Å3Block, yellow
Z = 20.27 × 0.25 × 0.20 mm
Data collection top
Nonius KappaCCD
diffractometer
4497 independent reflections
Radiation source: fine-focus sealed tube2183 reflections with I > 2σ(I)
Horizontally mounted graphite crystal monochromatorRint = 0.018
Detector resolution: 9 pixels mm-1θmax = 30.0°, θmin = 3.1°
ω scansh = 1616
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
k = 89
Tmin = 0.972, Tmax = 0.979l = 1716
4497 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.104H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0406P)2 + 0.1305P]
where P = (Fo2 + 2Fc2)/3
2876 reflections(Δ/σ)max < 0.001
262 parametersΔρmax = 0.16 e Å3
1 restraintΔρmin = 0.18 e Å3
0 constraints
Crystal data top
C23H14F3N3V = 923.47 (6) Å3
Mr = 389.37Z = 2
Monoclinic, P21Mo Kα radiation
a = 11.8299 (5) ŵ = 0.11 mm1
b = 6.9788 (3) ÅT = 293 K
c = 12.1306 (4) Å0.27 × 0.25 × 0.20 mm
β = 112.765 (2)°
Data collection top
Nonius KappaCCD
diffractometer
4497 independent reflections
Absorption correction: multi-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
2183 reflections with I > 2σ(I)
Tmin = 0.972, Tmax = 0.979Rint = 0.018
4497 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0441 restraint
wR(F2) = 0.104H-atom parameters constrained
S = 1.05Δρmax = 0.16 e Å3
2876 reflectionsΔρmin = 0.18 e Å3
262 parameters
Special details top

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F2 against all reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on all data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.18386 (15)0.2365 (4)0.65903 (14)0.0473 (4)
N20.30046 (15)0.2283 (3)0.57218 (15)0.0491 (4)
C30.29086 (18)0.2297 (4)0.46736 (18)0.0454 (5)
C3A0.16388 (17)0.2389 (4)0.48271 (16)0.0422 (4)
C40.09599 (18)0.2371 (4)0.41296 (17)0.0453 (5)
H40.13420.23270.33010.054*
C4A0.03230 (18)0.2421 (4)0.46963 (16)0.0432 (4)
C50.1094 (2)0.2426 (5)0.40413 (18)0.0518 (5)
H50.07430.24070.32100.062*
C60.2333 (2)0.2456 (5)0.4611 (2)0.0572 (6)
H60.28220.24410.41680.069*
C70.28812 (19)0.2510 (5)0.5865 (2)0.0535 (5)
H70.37310.25360.62420.064*
C80.21850 (18)0.2525 (4)0.65379 (17)0.0455 (4)
C8A0.08787 (17)0.2470 (4)0.59753 (16)0.0410 (4)
N90.02219 (14)0.2477 (3)0.66801 (13)0.0434 (4)
C9A0.09735 (18)0.2432 (4)0.60926 (16)0.0417 (4)
C110.16788 (19)0.2393 (4)0.78184 (17)0.0477 (5)
C120.0697 (2)0.3313 (4)0.8651 (2)0.0593 (7)
H120.01000.38680.84310.071*
C130.0599 (3)0.3410 (5)0.9832 (2)0.0719 (8)
H130.00680.40251.04050.086*
C140.1485 (3)0.2596 (6)1.0149 (2)0.0756 (8)
H140.14280.26861.09340.091*
C150.2448 (3)0.1658 (6)0.9320 (3)0.0766 (9)
H150.30350.10910.95490.092*
C160.2567 (3)0.1534 (5)0.8135 (2)0.0639 (7)
H160.32260.08920.75700.077*
C310.40125 (19)0.2166 (4)0.3563 (2)0.0486 (5)
C320.5081 (2)0.1333 (5)0.3575 (2)0.0594 (6)
H320.51000.08780.42880.071*
C330.6107 (2)0.1185 (5)0.2531 (3)0.0720 (8)
H330.68180.06410.25470.086*
C340.6094 (3)0.1835 (5)0.1461 (3)0.0775 (10)
H340.67880.17210.07590.093*
C350.5043 (2)0.2654 (7)0.1446 (2)0.0779 (9)
H350.50260.30980.07300.093*
C360.4008 (2)0.2820 (5)0.2494 (2)0.0614 (7)
H360.33020.33800.24740.074*
C800.2782 (2)0.2633 (5)0.7870 (2)0.0567 (6)
F810.24588 (17)0.4210 (3)0.83109 (15)0.0736 (5)
F820.25008 (17)0.1139 (3)0.84136 (15)0.0723 (5)
F830.40032 (12)0.2662 (4)0.82621 (13)0.0813 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0495 (9)0.0539 (11)0.0428 (8)0.0010 (12)0.0225 (7)0.0000 (11)
N20.0477 (9)0.0514 (11)0.0502 (9)0.0000 (11)0.0211 (7)0.0007 (11)
C30.0494 (10)0.0415 (12)0.0457 (10)0.0017 (12)0.0190 (8)0.0002 (11)
C3A0.0477 (9)0.0385 (10)0.0405 (9)0.0031 (12)0.0172 (8)0.0024 (11)
C40.0548 (11)0.0457 (12)0.0362 (8)0.0032 (13)0.0183 (8)0.0025 (12)
C4A0.0525 (10)0.0392 (10)0.0422 (9)0.0029 (12)0.0231 (8)0.0025 (11)
C50.0632 (12)0.0531 (13)0.0481 (10)0.0026 (16)0.0313 (10)0.0034 (15)
C60.0622 (13)0.0584 (15)0.0646 (13)0.0020 (17)0.0395 (11)0.0050 (17)
C70.0488 (10)0.0507 (13)0.0651 (12)0.0026 (14)0.0268 (10)0.0041 (15)
C80.0490 (10)0.0386 (10)0.0494 (10)0.0003 (12)0.0195 (8)0.0034 (12)
C8A0.0496 (10)0.0335 (9)0.0436 (9)0.0001 (12)0.0220 (8)0.0022 (11)
N90.0489 (8)0.0445 (9)0.0388 (7)0.0008 (11)0.0191 (7)0.0026 (10)
C9A0.0502 (10)0.0388 (10)0.0405 (9)0.0013 (12)0.0223 (8)0.0018 (12)
C110.0608 (11)0.0456 (11)0.0433 (9)0.0046 (14)0.0274 (9)0.0027 (13)
C120.0760 (16)0.0589 (16)0.0523 (13)0.0056 (14)0.0351 (12)0.0023 (12)
C130.095 (2)0.075 (2)0.0485 (13)0.0102 (17)0.0306 (14)0.0091 (14)
C140.106 (2)0.084 (2)0.0499 (12)0.009 (2)0.0448 (14)0.0019 (17)
C150.0898 (19)0.092 (2)0.0646 (16)0.0012 (19)0.0481 (16)0.0157 (17)
C160.0735 (16)0.0687 (18)0.0587 (14)0.0023 (15)0.0355 (13)0.0074 (14)
C310.0464 (10)0.0454 (14)0.0520 (11)0.0004 (11)0.0169 (9)0.0019 (11)
C320.0515 (12)0.0652 (16)0.0629 (14)0.0039 (14)0.0238 (11)0.0039 (14)
C330.0528 (14)0.080 (2)0.0799 (19)0.0115 (16)0.0221 (13)0.0157 (18)
C340.0588 (15)0.093 (3)0.0647 (16)0.0047 (17)0.0059 (12)0.0165 (17)
C350.0726 (16)0.097 (3)0.0521 (13)0.003 (2)0.0114 (12)0.0035 (19)
C360.0565 (12)0.0682 (19)0.0554 (13)0.0052 (14)0.0170 (10)0.0059 (13)
C800.0538 (12)0.0606 (16)0.0529 (11)0.0031 (15)0.0176 (10)0.0045 (14)
F810.0799 (12)0.0745 (11)0.0595 (10)0.0008 (10)0.0192 (9)0.0227 (9)
F820.0823 (12)0.0769 (12)0.0544 (9)0.0061 (10)0.0226 (9)0.0131 (9)
F830.0526 (7)0.1111 (15)0.0676 (8)0.0001 (12)0.0093 (6)0.0062 (12)
Geometric parameters (Å, º) top
N1—C9A1.376 (2)C12—C131.393 (3)
N1—N21.375 (2)C12—H120.9300
N1—C111.427 (2)C13—C141.372 (4)
N2—C31.320 (3)C13—H130.9300
C3—C3A1.442 (3)C14—C151.361 (4)
C3—C311.472 (3)C14—H140.9300
C3A—C41.374 (3)C15—C161.392 (4)
C3A—C9A1.429 (3)C15—H150.9300
C4—C4A1.403 (3)C16—H160.9300
C4—H40.9300C31—C361.378 (3)
C4A—C51.422 (3)C31—C321.396 (3)
C4A—C8A1.432 (3)C32—C331.378 (4)
C5—C61.358 (3)C32—H320.9300
C5—H50.9300C33—C341.380 (5)
C6—C71.404 (3)C33—H330.9300
C6—H60.9300C34—C351.375 (4)
C7—C81.366 (3)C34—H340.9300
C7—H70.9300C35—C361.387 (3)
C8—C8A1.428 (3)C35—H350.9300
C8—C801.494 (3)C36—H360.9300
C8A—N91.360 (2)C80—F831.335 (3)
N9—C9A1.315 (2)C80—F821.343 (4)
C11—C121.369 (3)C80—F811.343 (4)
C11—C161.387 (3)
N9···F822.859 (3)N9···C802.808 (3)
N9···F812.886 (2)
C9A—N1—N2111.17 (15)C13—C12—H12120.3
C9A—N1—C11129.57 (17)C14—C13—C12120.0 (3)
N2—N1—C11119.25 (15)C14—C13—H13120.0
C3—N2—N1107.64 (16)C12—C13—H13120.0
N2—C3—C3A110.47 (17)C15—C14—C13120.3 (2)
N2—C3—C31120.29 (18)C15—C14—H14119.9
C3A—C3—C31129.21 (18)C13—C14—H14119.9
C4—C3A—C9A116.85 (17)C14—C15—C16121.0 (3)
C4—C3A—C3138.44 (18)C14—C15—H15119.5
C9A—C3A—C3104.65 (15)C16—C15—H15119.5
C3A—C4—C4A118.50 (17)C11—C16—C15118.4 (3)
C3A—C4—H4120.8C11—C16—H16120.8
C4A—C4—H4120.8C15—C16—H16120.8
C4—C4A—C5122.12 (17)C36—C31—C32118.8 (2)
C4—C4A—C8A119.17 (16)C36—C31—C3121.0 (2)
C5—C4A—C8A118.71 (18)C32—C31—C3120.2 (2)
C6—C5—C4A121.01 (19)C33—C32—C31120.1 (3)
C6—C5—H5119.5C33—C32—H32120.0
C4A—C5—H5119.5C31—C32—H32120.0
C5—C6—C7120.43 (18)C34—C33—C32120.9 (3)
C5—C6—H6119.8C34—C33—H33119.6
C7—C6—H6119.8C32—C33—H33119.6
C8—C7—C6121.0 (2)C35—C34—C33119.2 (3)
C8—C7—H7119.5C35—C34—H34120.4
C6—C7—H7119.5C33—C34—H34120.4
C7—C8—C8A120.35 (19)C34—C35—C36120.3 (3)
C7—C8—C80120.32 (19)C34—C35—H35119.8
C8A—C8—C80119.32 (17)C36—C35—H35119.8
N9—C8A—C8118.39 (17)C31—C36—C35120.7 (3)
N9—C8A—C4A123.15 (17)C31—C36—H36119.6
C8—C8A—C4A118.47 (16)C35—C36—H36119.6
C9A—N9—C8A114.56 (16)F83—C80—F82106.0 (2)
N9—C9A—N1126.14 (16)F83—C80—F81106.3 (2)
N9—C9A—C3A127.78 (16)F82—C80—F81106.12 (18)
N1—C9A—C3A106.07 (16)F83—C80—C8112.35 (18)
C12—C11—C16121.0 (2)F82—C80—C8112.9 (2)
C12—C11—N1120.6 (2)F81—C80—C8112.6 (2)
C16—C11—N1118.3 (2)C80—F81—N973.15 (13)
C11—C12—C13119.4 (2)C80—F82—N974.18 (13)
C11—C12—H12120.3
C9A—N1—N2—C30.0 (3)N2—N1—C9A—C3A0.0 (3)
C11—N1—N2—C3179.2 (3)C11—N1—C9A—C3A179.2 (3)
N1—N2—C3—C3A0.1 (3)C4—C3A—C9A—N90.7 (4)
N1—N2—C3—C31178.3 (2)C3—C3A—C9A—N9178.4 (3)
N2—C3—C3A—C4176.8 (3)C4—C3A—C9A—N1177.6 (2)
C31—C3—C3A—C41.2 (6)C3—C3A—C9A—N10.1 (3)
N2—C3—C3A—C9A0.1 (3)C9A—N1—C11—C1229.2 (4)
C31—C3—C3A—C9A178.1 (3)N2—N1—C11—C12149.9 (3)
C9A—C3A—C4—C4A0.8 (4)C9A—N1—C11—C16153.3 (3)
C3—C3A—C4—C4A177.5 (3)N2—N1—C11—C1627.6 (4)
C3A—C4—C4A—C5179.4 (3)C16—C11—C12—C130.9 (4)
C3A—C4—C4A—C8A0.6 (4)N1—C11—C12—C13176.5 (3)
C4—C4A—C5—C6179.4 (3)C11—C12—C13—C140.3 (5)
C8A—C4A—C5—C60.6 (5)C12—C13—C14—C151.4 (6)
C4A—C5—C6—C70.9 (5)C13—C14—C15—C161.2 (6)
C5—C6—C7—C80.3 (5)C12—C11—C16—C151.1 (4)
C6—C7—C8—C8A0.5 (5)N1—C11—C16—C15176.3 (3)
C6—C7—C8—C80178.5 (3)C14—C15—C16—C110.0 (5)
C7—C8—C8A—N9179.6 (3)N2—C3—C31—C36157.4 (3)
C80—C8—C8A—N91.4 (4)C3A—C3—C31—C3624.7 (4)
C7—C8—C8A—C4A0.7 (4)N2—C3—C31—C3223.9 (4)
C80—C8—C8A—C4A178.3 (3)C3A—C3—C31—C32153.9 (3)
C4—C4A—C8A—N90.2 (4)C36—C31—C32—C330.3 (4)
C5—C4A—C8A—N9179.8 (3)C3—C31—C32—C33179.0 (3)
C4—C4A—C8A—C8179.9 (3)C31—C32—C33—C340.6 (5)
C5—C4A—C8A—C80.1 (4)C32—C33—C34—C350.5 (5)
C8—C8A—N9—C9A179.7 (2)C33—C34—C35—C360.1 (6)
C4A—C8A—N9—C9A0.1 (4)C32—C31—C36—C350.1 (5)
C8—C8A—N9—C800.7 (2)C3—C31—C36—C35178.5 (3)
C4A—C8A—N9—C80178.9 (3)C34—C35—C36—C310.2 (6)
C8—C8A—N9—F8221.1 (2)C7—C8—C80—F831.4 (4)
C4A—C8A—N9—F82159.3 (2)C8A—C8—C80—F83179.6 (3)
C8—C8A—N9—F8123.3 (2)C7—C8—C80—F82121.3 (3)
C4A—C8A—N9—F81156.3 (2)C8A—C8—C80—F8259.7 (3)
C8A—N9—C9A—N1177.7 (2)C7—C8—C80—F81118.6 (3)
C8A—N9—C9A—C3A0.3 (4)C8A—C8—C80—F8160.4 (3)
N2—N1—C9A—N9178.4 (3)C7—C8—C80—N9179.7 (3)
C11—N1—C9A—N92.4 (5)C8A—C8—C80—N90.68 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12—H12···N90.932.503.042 (3)118
C7—H7···F830.932.352.692 (3)102
C36—H36···F82i0.932.563.357 (3)144
C13—H13···Cg4ii0.932.923.729 (4)146
C33—H33···Cg4iii0.933.033.697 (4)130
Symmetry codes: (i) x, y+1/2, z+1; (ii) x, y+1/2, z+2; (iii) x1, y1/2, z+1.

Experimental details

Crystal data
Chemical formulaC23H14F3N3
Mr389.37
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)11.8299 (5), 6.9788 (3), 12.1306 (4)
β (°) 112.765 (2)
V3)923.47 (6)
Z2
Radiation typeMo Kα
µ (mm1)0.11
Crystal size (mm)0.27 × 0.25 × 0.20
Data collection
DiffractometerNonius KappaCCD
Absorption correctionMulti-scan
(DENZO and SCALEPACK; Otwinowski & Minor, 1997)
Tmin, Tmax0.972, 0.979
No. of measured, independent and
observed [I > 2σ(I)] reflections
4497, 4497, 2183
Rint0.018
(sin θ/λ)max1)0.703
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.044, 0.104, 1.05
No. of reflections2876
No. of parameters262
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.16, 0.18

Computer programs: COLLECT (Nonius, 1998), DENZO and SCALEPACK (Otwinowski & Minor, 1997), SIR92 (Altomare et al., 1994), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1997).

 

Acknowledgements

The authors are grateful to the Ministry of Science and Higher Education, Poland, for financial support of this work through grant No. N N204 216734.

References

First citationAltomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. & Camalli, M. (1994). J. Appl. Cryst. 27, 435.  CrossRef Web of Science IUCr Journals Google Scholar
First citationBrack, A. (1965). Liebigs Ann. Chem. 681, 105–110.  CrossRef CAS Google Scholar
First citationFarrugia, L. J. (1997). J. Appl. Cryst. 30, 565.  CrossRef IUCr Journals Google Scholar
First citationKoścień, E., Gondek, E., Jarosz, B., Danel, A., Nizioł, J. & Kityk, A. V. (2009). Spectrochim. Acta Part A, 72, 582–590.  Google Scholar
First citationKoścień, E., Gondek, E., Pokladko, M., Jarosz, B., Vlokh, R. O. & Kityk, A. V. (2009). Mater. Chem. Phys. 114, 860–867.  Google Scholar
First citationNonius (1998). COLLECT. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (2008). Acta Cryst. A64, 112–122.  Web of Science CrossRef CAS IUCr Journals Google Scholar
First citationTao, Y. T., Balasubramaniam, E., Danel, A., Jarosz, B. & Tomasik, P. (2001). Chem. Mater. 13, 1207–1212.  Web of Science CrossRef CAS Google Scholar

This is an open-access article distributed under the terms of the Creative Commons Attribution (CC-BY) Licence, which permits unrestricted use, distribution, and reproduction in any medium, provided the original authors and source are cited.

Journal logoCRYSTALLOGRAPHIC
COMMUNICATIONS
ISSN: 2056-9890
Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds