Download citation
Download citation
link to html
The title binuclear compound, [Cd2Cl4(C11H12N3)2], was synthesized by the hydro­thermal reaction of CdCl2 and the homochiral ligand 2-[(2S)-pyrrolidin-2-yl]-1H-benzimidazole. Each of the two crystallographically independent Cd atoms has a slightly distorted trigonal–bipyramidal geometry and is coordinated by two N atoms from the organic ligand, and by one terminal and two bridging Cl anions. The crystal structure involves intermolecular N—H...Cl hydrogen bonds. One C atom of a pyrrolidine ring is disordered over two positions; the site occupany factors are ca 0.8 and 0.2.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807041980/gk2093sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807041980/gk2093Isup2.hkl
Contains datablock I

CCDC reference: 663547

Key indicators

  • Single-crystal X-ray study
  • T = 293 K
  • Mean [sigma](C-C) = 0.005 Å
  • Disorder in main residue
  • R factor = 0.027
  • wR factor = 0.061
  • Data-to-parameter ratio = 19.0

checkCIF/PLATON results

No syntax errors found



Alert level C ABSTM02_ALERT_3_C The ratio of expected to reported Tmax/Tmin(RR') is < 0.90 Tmin and Tmax reported: 0.701 1.000 Tmin(prime) and Tmax expected: 0.435 0.543 RR(prime) = 0.877 Please check that your absorption correction is appropriate. PLAT061_ALERT_3_C Tmax/Tmin Range Test RR' too Large ............. 0.85 PLAT062_ALERT_4_C Rescale T(min) & T(max) by ..................... 0.54 PLAT301_ALERT_3_C Main Residue Disorder ......................... 8.00 Perc. PLAT420_ALERT_2_C D-H Without Acceptor N1 - H1A ... ? PLAT420_ALERT_2_C D-H Without Acceptor N4 - H4C ... ? PLAT720_ALERT_4_C Number of Unusual/Non-Standard Label(s) ........ 2
Alert level G ABSTM02_ALERT_3_G When printed, the submitted absorption T values will be replaced by the scaled T values. Since the ratio of scaled T's is identical to the ratio of reported T values, the scaling does not imply a change to the absorption corrections used in the study. Ratio of Tmax expected/reported 0.543 Tmax scaled 0.543 Tmin scaled 0.381 REFLT03_ALERT_4_G Please check that the estimate of the number of Friedel pairs is correct. If it is not, please give the correct count in the _publ_section_exptl_refinement section of the submitted CIF. From the CIF: _diffrn_reflns_theta_max 27.50 From the CIF: _reflns_number_total 6010 Count of symmetry unique reflns 3247 Completeness (_total/calc) 185.09% TEST3: Check Friedels for noncentro structure Estimate of Friedel pairs measured 2763 Fraction of Friedel pairs measured 0.851 Are heavy atom types Z>Si present yes PLAT199_ALERT_1_G Check the Reported _cell_measurement_temperature 293 K PLAT200_ALERT_1_G Check the Reported _diffrn_ambient_temperature . 293 K PLAT791_ALERT_1_G Confirm the Absolute Configuration of N1 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of N4 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C8 = . S PLAT791_ALERT_1_G Confirm the Absolute Configuration of C19 = . S PLAT860_ALERT_3_G Note: Number of Least-Squares Restraints ....... 1
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 7 ALERT level C = Check and explain 9 ALERT level G = General alerts; check 6 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 2 ALERT type 2 Indicator that the structure model may be wrong or deficient 5 ALERT type 3 Indicator that the structure quality may be low 3 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Phenomena such as triboluminescence, second harmonic generation (SHG), piezoelectricity, pyroelectricity and ferroelectricity are only found in noncentrosymmetric bulk materials (Zyss, 1993; Agullo-Lopez et al., 1994; Newnham et al., 1975). There has been very strong interest in employing crystal-engineering strategies to generate materials with desirable properties. Such approaches have succeeded in producing chiral or noncentrosymmetric coordination polymers and organic compounds (Qu et al., 2004). We have focused on the synthesis of noncentrosymmetric coordination compounds by the hydrothermal reaction of the chiral ligand and inoganic salt. Here we report the crystal structure of the title compound prepared from CdCl2 and benzimidazole-derived chiral ligand.

As shown in Fig. 1, the Cd ions are chelated by the chiral organic ligand and thus the compound has to form chiral crystals. Each of the two crystallographically independent pentacoordinated Cd atoms has a slightly distorted trigonal-bipyramidal geometry and is coordinated by two N atoms from the organic ligand, and by one terminal and two bridging Cl- anions. The two Cd centers are bridged by two chlorine atoms to give a dicadmium framework with a Cd—Cd separation of 3.8485 (16) Å and a Cl—Cl distance of 3.472 (2) Å.

Related literature top

For the physical properties of noncentrosymmetric solid materials, see: Zyss (1993); Agullo-Lopez et al. (1994); Newnham et al. (1975); Qu et al. (2004). For synthesis of the organic ligand, see: Aminabhavi et al. (1986).

Experimental top

The homochiral ligand, (S)-2-[pyrrolidin-2-yl]-1H-benzimidazole, was synthesized by the reaction of (S)-pyrrolidine-2-carboxylic acid and benzene-1,2-diamine according to the procedure described in the literature (Aminabhavi et al., 1986). A mixture of S-2-(pyrrolidin-2-yl)-1H-benzimidazole (18.7 mg, 0.1 mmol) and CdCl2 (18.3 mg, 0.1 mmol) and water (1 ml) sealed in a glass tube were kept at 70 °C. Crystals suitable for X-ray analysis were obtained after 3 days.

Refinement top

All H atoms were included in calculated positions with C—H = 0.93–0.97 Å and N—H=0.86 Å and with Uiso(H) = 1.2Ueq(C,N). One of the pyrrolidine rings is disordered with the C10 atom occupying two positions, C10 nad C10', with the occupancy factors of 0.81 (2) and 0.19 (2), respectively.

Structure description top

Phenomena such as triboluminescence, second harmonic generation (SHG), piezoelectricity, pyroelectricity and ferroelectricity are only found in noncentrosymmetric bulk materials (Zyss, 1993; Agullo-Lopez et al., 1994; Newnham et al., 1975). There has been very strong interest in employing crystal-engineering strategies to generate materials with desirable properties. Such approaches have succeeded in producing chiral or noncentrosymmetric coordination polymers and organic compounds (Qu et al., 2004). We have focused on the synthesis of noncentrosymmetric coordination compounds by the hydrothermal reaction of the chiral ligand and inoganic salt. Here we report the crystal structure of the title compound prepared from CdCl2 and benzimidazole-derived chiral ligand.

As shown in Fig. 1, the Cd ions are chelated by the chiral organic ligand and thus the compound has to form chiral crystals. Each of the two crystallographically independent pentacoordinated Cd atoms has a slightly distorted trigonal-bipyramidal geometry and is coordinated by two N atoms from the organic ligand, and by one terminal and two bridging Cl- anions. The two Cd centers are bridged by two chlorine atoms to give a dicadmium framework with a Cd—Cd separation of 3.8485 (16) Å and a Cl—Cl distance of 3.472 (2) Å.

For the physical properties of noncentrosymmetric solid materials, see: Zyss (1993); Agullo-Lopez et al. (1994); Newnham et al. (1975); Qu et al. (2004). For synthesis of the organic ligand, see: Aminabhavi et al. (1986).

Computing details top

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear (Rigaku, 2005); data reduction: CrystalClear (Rigaku, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL/PC (Sheldrick, 1999); software used to prepare material for publication: SHELXTL/PC (Sheldrick, 1999).

Figures top
[Figure 1] Fig. 1. A view of the title compound with the atomic numbering scheme. Displacement ellipsoids were drawn at the 30% probability level and all hydrogen atoms, except H8a and H19a, were omitted for clarity.
Di-µ-chlorido-bis(chlorido{2-[(2S)-pyrrolidin-2-yl]-1H- benzimidazole}cadmium(II)) top
Crystal data top
[Cd2Cl4(C11H12N3)2]F(000) = 728
Mr = 741.09Dx = 1.860 Mg m3
Monoclinic, P21Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ybCell parameters from 11574 reflections
a = 9.365 (6) Åθ = 3.3–27.4°
b = 8.103 (5) ŵ = 2.03 mm1
c = 17.691 (12) ÅT = 293 K
β = 99.673 (12)°Prism, colourless
V = 1323.4 (15) Å30.4 × 0.3 × 0.3 mm
Z = 2
Data collection top
Rigaku Mercury2 CCD
diffractometer
6010 independent reflections
Radiation source: fine-focus sealed tube5622 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
Detector resolution: 13.66 pixels mm-1θmax = 27.5°, θmin = 3.4°
ω scansh = 1212
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
k = 1010
Tmin = 0.701, Tmax = 1.000l = 2222
13823 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.061 w = 1/[σ2(Fo2) + (0.0194P)2 + 0.0229P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
6010 reflectionsΔρmax = 0.57 e Å3
317 parametersΔρmin = 0.30 e Å3
1 restraintAbsolute structure: Flack (1983)
Primary atom site location: structure-invariant direct methodsAbsolute structure parameter: 0.03 (2)
Crystal data top
[Cd2Cl4(C11H12N3)2]V = 1323.4 (15) Å3
Mr = 741.09Z = 2
Monoclinic, P21Mo Kα radiation
a = 9.365 (6) ŵ = 2.03 mm1
b = 8.103 (5) ÅT = 293 K
c = 17.691 (12) Å0.4 × 0.3 × 0.3 mm
β = 99.673 (12)°
Data collection top
Rigaku Mercury2 CCD
diffractometer
6010 independent reflections
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2005)
5622 reflections with I > 2σ(I)
Tmin = 0.701, Tmax = 1.000Rint = 0.036
13823 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.027H-atom parameters constrained
wR(F2) = 0.061Δρmax = 0.57 e Å3
S = 1.04Δρmin = 0.30 e Å3
6010 reflectionsAbsolute structure: Flack (1983)
317 parametersAbsolute structure parameter: 0.03 (2)
1 restraint
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
Cd10.89212 (3)0.09969 (3)0.681550 (14)0.03784 (7)
Cd20.70149 (3)0.19423 (3)0.803532 (14)0.03883 (7)
Cl10.94116 (11)0.02794 (13)0.81846 (6)0.0536 (3)
Cl20.64668 (9)0.04558 (12)0.67049 (5)0.0442 (2)
Cl31.03862 (11)0.05990 (11)0.60033 (5)0.0499 (2)
Cl40.55426 (12)0.04372 (12)0.88338 (6)0.0538 (2)
N10.8156 (3)0.2880 (3)0.57844 (15)0.0387 (6)
H1A0.85860.23800.54280.046*
N20.9917 (3)0.3464 (3)0.72100 (14)0.0341 (6)
N31.0317 (3)0.6107 (4)0.69852 (15)0.0389 (6)
H3A1.02330.70520.67610.047*
N40.8371 (3)0.4053 (4)0.88192 (15)0.0398 (6)
H4C0.92290.40630.86550.048*
N50.5980 (3)0.4390 (3)0.76447 (15)0.0359 (7)
N60.5622 (3)0.7033 (4)0.78519 (16)0.0403 (7)
H6A0.57420.79960.80570.048*
C10.4788 (4)0.4917 (4)0.71093 (19)0.0372 (8)
C20.3925 (4)0.4088 (6)0.6516 (2)0.0499 (9)
H2A0.40590.29690.64340.060*
C30.2868 (4)0.4999 (6)0.6066 (2)0.0522 (10)
H3B0.22750.44760.56620.063*
C40.2664 (4)0.6681 (6)0.6188 (2)0.0504 (10)
H4A0.19450.72500.58640.061*
C50.3504 (4)0.7521 (5)0.6781 (2)0.0478 (9)
H5A0.33630.86340.68740.057*
C60.4568 (4)0.6603 (4)0.7237 (2)0.0389 (8)
C70.6417 (4)0.5683 (4)0.80687 (18)0.0344 (8)
C80.7681 (4)0.5709 (4)0.87137 (19)0.0400 (8)
H8A0.83930.65130.85940.048*
C90.7265 (5)0.6156 (6)0.9492 (2)0.0632 (12)0.83 (2)
H9A0.62880.65920.94270.076*0.83 (2)
H9B0.79270.69710.97570.076*0.83 (2)
C9'0.7265 (5)0.6156 (6)0.9492 (2)0.0632 (12)0.17 (2)
H9'A0.62710.58490.95120.076*0.17 (2)
H9'B0.73860.73280.95960.076*0.17 (2)
C100.7372 (11)0.4563 (12)0.9930 (3)0.067 (3)0.83 (2)
H10A0.64780.39390.98140.080*0.83 (2)
H10B0.75880.47611.04790.080*0.83 (2)
C10'0.827 (6)0.520 (3)1.0028 (14)0.060 (11)0.17 (2)
H10C0.91520.58191.01880.072*0.17 (2)
H10D0.78450.49501.04790.072*0.17 (2)
C110.8590 (5)0.3676 (6)0.9658 (2)0.0608 (12)0.83 (2)
H11A0.85370.24980.97470.073*0.83 (2)
H11B0.95200.40840.99150.073*0.83 (2)
C11'0.8590 (5)0.3676 (6)0.9658 (2)0.0608 (12)0.17 (2)
H11C0.95810.33360.98400.073*0.17 (2)
H11D0.79440.28010.97620.073*0.17 (2)
C121.0924 (3)0.4106 (4)0.78235 (18)0.0330 (7)
C131.1658 (4)0.3332 (5)0.8477 (2)0.0488 (10)
H13A1.14990.22290.85820.059*
C141.2641 (5)0.4293 (6)0.8966 (2)0.0565 (11)
H14A1.31550.38090.94050.068*
C151.2880 (4)0.5930 (6)0.8813 (2)0.0527 (10)
H15A1.35530.65200.91560.063*
C161.2163 (4)0.6723 (5)0.8167 (2)0.0479 (10)
H16A1.23200.78270.80640.057*
C171.1176 (4)0.5762 (4)0.76791 (18)0.0360 (7)
C180.9634 (4)0.4698 (4)0.67212 (18)0.0321 (7)
C190.8754 (4)0.4578 (4)0.59312 (18)0.0341 (7)
H19A0.94020.48040.55630.041*
C200.7473 (4)0.5766 (5)0.5758 (2)0.0531 (10)
H20A0.77570.67930.55430.064*
H20B0.70660.60060.62160.064*
C210.6403 (4)0.4832 (5)0.5179 (2)0.0514 (10)
H21A0.54220.52390.51560.062*
H21B0.66640.48890.46720.062*
C220.6568 (4)0.3081 (6)0.5497 (2)0.0472 (8)
H22A0.60210.29450.59130.057*
H22B0.62310.22780.51010.057*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cd10.04699 (14)0.02405 (12)0.04211 (14)0.00259 (11)0.00645 (10)0.00146 (10)
Cd20.05097 (15)0.02408 (12)0.04213 (14)0.00421 (11)0.00980 (11)0.00005 (10)
Cl10.0559 (6)0.0497 (6)0.0501 (5)0.0185 (5)0.0057 (4)0.0168 (5)
Cl20.0464 (5)0.0394 (5)0.0442 (5)0.0079 (4)0.0002 (4)0.0072 (4)
Cl30.0707 (6)0.0331 (4)0.0523 (5)0.0026 (4)0.0285 (5)0.0066 (4)
Cl40.0748 (6)0.0339 (5)0.0594 (6)0.0037 (5)0.0305 (5)0.0009 (4)
N10.0454 (16)0.0296 (14)0.0396 (15)0.0028 (13)0.0031 (12)0.0069 (13)
N20.0406 (15)0.0281 (15)0.0321 (14)0.0051 (12)0.0015 (12)0.0026 (11)
N30.0501 (16)0.0257 (14)0.0388 (15)0.0055 (15)0.0017 (12)0.0033 (14)
N40.0415 (15)0.0361 (14)0.0431 (15)0.0023 (15)0.0108 (12)0.0015 (14)
N50.0498 (17)0.0247 (15)0.0336 (15)0.0022 (12)0.0082 (12)0.0002 (11)
N60.0535 (17)0.0223 (13)0.0452 (16)0.0026 (15)0.0084 (13)0.0002 (14)
C10.0413 (19)0.0369 (18)0.0348 (18)0.0063 (16)0.0101 (14)0.0011 (15)
C20.052 (2)0.047 (2)0.050 (2)0.007 (2)0.0064 (17)0.012 (2)
C30.045 (2)0.068 (3)0.042 (2)0.002 (2)0.0037 (17)0.007 (2)
C40.040 (2)0.068 (3)0.045 (2)0.016 (2)0.0108 (16)0.014 (2)
C50.052 (2)0.037 (2)0.058 (2)0.0125 (18)0.0189 (18)0.0133 (18)
C60.0426 (19)0.034 (2)0.0428 (19)0.0035 (15)0.0161 (15)0.0043 (15)
C70.045 (2)0.0286 (17)0.0333 (17)0.0022 (15)0.0158 (15)0.0020 (14)
C80.051 (2)0.0294 (17)0.0381 (18)0.0009 (16)0.0027 (15)0.0003 (14)
C90.086 (3)0.058 (3)0.043 (2)0.027 (2)0.003 (2)0.012 (2)
C9'0.086 (3)0.058 (3)0.043 (2)0.027 (2)0.003 (2)0.012 (2)
C100.089 (5)0.076 (6)0.038 (3)0.021 (4)0.019 (3)0.006 (3)
C10'0.11 (3)0.041 (15)0.029 (12)0.020 (16)0.002 (14)0.000 (10)
C110.079 (3)0.054 (3)0.045 (2)0.019 (2)0.002 (2)0.0026 (19)
C11'0.079 (3)0.054 (3)0.045 (2)0.019 (2)0.002 (2)0.0026 (19)
C120.0392 (17)0.0326 (18)0.0283 (16)0.0026 (14)0.0085 (13)0.0002 (13)
C130.055 (2)0.048 (2)0.0392 (19)0.0135 (18)0.0050 (16)0.0118 (17)
C140.063 (3)0.065 (3)0.037 (2)0.015 (2)0.0062 (18)0.0075 (19)
C150.052 (2)0.068 (3)0.0374 (19)0.017 (2)0.0045 (16)0.012 (2)
C160.051 (2)0.039 (2)0.053 (2)0.0126 (17)0.0070 (18)0.0086 (18)
C170.0454 (18)0.0308 (18)0.0328 (17)0.0022 (16)0.0097 (14)0.0050 (14)
C180.0384 (18)0.0268 (16)0.0319 (16)0.0034 (14)0.0088 (14)0.0010 (14)
C190.0390 (17)0.0338 (17)0.0305 (17)0.0015 (14)0.0086 (13)0.0017 (14)
C200.063 (2)0.034 (2)0.059 (2)0.0101 (19)0.0006 (19)0.0048 (18)
C210.044 (2)0.056 (3)0.051 (2)0.0107 (19)0.0026 (16)0.0069 (19)
C220.0424 (19)0.048 (2)0.048 (2)0.003 (2)0.0006 (15)0.000 (2)
Geometric parameters (Å, º) top
Cd1—N22.266 (3)C5—C61.388 (5)
Cd1—N12.394 (3)C5—H5A0.9300
Cd1—Cl32.5063 (14)C7—C81.500 (5)
Cd1—Cl22.5605 (16)C8—C91.536 (5)
Cd1—Cl12.6026 (18)C8—H8A0.9800
Cd1—Cd23.8485 (16)C9—C101.500 (9)
Cd2—N52.264 (3)C9—H9A0.9700
Cd2—N42.422 (3)C9—H9B0.9700
Cd2—Cl42.4574 (14)C10—C111.495 (7)
Cd2—Cl12.5931 (16)C10—H10A0.9700
Cd2—Cl22.6169 (17)C10—H10B0.9700
Cl1—Cl23.472 (2)C10'—H10C0.9700
N1—C191.492 (4)C10'—H10D0.9700
N1—C221.497 (4)C11—H11A0.9700
N1—H1A0.9002C11—H11B0.9700
N2—C181.319 (4)C12—C131.391 (5)
N2—C121.412 (4)C12—C171.393 (5)
N3—C181.353 (4)C13—C141.391 (6)
N3—C171.379 (4)C13—H13A0.9300
N3—H3A0.8600C14—C151.379 (7)
N4—C81.488 (5)C14—H14A0.9299
N4—C111.495 (5)C15—C161.382 (6)
N4—H4C0.9001C15—H15A0.9300
N5—C71.313 (4)C16—C171.392 (5)
N5—C11.404 (4)C16—H16A0.9300
N6—C71.343 (4)C18—C191.502 (4)
N6—C61.384 (4)C19—C201.529 (5)
N6—H6A0.8600C19—H19A0.9800
C1—C21.386 (5)C20—C211.511 (5)
C1—C61.406 (5)C20—H20A0.9700
C2—C31.376 (6)C20—H20B0.9701
C2—H2A0.9300C21—C221.525 (6)
C3—C41.398 (6)C21—H21A0.9700
C3—H3B0.9300C21—H21B0.9699
C4—C51.380 (6)C22—H22A0.9700
C4—H4A0.9300C22—H22B0.9701
N2—Cd1—N174.18 (10)N6—C6—C1105.5 (3)
N2—Cd1—Cl3113.28 (8)C5—C6—C1122.5 (4)
N1—Cd1—Cl390.84 (8)N5—C7—N6112.5 (3)
N2—Cd1—Cl2138.31 (7)N5—C7—C8125.2 (3)
N1—Cd1—Cl294.86 (8)N6—C7—C8122.3 (3)
Cl3—Cd1—Cl2106.85 (5)N4—C8—C7110.7 (3)
N2—Cd1—Cl193.71 (8)N4—C8—C9105.7 (3)
N1—Cd1—Cl1161.07 (7)C7—C8—C9113.5 (3)
Cl3—Cd1—Cl1107.49 (5)N4—C8—H8A109.3
Cl2—Cd1—Cl184.50 (3)C7—C8—H8A108.9
N2—Cd1—Cd2125.37 (7)C9—C8—H8A108.7
N1—Cd1—Cd2135.57 (7)C10—C9—C8104.8 (4)
Cl3—Cd1—Cd2110.63 (5)C10—C9—H9A110.8
Cl2—Cd1—Cd242.55 (3)C8—C9—H9A110.8
Cl1—Cd1—Cd242.11 (3)C10—C9—H9B110.8
N5—Cd2—N473.29 (11)C8—C9—H9B110.8
N5—Cd2—Cl4110.95 (8)H9A—C9—H9B108.9
N4—Cd2—Cl4108.18 (8)C11—C10—C9103.6 (5)
N5—Cd2—Cl1143.62 (8)C11—C10—H10A111.0
N4—Cd2—Cl186.97 (8)C9—C10—H10A111.0
Cl4—Cd2—Cl1104.08 (5)C11—C10—H10B111.0
N5—Cd2—Cl296.87 (8)C9—C10—H10B111.0
N4—Cd2—Cl2147.63 (7)H10A—C10—H10B109.0
Cl4—Cd2—Cl2104.14 (5)H10C—C10'—H10D108.3
Cl1—Cd2—Cl283.57 (4)N4—C11—C10103.7 (4)
N5—Cd2—Cd1125.88 (7)N4—C11—H11A111.0
N4—Cd2—Cd1120.66 (8)C10—C11—H11A111.0
Cl4—Cd2—Cd1111.91 (5)N4—C11—H11B111.0
Cl1—Cd2—Cd142.30 (3)C10—C11—H11B111.0
Cl2—Cd2—Cd141.42 (3)H11A—C11—H11B109.0
Cd2—Cl1—Cd195.59 (4)C13—C12—C17120.7 (3)
Cd2—Cl1—Cl248.51 (3)C13—C12—N2130.2 (3)
Cd1—Cl1—Cl247.23 (3)C17—C12—N2109.0 (3)
Cd1—Cl2—Cd296.03 (3)C12—C13—C14116.6 (4)
Cd1—Cl2—Cl148.26 (4)C12—C13—H13A121.8
Cd2—Cl2—Cl147.92 (3)C14—C13—H13A121.6
C19—N1—C22106.4 (3)C15—C14—C13121.9 (4)
C19—N1—Cd1113.56 (19)C15—C14—H14A119.4
C22—N1—Cd1118.7 (2)C13—C14—H14A118.7
C19—N1—H1A109.8C14—C15—C16122.5 (4)
C22—N1—H1A110.3C14—C15—H15A118.8
Cd1—N1—H1A97.7C16—C15—H15A118.8
C18—N2—C12105.0 (3)C15—C16—C17115.6 (4)
C18—N2—Cd1116.1 (2)C15—C16—H16A122.6
C12—N2—Cd1138.5 (2)C17—C16—H16A121.8
C18—N3—C17107.9 (3)N3—C17—C16131.8 (4)
C18—N3—H3A126.2N3—C17—C12105.5 (3)
C17—N3—H3A125.9C16—C17—C12122.7 (3)
C8—N4—C11107.0 (3)N2—C18—N3112.5 (3)
C8—N4—Cd2112.98 (19)N2—C18—C19125.4 (3)
C11—N4—Cd2113.3 (3)N3—C18—C19122.0 (3)
C8—N4—H4C110.1N1—C19—C18110.7 (3)
C11—N4—H4C110.0N1—C19—C20106.7 (3)
Cd2—N4—H4C103.5C18—C19—C20115.8 (3)
C7—N5—C1106.2 (3)N1—C19—H19A108.2
C7—N5—Cd2116.6 (2)C18—C19—H19A107.6
C1—N5—Cd2136.3 (2)C20—C19—H19A107.6
C7—N6—C6107.9 (3)C21—C20—C19103.2 (3)
C7—N6—H6A126.2C21—C20—H20A111.0
C6—N6—H6A125.9C19—C20—H20A111.1
C2—C1—N5131.3 (3)C21—C20—H20B110.9
C2—C1—C6120.7 (4)C19—C20—H20B111.4
N5—C1—C6107.9 (3)H20A—C20—H20B109.1
C3—C2—C1116.7 (4)C20—C21—C22101.6 (3)
C3—C2—H2A122.3C20—C21—H21A111.9
C1—C2—H2A121.0C22—C21—H21A111.6
C2—C3—C4122.5 (4)C20—C21—H21B111.2
C2—C3—H3B118.6C22—C21—H21B111.1
C4—C3—H3B118.9H21A—C21—H21B109.2
C5—C4—C3121.5 (4)N1—C22—C21105.0 (3)
C5—C4—H4A119.1N1—C22—H22A110.6
C3—C4—H4A119.4C21—C22—H22A110.6
C4—C5—C6116.1 (4)N1—C22—H22B110.9
C4—C5—H5A122.2C21—C22—H22B110.9
C6—C5—H5A121.8H22A—C22—H22B108.9
N6—C6—C5132.0 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl3i0.862.353.191 (3)168
N6—H6A···Cl4ii0.862.433.267 (4)164
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cd2Cl4(C11H12N3)2]
Mr741.09
Crystal system, space groupMonoclinic, P21
Temperature (K)293
a, b, c (Å)9.365 (6), 8.103 (5), 17.691 (12)
β (°) 99.673 (12)
V3)1323.4 (15)
Z2
Radiation typeMo Kα
µ (mm1)2.03
Crystal size (mm)0.4 × 0.3 × 0.3
Data collection
DiffractometerRigaku Mercury2 CCD
Absorption correctionMulti-scan
(CrystalClear; Rigaku, 2005)
Tmin, Tmax0.701, 1.000
No. of measured, independent and
observed [I > 2σ(I)] reflections
13823, 6010, 5622
Rint0.036
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.061, 1.04
No. of reflections6010
No. of parameters317
No. of restraints1
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.57, 0.30
Absolute structureFlack (1983)
Absolute structure parameter0.03 (2)

Computer programs: CrystalClear (Rigaku, 2005), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL/PC (Sheldrick, 1999).

Selected bond lengths (Å) top
Cd1—N22.266 (3)Cd1—Cl12.6026 (18)
Cd1—N12.394 (3)Cd1—Cd23.8485 (16)
Cd1—Cl32.5063 (14)Cl1—Cl23.472 (2)
Cd1—Cl22.5605 (16)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N3—H3A···Cl3i0.862.353.191 (3)168
N6—H6A···Cl4ii0.862.433.267 (4)164
Symmetry codes: (i) x, y+1, z; (ii) x, y1, z.
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds