Download citation
Download citation
link to html
The title compound, C12H13N3S6, belongs to a group of sulfur-rich compounds. In the crystal structure, the mol­ecules form several short S...S inter­molecular contacts [3.287 (1)–3.497 (1) Å], assembling them into a two-dimensional layer network. One —CH2—CH2— group is disordered over two positions in an approximate 4:1 ratio.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S1600536807019034/gk2065sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S1600536807019034/gk2065Isup2.hkl
Contains datablock I

CCDC reference: 647609

Key indicators

  • Single-crystal X-ray study
  • T = 193 K
  • Mean [sigma](C-C) = 0.002 Å
  • Disorder in main residue
  • R factor = 0.033
  • wR factor = 0.081
  • Data-to-parameter ratio = 17.8

checkCIF/PLATON results

No syntax errors found



Alert level C PLAT029_ALERT_3_C _diffrn_measured_fraction_theta_full Low ....... 0.97 PLAT063_ALERT_3_C Crystal Probably too Large for Beam Size ....... 0.65 mm PLAT301_ALERT_3_C Main Residue Disorder ......................... 9.00 Perc.
0 ALERT level A = In general: serious problem 0 ALERT level B = Potentially serious problem 3 ALERT level C = Check and explain 0 ALERT level G = General alerts; check 0 ALERT type 1 CIF construction/syntax error, inconsistent or missing data 0 ALERT type 2 Indicator that the structure model may be wrong or deficient 3 ALERT type 3 Indicator that the structure quality may be low 0 ALERT type 4 Improvement, methodology, query or suggestion 0 ALERT type 5 Informative message, check

Comment top

Sulfur-rich compounds, e.g. 4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-thione or 4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-one, are well known of being used as precursors for the synthesis of molecular materials of tetrathiafulvalene (TTF) (Bryce, 1991; Williams et al., 1985). Recently TTF analogs with nitrogen containing heterocycles have been reported (Lorcy & Bellec, 2004). As short S···S contacts are efficient organizing forces in the self-assembly of new solid-state materials (Bryce, 1991; Williams et al., 1985), the title compound (I) offers one example of this type of materials.

Compound (I) consists of a thiazolidine ring and a dithiole ring (Fig. 1). Both rings are not planar while the displaced atoms are maximum 0.22 (1) Å (C3) and 0.19 Å (C4) out of the least-squires planes, respectively. The least-squares planes are approximately vertical with a torsion angle of 85.68 (1)°. The C2S4 group C5—C6—S3—S4—S5—S6 is nearly planar while the C6 atom is 0.89 (1) Å out of the least-squires plane.

There are four kinds of intramolecular C—H···S and one kind of intermolecular C—H···N hydrogen bonds (Table 2). Besides these interactions, the neighboring molecules are connected by intermolecular S···S contacts (S3···S4i 3.364 (1) Å; S2···S4ii 3.497 (1) Å; S2···S2iii 3.287 (1) Å [symmetry codes:(i)1/2 - x,1/2 + y,1/2 - z; (ii)1/2 - x,3/2 - y,1 - z; (iii)1/2 - x,5/2 - y,1 - z)] to form a two-dimensional layer network (Fig. 2).

Related literature top

For related literature, see: Bryce (1991); Lorcy & Bellec (2004); Williams et al. (1985).

Experimental top

A solution of 1,3-thiazolidine-2-thione (0.12 g, 1 mmol) and 4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-one (0.27 g, 0.9 mmol) in 3 ml of P(OEt)3 was refluxed for 1 h and cooled to room temperature. Addition of 6 ml of CH3OH into the solution formed a colorless precipitate. Recrystallization from CH2Cl2 afforded colorless cryatals of (I) (yield 0.12 g, 35%). CH&N elemental analysis. Found: C, 36.60; H, 3.39; N, 10.47%. Calculated for C12H13N3S6: C, 36.83; H, 3.32; N, 10.74%.

Refinement top

One C2H4 group is disordered over two sites with occupancy factors of 0.80 (2) and 0.20 (2) for C10/C10 A and C11/C11A. The H atoms are placed in geometrically idealized positions (C—H = 0.99 Å) with Uiso(H) = 1.2Ueq(C).

Structure description top

Sulfur-rich compounds, e.g. 4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-thione or 4,5-bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-one, are well known of being used as precursors for the synthesis of molecular materials of tetrathiafulvalene (TTF) (Bryce, 1991; Williams et al., 1985). Recently TTF analogs with nitrogen containing heterocycles have been reported (Lorcy & Bellec, 2004). As short S···S contacts are efficient organizing forces in the self-assembly of new solid-state materials (Bryce, 1991; Williams et al., 1985), the title compound (I) offers one example of this type of materials.

Compound (I) consists of a thiazolidine ring and a dithiole ring (Fig. 1). Both rings are not planar while the displaced atoms are maximum 0.22 (1) Å (C3) and 0.19 Å (C4) out of the least-squires planes, respectively. The least-squares planes are approximately vertical with a torsion angle of 85.68 (1)°. The C2S4 group C5—C6—S3—S4—S5—S6 is nearly planar while the C6 atom is 0.89 (1) Å out of the least-squires plane.

There are four kinds of intramolecular C—H···S and one kind of intermolecular C—H···N hydrogen bonds (Table 2). Besides these interactions, the neighboring molecules are connected by intermolecular S···S contacts (S3···S4i 3.364 (1) Å; S2···S4ii 3.497 (1) Å; S2···S2iii 3.287 (1) Å [symmetry codes:(i)1/2 - x,1/2 + y,1/2 - z; (ii)1/2 - x,3/2 - y,1 - z; (iii)1/2 - x,5/2 - y,1 - z)] to form a two-dimensional layer network (Fig. 2).

For related literature, see: Bryce (1991); Lorcy & Bellec (2004); Williams et al. (1985).

Computing details top

Data collection: CrystalClear (Rigaku, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 40% probability level and H atoms are shown as small spheres of arbitrary radii. The disordered atoms C10A and C11A have been omitted.
[Figure 2] Fig. 2. The intermolecular S···S interactions (dashed lines) that link the molecules into a layer. The 2-cyanoethylthio groups and H atoms have been omitted.
3-[4,5-Bis(2-cyanoethylsulfanyl)-1,3-dithiol-2-yl]-1,3-thiazolidine-2-thione top
Crystal data top
C12H13N3S6F(000) = 1616
Mr = 391.61Dx = 1.568 Mg m3
Monoclinic, C2/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -C 2ycCell parameters from 5529 reflections
a = 25.252 (5) Åθ = 3.1–27.5°
b = 8.2516 (17) ŵ = 0.82 mm1
c = 16.017 (3) ÅT = 193 K
β = 96.34 (3)°Platelet, colorless
V = 3317.0 (12) Å30.65 × 0.60 × 0.20 mm
Z = 8
Data collection top
Rigaku Mercury
diffractometer
3710 independent reflections
Radiation source: fine-focus sealed tube3591 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ω scansθmax = 27.5°, θmin = 3.5°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 3232
Tmin = 0.618, Tmax = 0.853k = 109
12131 measured reflectionsl = 1720
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.033Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.081H-atom parameters constrained
S = 1.13 w = 1/[σ2(Fo2) + (0.0329P)2 + 3.7537P]
where P = (Fo2 + 2Fc2)/3
3710 reflections(Δ/σ)max = 0.001
209 parametersΔρmax = 0.36 e Å3
38 restraintsΔρmin = 0.31 e Å3
Crystal data top
C12H13N3S6V = 3317.0 (12) Å3
Mr = 391.61Z = 8
Monoclinic, C2/cMo Kα radiation
a = 25.252 (5) ŵ = 0.82 mm1
b = 8.2516 (17) ÅT = 193 K
c = 16.017 (3) Å0.65 × 0.60 × 0.20 mm
β = 96.34 (3)°
Data collection top
Rigaku Mercury
diffractometer
3710 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3591 reflections with I > 2σ(I)
Tmin = 0.618, Tmax = 0.853Rint = 0.042
12131 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.03338 restraints
wR(F2) = 0.081H-atom parameters constrained
S = 1.13Δρmax = 0.36 e Å3
3710 reflectionsΔρmin = 0.31 e Å3
209 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
S10.325225 (16)0.82215 (5)0.42436 (3)0.02940 (11)
S20.247064 (18)1.05371 (5)0.48278 (2)0.02610 (11)
S30.201298 (15)0.80445 (5)0.18681 (2)0.02303 (10)
S40.194822 (17)0.55846 (5)0.31728 (3)0.02608 (11)
S50.092782 (16)0.72706 (5)0.09868 (3)0.02730 (11)
S60.08521 (2)0.45029 (6)0.25284 (3)0.03507 (13)
N10.22439 (5)0.87341 (17)0.35390 (8)0.0224 (3)
N20.03936 (7)1.0195 (2)0.13715 (11)0.0399 (4)
N30.03213 (7)0.6819 (2)0.53333 (12)0.0439 (4)
C10.26529 (6)0.90535 (18)0.41376 (9)0.0203 (3)
C20.18570 (7)1.0992 (2)0.41697 (11)0.0276 (3)
H2A0.15691.12840.45150.033*
H2B0.19091.18960.37810.033*
C30.17259 (6)0.9430 (2)0.36893 (11)0.0270 (3)
H3A0.15290.86770.40240.032*
H3B0.15060.96530.31510.032*
C40.22825 (6)0.7466 (2)0.29289 (10)0.0221 (3)
H40.26690.72150.29170.027*
C50.14035 (6)0.69990 (18)0.18623 (10)0.0194 (3)
C60.13725 (6)0.58876 (19)0.24673 (10)0.0209 (3)
C70.09026 (7)0.9462 (2)0.08893 (11)0.0280 (3)
H7A0.12710.98750.08880.034*
H7B0.07040.97430.03410.034*
C80.06425 (7)1.0329 (2)0.15818 (11)0.0297 (4)
H8A0.07740.98420.21300.036*
H8B0.07521.14820.15960.036*
C90.00602 (8)1.0239 (2)0.14670 (11)0.0295 (4)
C100.07459 (10)0.4652 (3)0.36427 (16)0.0303 (6)0.804 (6)
H10A0.05140.37560.37950.036*0.804 (6)
H10B0.10910.45720.39990.036*0.804 (6)
C10A0.0490 (3)0.5679 (11)0.3294 (6)0.025 (2)0.196 (6)
H10C0.05290.68570.31990.030*0.196 (6)
H10D0.01060.54090.32170.030*0.196 (6)
C110.04842 (9)0.6272 (3)0.37826 (16)0.0303 (6)0.804 (6)
H11A0.07080.71580.35950.036*0.804 (6)
H11B0.01330.63220.34430.036*0.804 (6)
C11A0.0726 (3)0.5240 (12)0.4167 (6)0.028 (2)0.196 (6)
H11C0.11150.54200.42490.034*0.196 (6)
H11D0.06460.41040.43090.034*0.196 (6)
C120.04136 (7)0.6504 (3)0.46880 (14)0.0392 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
S10.0214 (2)0.0305 (2)0.0344 (2)0.00107 (15)0.00575 (16)0.00277 (17)
S20.0355 (2)0.0223 (2)0.0197 (2)0.00333 (16)0.00102 (16)0.00293 (14)
S30.02128 (19)0.0286 (2)0.01934 (19)0.00545 (14)0.00284 (14)0.00153 (14)
S40.0316 (2)0.0218 (2)0.0242 (2)0.00501 (15)0.00018 (16)0.00094 (14)
S50.0259 (2)0.0270 (2)0.0267 (2)0.00202 (16)0.00711 (15)0.00758 (16)
S60.0436 (3)0.0310 (2)0.0334 (2)0.01937 (19)0.0168 (2)0.01416 (18)
N10.0165 (6)0.0277 (7)0.0225 (7)0.0013 (5)0.0002 (5)0.0074 (5)
N20.0379 (9)0.0416 (10)0.0405 (10)0.0022 (7)0.0066 (7)0.0003 (7)
N30.0435 (10)0.0484 (11)0.0411 (10)0.0047 (8)0.0109 (8)0.0173 (8)
C10.0232 (7)0.0189 (7)0.0183 (7)0.0039 (6)0.0006 (5)0.0029 (6)
C20.0294 (8)0.0268 (8)0.0267 (8)0.0031 (7)0.0037 (6)0.0052 (6)
C30.0188 (7)0.0319 (9)0.0300 (9)0.0024 (6)0.0018 (6)0.0098 (7)
C40.0169 (7)0.0266 (8)0.0225 (7)0.0025 (6)0.0007 (5)0.0055 (6)
C50.0175 (6)0.0194 (7)0.0213 (7)0.0004 (5)0.0014 (5)0.0054 (5)
C60.0215 (7)0.0190 (7)0.0226 (7)0.0006 (6)0.0045 (6)0.0063 (6)
C70.0305 (8)0.0304 (9)0.0224 (8)0.0047 (7)0.0001 (6)0.0037 (6)
C80.0338 (9)0.0264 (8)0.0273 (9)0.0043 (7)0.0036 (7)0.0028 (6)
C90.0406 (10)0.0235 (8)0.0242 (8)0.0055 (7)0.0028 (7)0.0002 (6)
C100.0401 (12)0.0207 (10)0.0329 (14)0.0023 (9)0.0162 (9)0.0002 (9)
C10A0.018 (4)0.027 (4)0.030 (5)0.001 (3)0.002 (3)0.002 (4)
C110.0290 (11)0.0281 (12)0.0345 (15)0.0031 (9)0.0068 (9)0.0045 (10)
C11A0.026 (4)0.036 (5)0.022 (5)0.002 (4)0.005 (3)0.000 (4)
C120.0282 (9)0.0433 (11)0.0479 (12)0.0104 (8)0.0119 (8)0.0189 (9)
Geometric parameters (Å, º) top
S1—C11.6535 (16)C3—H3A0.9900
S2—C11.7450 (17)C3—H3B0.9900
S2—C21.8146 (19)C4—H41.0000
C2—C31.519 (2)C7—C81.528 (2)
N1—C31.472 (2)C7—H7A0.9900
N1—C11.355 (2)C7—H7B0.9900
N1—C41.442 (2)C8—C91.463 (3)
S3—C41.8227 (17)C8—H8A0.9900
S3—C51.7635 (15)C8—H8B0.9900
C5—C61.343 (2)C10—C111.519 (3)
S4—C61.7580 (17)C10—H10A0.9900
S4—C41.8301 (17)C10—H10B0.9900
S5—C51.7571 (17)C10A—C11A1.502 (13)
S6—C61.7521 (16)C10A—H10C0.9900
S5—C71.8155 (18)C10A—H10D0.9900
S6—C101.838 (2)C11—C121.493 (3)
S6—C10A1.878 (10)C11—H11A0.9900
N2—C91.140 (3)C11—H11B0.9900
N3—C121.115 (3)C11A—C121.598 (10)
C2—H2A0.9900C11A—H11C0.9900
C2—H2B0.9900C11A—H11D0.9900
C1—S2—C292.60 (8)S5—C7—H7A108.6
C5—S3—C496.48 (8)C8—C7—H7B108.6
C6—S4—C496.34 (7)S5—C7—H7B108.6
C6—S6—C10A97.0 (3)H7A—C7—H7B107.6
C1—N1—C4121.14 (13)C9—C8—C7113.04 (15)
C1—N1—C3115.46 (13)C9—C8—H8A109.0
C4—N1—C3121.42 (13)C7—C8—H8A109.0
N1—C1—S1127.54 (12)C9—C8—H8B109.0
N1—C1—S2110.54 (11)C7—C8—H8B109.0
S1—C1—S2121.92 (9)H8A—C8—H8B107.8
C3—C2—S2104.05 (12)N2—C9—C8178.8 (2)
C3—C2—H2A110.9C11—C10—S6108.34 (16)
S2—C2—H2A110.9C11—C10—H10A110.0
C3—C2—H2B110.9S6—C10—H10A110.0
S2—C2—H2B110.9C11—C10—H10B110.0
H2A—C2—H2B109.0S6—C10—H10B110.0
N1—C3—C2105.42 (13)H10A—C10—H10B108.4
N1—C3—H3A110.7C11A—C10A—S6108.1 (6)
C2—C3—H3A110.7C11A—C10A—H10C110.1
N1—C3—H3B110.7S6—C10A—H10C110.1
C2—C3—H3B110.7C11A—C10A—H10D110.1
H3A—C3—H3B108.8S6—C10A—H10D110.1
N1—C4—S3113.31 (11)H10C—C10A—H10D108.4
N1—C4—S4113.80 (11)C12—C11—C10110.9 (2)
S3—C4—S4106.70 (8)C12—C11—H11A109.5
N1—C4—H4107.6C10—C11—H11A109.5
S3—C4—H4107.6C12—C11—H11B109.5
S4—C4—H4107.6C10—C11—H11B109.5
C6—C5—S5125.02 (12)H11A—C11—H11B108.0
C6—C5—S3116.79 (12)C10A—C11A—C1299.3 (6)
S5—C5—S3117.46 (9)C10A—C11A—H11C111.9
C5—C6—S6126.12 (13)C12—C11A—H11C111.9
C5—C6—S4116.81 (12)C10A—C11A—H11D111.9
S6—C6—S4116.33 (9)C12—C11A—H11D111.9
C5—S5—C7102.13 (8)H11C—C11A—H11D109.6
C6—S6—C10101.62 (9)N3—C12—C11171.9 (3)
C8—C7—S5114.69 (13)N3—C12—C11A143.3 (4)
C8—C7—H7A108.6
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C3—H3B···S30.992.863.2875 (19)107
C4—H4···S11.002.583.1113 (18)113
C7—H7A···S30.992.763.274 (2)113
C8—H8B···N3i0.992.603.136 (3)114
C10—H10B···S40.992.793.299 (2)113
Symmetry code: (i) x, y+2, z1/2.

Experimental details

Crystal data
Chemical formulaC12H13N3S6
Mr391.61
Crystal system, space groupMonoclinic, C2/c
Temperature (K)193
a, b, c (Å)25.252 (5), 8.2516 (17), 16.017 (3)
β (°) 96.34 (3)
V3)3317.0 (12)
Z8
Radiation typeMo Kα
µ (mm1)0.82
Crystal size (mm)0.65 × 0.60 × 0.20
Data collection
DiffractometerRigaku Mercury
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.618, 0.853
No. of measured, independent and
observed [I > 2σ(I)] reflections
12131, 3710, 3591
Rint0.042
(sin θ/λ)max1)0.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.033, 0.081, 1.13
No. of reflections3710
No. of parameters209
No. of restraints38
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.31

Computer programs: CrystalClear (Rigaku, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

 

Follow Acta Cryst. E
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds