Download citation
Download citation
link to html
In the title compound, C29H22F6N4S2, a new symmetric photochromic dithienylethene, the distance between the two reactive C atoms in the mol­ecule is 3.475 (3) Å. The dihedral angles between the central cyclo­pentene ring and the two thio­phene rings are 57.9 (1) and 51.2 (1)°. The molecule has no imposed crystallographic symmetry.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807018909/gk2066sup1.cif
Contains datablocks global, Ia

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807018909/gk2066Iasup2.hkl
Contains datablock Ia

CCDC reference: 642552

Key indicators

  • Single-crystal X-ray study
  • T = 291 K
  • Mean [sigma](C-C) = 0.003 Å
  • R factor = 0.042
  • wR factor = 0.109
  • Data-to-parameter ratio = 14.7

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT125_ALERT_4_C No _symmetry_space_group_name_Hall Given ....... ? PLAT152_ALERT_1_C Supplied and Calc Volume s.u. Inconsistent ..... ? PLAT220_ALERT_2_C Large Non-Solvent C Ueq(max)/Ueq(min) ... 2.67 Ratio PLAT242_ALERT_2_C Check Low Ueq as Compared to Neighbors for C14 PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C6 - C7 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C6 - C8 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C23 - C24 ... 1.43 Ang. PLAT371_ALERT_2_C Long C(sp2)-C(sp1) Bond C23 - C25 ... 1.43 Ang.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 8 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 1 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 6 ALERT type 2 Indicator that the structure model may be wrong or deficient 0 ALERT type 3 Indicator that the structure quality may be low 1 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Photochromic diarylethenes have attracted considerable attention for their possible application in optical recording and photoswitches (Irie, 2000; Tian & Yang, 2004). For further background information, see Pu, Liu et al. (2005). In the present work, the title photochromic diarylethene, (Ia), was synthesized, and its structure is presented here. Previously, we have reported the structure of the 2-methyl, (II), and 2-ethyl analog, (III), of this compound (Pu et al., 2003; Pu, Yang et al., 2005). In order to investigate the substituent effect at the 2-position of the thiophene on the photochemical properties, we have now determined the structure of (Ia).

The molecular structure of (Ia) is shown in Fig. 2. In the cyclopent-1-ene ring, the C13—C17 bond is clearly a double bond, while the other bonds in the ring are clearly single bonds (Table 1). The two thiophene rings are linked by the C13=C17 double bond. The two n-butyl groups are located on opposite sides of the double bond and are directed trans relative to the thiophene planes, as reflected in the torsion angles C3—C4—C9—C10 and C19—C18—C26—C27 (Table 1). The dihedral angle between the central cyclopent-1-ene ring and each adjacent thiophene ring are 57.9 (1)° for S1/C1—C4 and 51.2 (1)° for S2/C18—C21. The corresponding values in the methyl analog, (II), and that in the ethyl analog, (III), are 44.9° and 48.0 (2)°, respectively. This conformation leads to a C4—C18 separation of 3.475 (3) Å in (Ia) [compared with 3.589 Å in (II) and 3.642 (7) in (III)]. This distance is short enough, theoretically, for a ring-closure reaction to take place in the crystalline phase to generate compound (Ib) (see scheme), (Ramamurthy &Venkatesan, 1987; Shibata et al., 2002; Yamaguchi & Irie, 2006).

Crystals of (Ia) show photochromism in accordance with the expected ring closure, to form (Ib). Upon irradiation with 365 nm light, the colorless single crystals of (Ia) turned green quickly. When the green crystal was dissolved in dichloromethane, the solution also showed a green color, with an absorption maximum at 772 nm, consistent with the presence of the closed-ring isomer, (Ib). Upon irradiation with visible light with wavelength greater than 510 nm, the green crystal can return to its initial colorless state, and the absorption spectrum of the dichloromethane solution containing the colorless crystal is the same as that of solution of the open-ring form, (Ia), with the absorption maximum at 366 nm.

Related literature top

For related literature, see: Irie (2000); Pu et al. (2003); Pu, Liu, Chen & Xu (2005); Pu, Yang, Wang & Xu (2005); Ramamurthy & Venkatesan (1987); Tian & Yang (2004); Shibata et al. (2002); Yamaguchi & Irie (2006).

Experimental top

The title compound, (Ia), was synthesized in 29% total yield by the literature method (Pu, Yang et al., 2005) using 5-n-butyl-thiophene- 2-carbaldehyde as the start material. Crystal suitable for X-ray analysis were grown from a solution (diethyl ether/hexane 1/3) by slow evaporation at room temperature (m.p. 403 K).

Refinement top

All H atoms were placed in calculated positions, with C—H distances of 0.93 Å (aromatic), 0.97 Å (CH2) and 0.96 Å (CH3). They were included in the refinement in the riding model approximation with isotropic displacement parameters set equal to 1.2Ueq of the carrier atom for the aromatic_H, and 1.5Ueq of the carrier for CH3.

Structure description top

Photochromic diarylethenes have attracted considerable attention for their possible application in optical recording and photoswitches (Irie, 2000; Tian & Yang, 2004). For further background information, see Pu, Liu et al. (2005). In the present work, the title photochromic diarylethene, (Ia), was synthesized, and its structure is presented here. Previously, we have reported the structure of the 2-methyl, (II), and 2-ethyl analog, (III), of this compound (Pu et al., 2003; Pu, Yang et al., 2005). In order to investigate the substituent effect at the 2-position of the thiophene on the photochemical properties, we have now determined the structure of (Ia).

The molecular structure of (Ia) is shown in Fig. 2. In the cyclopent-1-ene ring, the C13—C17 bond is clearly a double bond, while the other bonds in the ring are clearly single bonds (Table 1). The two thiophene rings are linked by the C13=C17 double bond. The two n-butyl groups are located on opposite sides of the double bond and are directed trans relative to the thiophene planes, as reflected in the torsion angles C3—C4—C9—C10 and C19—C18—C26—C27 (Table 1). The dihedral angle between the central cyclopent-1-ene ring and each adjacent thiophene ring are 57.9 (1)° for S1/C1—C4 and 51.2 (1)° for S2/C18—C21. The corresponding values in the methyl analog, (II), and that in the ethyl analog, (III), are 44.9° and 48.0 (2)°, respectively. This conformation leads to a C4—C18 separation of 3.475 (3) Å in (Ia) [compared with 3.589 Å in (II) and 3.642 (7) in (III)]. This distance is short enough, theoretically, for a ring-closure reaction to take place in the crystalline phase to generate compound (Ib) (see scheme), (Ramamurthy &Venkatesan, 1987; Shibata et al., 2002; Yamaguchi & Irie, 2006).

Crystals of (Ia) show photochromism in accordance with the expected ring closure, to form (Ib). Upon irradiation with 365 nm light, the colorless single crystals of (Ia) turned green quickly. When the green crystal was dissolved in dichloromethane, the solution also showed a green color, with an absorption maximum at 772 nm, consistent with the presence of the closed-ring isomer, (Ib). Upon irradiation with visible light with wavelength greater than 510 nm, the green crystal can return to its initial colorless state, and the absorption spectrum of the dichloromethane solution containing the colorless crystal is the same as that of solution of the open-ring form, (Ia), with the absorption maximum at 366 nm.

For related literature, see: Irie (2000); Pu et al. (2003); Pu, Liu, Chen & Xu (2005); Pu, Yang, Wang & Xu (2005); Ramamurthy & Venkatesan (1987); Tian & Yang (2004); Shibata et al. (2002); Yamaguchi & Irie (2006).

Computing details top

Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 1997); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 1997); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The photochromism scheme of the title compound.
[Figure 2] Fig. 2. The structure of compound (Ia) with 35% probability ellipsoids, showing the atomic numbering scheme.
1,2-Bis[5-(2,2-dicyanovinyl)-2-n-butyl-3-thienyl]-3,3,4,4,5,5- hexafluorocyclopent-1-ene top
Crystal data top
C29H22F6N4S2Dx = 1.363 Mg m3
Mr = 604.63Melting point: 403 K
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
a = 20.8617 (17) ÅCell parameters from 4441 reflections
b = 8.9036 (7) Åθ = 2.3–21.4°
c = 31.734 (3) ŵ = 0.24 mm1
β = 91.801 (10)°T = 291 K
V = 5891.4 (8) Å3Block, yellow
Z = 80.41 × 0.25 × 0.17 mm
F(000) = 2480
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5473 independent reflections
Radiation source: fine-focus sealed tube3854 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.036
φ and ω scansθmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
h = 2525
Tmin = 0.907, Tmax = 0.960k = 1010
21870 measured reflectionsl = 3837
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109H-atom parameters constrained
S = 1.01 w = 1/[σ2(Fo2) + (0.046P)2 + 3.9867P]
where P = (Fo2 + 2Fc2)/3
5473 reflections(Δ/σ)max < 0.001
372 parametersΔρmax = 0.39 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C29H22F6N4S2V = 5891.4 (8) Å3
Mr = 604.63Z = 8
Monoclinic, C2/cMo Kα radiation
a = 20.8617 (17) ŵ = 0.24 mm1
b = 8.9036 (7) ÅT = 291 K
c = 31.734 (3) Å0.41 × 0.25 × 0.17 mm
β = 91.801 (10)°
Data collection top
Bruker SMART APEX2 CCD area-detector
diffractometer
5473 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 1996)
3854 reflections with I > 2σ(I)
Tmin = 0.907, Tmax = 0.960Rint = 0.036
21870 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.109H-atom parameters constrained
S = 1.01Δρmax = 0.39 e Å3
5473 reflectionsΔρmin = 0.19 e Å3
372 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
S10.34614 (3)0.94519 (7)0.065367 (18)0.05087 (18)
S20.14181 (3)0.60393 (7)0.140966 (18)0.04928 (17)
F10.42234 (9)0.9638 (2)0.21678 (5)0.1019 (7)
F20.45948 (7)0.7450 (3)0.20272 (5)0.0980 (6)
F30.40242 (8)0.8486 (2)0.28890 (5)0.0826 (5)
F40.40837 (8)0.62479 (19)0.26488 (5)0.0826 (5)
F50.28255 (7)0.86621 (19)0.27031 (4)0.0741 (5)
F60.28808 (8)0.62501 (19)0.26922 (4)0.0763 (5)
N10.51996 (15)0.6334 (3)0.04852 (9)0.0993 (9)
N20.39603 (15)1.0267 (4)0.03025 (8)0.0936 (9)
N30.00732 (13)0.5521 (4)0.11051 (9)0.0982 (9)
N40.10277 (13)0.8596 (4)0.19571 (10)0.1049 (10)
C10.40108 (11)0.8007 (3)0.07207 (7)0.0466 (6)
C20.40147 (11)0.7500 (3)0.11275 (7)0.0478 (6)
H20.42820.67320.12260.057*
C30.35760 (10)0.8250 (3)0.13843 (7)0.0430 (5)
C40.32340 (10)0.9344 (3)0.11691 (7)0.0441 (5)
C50.44063 (11)0.7407 (3)0.04009 (7)0.0540 (6)
H50.46420.65600.04800.065*
C60.44910 (12)0.7877 (3)0.00030 (8)0.0553 (6)
C70.48911 (15)0.7033 (3)0.02698 (9)0.0710 (8)
C80.41933 (14)0.9200 (4)0.01715 (8)0.0641 (7)
C90.27335 (11)1.0394 (3)0.13239 (7)0.0502 (6)
H9A0.28931.14140.13040.060*
H9B0.26661.01850.16190.060*
C100.20903 (11)1.0292 (3)0.10836 (7)0.0565 (6)
H10A0.21551.05160.07890.068*
H10B0.19330.92700.11000.068*
C110.15891 (13)1.1340 (4)0.12458 (10)0.0752 (8)
H11A0.15321.11240.15420.090*
H11B0.17481.23610.12260.090*
C120.09494 (14)1.1258 (4)0.10217 (11)0.1019 (12)
H12A0.09981.14700.07280.153*
H12B0.06661.19820.11400.153*
H12C0.07741.02690.10530.153*
C130.35057 (10)0.7935 (2)0.18383 (7)0.0421 (5)
C140.40648 (12)0.8170 (3)0.21406 (7)0.0543 (6)
C150.38374 (12)0.7624 (3)0.25679 (7)0.0521 (6)
C160.31102 (11)0.7497 (3)0.25091 (7)0.0457 (5)
C170.29797 (10)0.7518 (2)0.20414 (6)0.0399 (5)
C180.22207 (10)0.6157 (2)0.15356 (6)0.0418 (5)
C190.23383 (10)0.7151 (2)0.18654 (6)0.0404 (5)
C200.17678 (11)0.7758 (3)0.20215 (7)0.0462 (6)
H200.17610.84170.22490.055*
C210.12248 (11)0.7285 (3)0.18066 (7)0.0471 (6)
C220.05937 (11)0.7794 (3)0.18969 (8)0.0541 (6)
H220.05720.84830.21160.065*
C230.00241 (11)0.7422 (3)0.17107 (8)0.0552 (6)
C240.00339 (12)0.6364 (4)0.13732 (9)0.0655 (7)
C250.05601 (14)0.8085 (4)0.18485 (9)0.0718 (8)
C260.26755 (11)0.5151 (3)0.13119 (7)0.0479 (6)
H26A0.25900.41190.13900.058*
H26B0.31100.53870.14080.058*
C270.26367 (12)0.5275 (3)0.08337 (7)0.0570 (6)
H27A0.22000.50770.07360.068*
H27B0.27440.62930.07530.068*
C280.30844 (15)0.4190 (3)0.06202 (8)0.0733 (8)
H28A0.35180.43580.07280.088*
H28B0.29650.31710.06930.088*
C290.30730 (18)0.4343 (5)0.01458 (9)0.1064 (13)
H29A0.26470.41480.00350.160*
H29B0.33660.36340.00300.160*
H29C0.31980.53430.00710.160*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0526 (4)0.0588 (4)0.0414 (3)0.0081 (3)0.0049 (3)0.0056 (3)
S20.0442 (3)0.0554 (4)0.0481 (3)0.0065 (3)0.0014 (3)0.0082 (3)
F10.1225 (16)0.0941 (14)0.0867 (12)0.0608 (12)0.0356 (11)0.0229 (10)
F20.0430 (9)0.185 (2)0.0652 (10)0.0228 (11)0.0041 (7)0.0040 (11)
F30.0709 (11)0.1161 (14)0.0602 (9)0.0181 (10)0.0103 (8)0.0263 (9)
F40.0750 (11)0.0842 (12)0.0885 (11)0.0232 (9)0.0001 (9)0.0244 (9)
F50.0682 (10)0.0998 (12)0.0539 (9)0.0237 (9)0.0059 (7)0.0243 (8)
F60.0842 (11)0.0892 (12)0.0547 (9)0.0293 (9)0.0103 (8)0.0258 (8)
N10.109 (2)0.101 (2)0.090 (2)0.0179 (18)0.0436 (18)0.0081 (17)
N20.110 (2)0.101 (2)0.0704 (17)0.0258 (19)0.0174 (15)0.0171 (16)
N30.0700 (18)0.124 (3)0.101 (2)0.0288 (17)0.0049 (15)0.0350 (19)
N40.0583 (17)0.139 (3)0.118 (2)0.0177 (18)0.0008 (16)0.018 (2)
C10.0423 (13)0.0531 (14)0.0447 (13)0.0005 (11)0.0036 (10)0.0010 (11)
C20.0414 (13)0.0498 (14)0.0522 (14)0.0042 (11)0.0024 (11)0.0033 (11)
C30.0385 (12)0.0487 (13)0.0417 (12)0.0049 (10)0.0002 (10)0.0014 (10)
C40.0413 (12)0.0479 (13)0.0432 (12)0.0002 (10)0.0015 (10)0.0014 (10)
C50.0477 (14)0.0600 (16)0.0548 (15)0.0027 (12)0.0059 (11)0.0040 (12)
C60.0505 (15)0.0651 (17)0.0509 (15)0.0013 (13)0.0107 (12)0.0076 (13)
C70.0716 (19)0.078 (2)0.0648 (17)0.0029 (16)0.0234 (15)0.0023 (15)
C80.0659 (18)0.080 (2)0.0469 (15)0.0015 (16)0.0151 (13)0.0006 (14)
C90.0534 (15)0.0513 (14)0.0459 (13)0.0057 (12)0.0026 (11)0.0009 (11)
C100.0506 (15)0.0700 (17)0.0489 (14)0.0081 (13)0.0001 (11)0.0022 (12)
C110.0549 (17)0.084 (2)0.086 (2)0.0157 (15)0.0056 (15)0.0149 (17)
C120.059 (2)0.138 (3)0.108 (3)0.025 (2)0.0073 (18)0.004 (2)
C130.0406 (13)0.0443 (13)0.0410 (12)0.0017 (10)0.0036 (10)0.0009 (10)
C140.0430 (14)0.0665 (17)0.0531 (15)0.0053 (13)0.0042 (11)0.0030 (12)
C150.0550 (15)0.0575 (16)0.0431 (13)0.0005 (12)0.0099 (11)0.0020 (11)
C160.0479 (14)0.0505 (14)0.0387 (12)0.0021 (11)0.0012 (10)0.0006 (11)
C170.0393 (12)0.0414 (12)0.0388 (11)0.0003 (10)0.0019 (9)0.0009 (9)
C180.0437 (13)0.0435 (13)0.0382 (11)0.0035 (10)0.0003 (10)0.0013 (10)
C190.0410 (12)0.0442 (13)0.0361 (11)0.0020 (10)0.0000 (9)0.0012 (9)
C200.0449 (13)0.0514 (14)0.0424 (12)0.0058 (11)0.0030 (10)0.0074 (10)
C210.0419 (13)0.0516 (14)0.0480 (13)0.0038 (11)0.0039 (10)0.0050 (11)
C220.0488 (15)0.0588 (16)0.0548 (14)0.0026 (12)0.0031 (11)0.0063 (12)
C230.0419 (14)0.0617 (16)0.0621 (16)0.0050 (12)0.0022 (12)0.0007 (13)
C240.0413 (15)0.084 (2)0.0705 (18)0.0159 (14)0.0027 (13)0.0030 (16)
C250.0457 (16)0.091 (2)0.079 (2)0.0015 (16)0.0016 (14)0.0063 (17)
C260.0490 (14)0.0460 (14)0.0488 (13)0.0002 (11)0.0010 (11)0.0024 (11)
C270.0535 (15)0.0689 (17)0.0487 (14)0.0014 (13)0.0015 (11)0.0082 (12)
C280.078 (2)0.085 (2)0.0579 (17)0.0066 (16)0.0129 (14)0.0123 (15)
C290.113 (3)0.146 (4)0.062 (2)0.007 (3)0.0155 (19)0.024 (2)
Geometric parameters (Å, º) top
S1—C41.720 (2)C11—H11B0.9700
S1—C11.732 (2)C12—H12A0.9600
S2—C181.712 (2)C12—H12B0.9600
S2—C211.736 (2)C12—H12C0.9600
F1—C141.350 (3)C13—C171.342 (3)
F2—C141.337 (3)C13—C141.501 (3)
F3—C151.324 (3)C14—C151.530 (3)
F4—C151.350 (3)C15—C161.527 (3)
F5—C161.353 (3)C16—C171.501 (3)
F6—C161.348 (3)C17—C191.470 (3)
N1—C71.139 (3)C18—C191.387 (3)
N2—C81.140 (4)C18—C261.499 (3)
N3—C241.136 (3)C19—C201.411 (3)
N4—C251.139 (3)C20—C211.370 (3)
C1—C21.367 (3)C20—H200.9300
C1—C51.431 (3)C21—C221.430 (3)
C2—C31.412 (3)C22—C231.352 (3)
C2—H20.9300C22—H220.9300
C3—C41.376 (3)C23—C241.429 (4)
C3—C131.480 (3)C23—C251.435 (4)
C4—C91.496 (3)C26—C271.521 (3)
C5—C61.347 (3)C26—H26A0.9700
C5—H50.9300C26—H26B0.9700
C6—C71.434 (4)C27—C281.518 (3)
C6—C81.434 (4)C27—H27A0.9700
C9—C101.525 (3)C27—H27B0.9700
C9—H9A0.9700C28—C291.511 (4)
C9—H9B0.9700C28—H28A0.9700
C10—C111.504 (3)C28—H28B0.9700
C10—H10A0.9700C29—H29A0.9600
C10—H10B0.9700C29—H29B0.9600
C11—C121.494 (4)C29—H29C0.9600
C11—H11A0.9700
C4—S1—C192.46 (11)F4—C15—C16109.1 (2)
C18—S2—C2192.25 (11)F3—C15—C14113.9 (2)
C2—C1—C5124.0 (2)F4—C15—C14109.3 (2)
C2—C1—S1110.21 (17)C16—C15—C14104.47 (18)
C5—C1—S1125.75 (18)F6—C16—F5105.58 (18)
C1—C2—C3113.8 (2)F6—C16—C17112.39 (18)
C1—C2—H2123.1F5—C16—C17111.82 (18)
C3—C2—H2123.1F6—C16—C15111.92 (19)
C4—C3—C2112.6 (2)F5—C16—C15109.65 (19)
C4—C3—C13123.5 (2)C17—C16—C15105.58 (18)
C2—C3—C13123.9 (2)C13—C17—C19128.82 (19)
C3—C4—C9129.5 (2)C13—C17—C16110.65 (19)
C3—C4—S1110.93 (16)C19—C17—C16120.51 (19)
C9—C4—S1119.58 (16)C19—C18—C26129.7 (2)
C6—C5—C1130.1 (2)C19—C18—S2111.33 (16)
C6—C5—H5115.0C26—C18—S2118.78 (16)
C1—C5—H5115.0C18—C19—C20112.23 (19)
C5—C6—C7119.9 (3)C18—C19—C17124.45 (19)
C5—C6—C8123.3 (2)C20—C19—C17123.30 (19)
C7—C6—C8116.8 (2)C21—C20—C19113.6 (2)
N1—C7—C6178.4 (3)C21—C20—H20123.2
N2—C8—C6178.5 (3)C19—C20—H20123.2
C4—C9—C10114.3 (2)C20—C21—C22123.7 (2)
C4—C9—H9A108.7C20—C21—S2110.51 (17)
C10—C9—H9A108.7C22—C21—S2125.76 (18)
C4—C9—H9B108.7C23—C22—C21129.6 (2)
C10—C9—H9B108.7C23—C22—H22115.2
H9A—C9—H9B107.6C21—C22—H22115.2
C11—C10—C9113.7 (2)C22—C23—C24122.8 (2)
C11—C10—H10A108.8C22—C23—C25120.6 (2)
C9—C10—H10A108.8C24—C23—C25116.6 (2)
C11—C10—H10B108.8N3—C24—C23179.3 (3)
C9—C10—H10B108.8N4—C25—C23179.2 (4)
H10A—C10—H10B107.7C18—C26—C27114.51 (19)
C12—C11—C10115.3 (3)C18—C26—H26A108.6
C12—C11—H11A108.5C27—C26—H26A108.6
C10—C11—H11A108.5C18—C26—H26B108.6
C12—C11—H11B108.5C27—C26—H26B108.6
C10—C11—H11B108.5H26A—C26—H26B107.6
H11A—C11—H11B107.5C28—C27—C26112.7 (2)
C11—C12—H12A109.5C28—C27—H27A109.1
C11—C12—H12B109.5C26—C27—H27A109.1
H12A—C12—H12B109.5C28—C27—H27B109.1
C11—C12—H12C109.5C26—C27—H27B109.1
H12A—C12—H12C109.5H27A—C27—H27B107.8
H12B—C12—H12C109.5C29—C28—C27113.4 (3)
C17—C13—C3128.9 (2)C29—C28—H28A108.9
C17—C13—C14111.24 (19)C27—C28—H28A108.9
C3—C13—C14119.80 (19)C29—C28—H28B108.9
F2—C14—F1106.2 (2)C27—C28—H28B108.9
F2—C14—C13113.2 (2)H28A—C28—H28B107.7
F1—C14—C13111.1 (2)C28—C29—H29A109.5
F2—C14—C15111.6 (2)C28—C29—H29B109.5
F1—C14—C15109.5 (2)H29A—C29—H29B109.5
C13—C14—C15105.40 (19)C28—C29—H29C109.5
F3—C15—F4106.16 (19)H29A—C29—H29C109.5
F3—C15—C16113.8 (2)H29B—C29—H29C109.5
C4—S1—C1—C20.82 (19)F3—C15—C16—F520.4 (3)
C4—S1—C1—C5178.9 (2)F4—C15—C16—F5138.75 (19)
C5—C1—C2—C3179.1 (2)C14—C15—C16—F5104.5 (2)
S1—C1—C2—C30.6 (3)F3—C15—C16—C17141.0 (2)
C1—C2—C3—C13178.1 (2)F4—C15—C16—C17100.6 (2)
C2—C3—C4—C9179.3 (2)C14—C15—C16—C1716.1 (2)
C13—C3—C4—C91.2 (4)C3—C13—C17—C194.9 (4)
C2—C3—C4—S10.6 (2)C14—C13—C17—C19178.8 (2)
C13—C3—C4—S1177.43 (17)C3—C13—C17—C16173.4 (2)
C1—S1—C4—C30.81 (18)C14—C13—C17—C162.9 (3)
C1—S1—C4—C9179.64 (19)F6—C16—C17—C13134.6 (2)
C2—C1—C5—C6173.6 (3)F5—C16—C17—C13106.9 (2)
S1—C1—C5—C66.8 (4)C15—C16—C17—C1312.3 (3)
C1—C5—C6—C7176.5 (3)F6—C16—C17—C1947.0 (3)
C1—C5—C6—C82.9 (4)F5—C16—C17—C1971.6 (3)
C3—C4—C9—C10122.6 (3)C15—C16—C17—C19169.3 (2)
S1—C4—C9—C1058.8 (3)C21—S2—C18—C191.47 (17)
C4—C9—C10—C11179.3 (2)C21—S2—C18—C26174.30 (18)
C9—C10—C11—C12179.2 (3)C26—C18—C19—C20172.8 (2)
C4—C3—C13—C1759.4 (3)S2—C18—C19—C202.4 (2)
C2—C3—C13—C17122.8 (3)C26—C18—C19—C175.9 (4)
C4—C3—C13—C14116.6 (3)S2—C18—C19—C17178.88 (17)
C2—C3—C13—C1461.2 (3)C13—C17—C19—C1850.1 (3)
C17—C13—C14—F2129.9 (2)C16—C17—C19—C18131.8 (2)
C3—C13—C14—F253.5 (3)C13—C17—C19—C20131.3 (3)
C17—C13—C14—F1110.8 (2)C16—C17—C19—C2046.8 (3)
C3—C13—C14—F165.8 (3)C18—C19—C20—C212.3 (3)
C17—C13—C14—C157.6 (3)C17—C19—C20—C21179.0 (2)
C3—C13—C14—C15175.7 (2)C19—C20—C21—C22177.5 (2)
F2—C14—C15—F397.4 (3)C19—C20—C21—S21.1 (3)
F1—C14—C15—F319.8 (3)C18—S2—C21—C200.19 (19)
C13—C14—C15—F3139.3 (2)C18—S2—C21—C22178.8 (2)
F2—C14—C15—F421.1 (3)C20—C21—C22—C23179.9 (3)
F1—C14—C15—F4138.4 (2)S2—C21—C22—C231.5 (4)
C13—C14—C15—F4102.1 (2)C21—C22—C23—C241.0 (4)
F2—C14—C15—C16137.8 (2)C21—C22—C23—C25179.2 (3)
F1—C14—C15—C16105.0 (2)C19—C18—C26—C27129.4 (2)
C13—C14—C15—C1614.5 (3)S2—C18—C26—C2755.7 (3)
F3—C15—C16—F696.4 (2)C18—C26—C27—C28177.5 (2)
F4—C15—C16—F621.9 (3)C26—C27—C28—C29177.5 (3)
C14—C15—C16—F6138.7 (2)

Experimental details

Crystal data
Chemical formulaC29H22F6N4S2
Mr604.63
Crystal system, space groupMonoclinic, C2/c
Temperature (K)291
a, b, c (Å)20.8617 (17), 8.9036 (7), 31.734 (3)
β (°) 91.801 (10)
V3)5891.4 (8)
Z8
Radiation typeMo Kα
µ (mm1)0.24
Crystal size (mm)0.41 × 0.25 × 0.17
Data collection
DiffractometerBruker SMART APEX2 CCD area-detector
Absorption correctionMulti-scan
(SADABS; Sheldrick, 1996)
Tmin, Tmax0.907, 0.960
No. of measured, independent and
observed [I > 2σ(I)] reflections
21870, 5473, 3854
Rint0.036
(sin θ/λ)max1)0.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.109, 1.01
No. of reflections5473
No. of parameters372
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.39, 0.19

Computer programs: SMART (Bruker, 1997), SAINT (Bruker, 1997), SAINT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), SHELXTL (Bruker, 1997), SHELXTL.

Selected geometric parameters (Å, º) top
C13—C171.342 (3)C15—C161.527 (3)
C13—C141.501 (3)C16—C171.501 (3)
C14—C151.530 (3)
C1—C5—C6—C7176.5 (3)C3—C13—C17—C194.9 (4)
C1—C5—C6—C82.9 (4)C14—C13—C17—C162.9 (3)
C3—C4—C9—C10122.6 (3)C15—C16—C17—C1312.3 (3)
C9—C10—C11—C12179.2 (3)C15—C16—C17—C19169.3 (2)
C13—C14—C15—C1614.5 (3)C19—C18—C26—C27129.4 (2)
C14—C15—C16—C1716.1 (2)C26—C27—C28—C29177.5 (3)
 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds