Download citation
Download citation
link to html
5-Acetyl-2-chloro-8,11-dimethyl-5,6,11,12-tetra­hydro­dibenzo[b,f]azocine, C19H20ClNO, (I), crystallizes as a single fully ordered isomer, but 14-acetyl-8,11-dimethyl-7,8,13,14-tetra­hydro­benzo[f]naphtho[1,2-b]azocine–14-acetyl-8,9-di­methyl-7,8,13,14-tetra­hydro­benzo[f]naphtho[1,2-b]azocine (74/26), C23H23NO, (II), exhibits threefold whole-mol­ecule disorder involving both configurational and structural isomers. In (I) and in the predominant form of (II), the azocine rings adopt very similar conformations, forming boat-shaped rings having approximate twofold rotational symmetry. There are no direction-specific inter­molecular inter­actions in the crystal structure of (I), but the mol­ecules of (II) are weakly linked into chains by an aromatic π–π stacking inter­action. The compounds were made under green conditions using an acid-catalysed cyclization process having very high atom utilization.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270110014708/gg3233sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110014708/gg3233Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270110014708/gg3233IIsup3.hkl
Contains datablock II

CCDC references: 782532; 782533

Comment top

We are interested in developing the intramolecular Friedel–Crafts reaction as a versatile route to the construction of nitrogen-containing heterocycles, and thus in the application of this methodology to the synthesis of both tetrahydrodibenzo[b,f]azocines and tetrahydrobenzo[f]naphtho[1,2-b]azocines. Here, we describe the preparation of 5-acetyl-2-chloro-8,11-dimethyl-5,6,11,12- tetrahydrodibenzo[b,f]azocine, (I), and 14-acetyl-8,11-dimethyl-7,8,13,14- tetrahydrobenzo[f]naphtho[1,2-b]azocine, (II) (Figs. 1 and 2), by treatment of the corresponding N-acetyl-2-allyl-N-benzyl-4-chloroaniline and N-acetyl-2-allyl-N-benzyl-1-naphthylamine, respectively, with polyphosphoric acid (PPA) (see scheme). We report the structures of (I) and (II) and we compare the conformations of these compounds with that of the related azocine derivative 5-acetyl-10b,11,12,13,14,14a-hexahydro-11,14-methanotribenzo[b,d,f]azocin-6-one, (III) [Cambridge Structural Database (Allen, 2002) refcode OMAZOR; Bocelli et al., 2002], the structure of which (see scheme) was reported on a proof-of-constitution basis. The syntheses of (I) and (II) proceed with high atom utilisation (see scheme), whereas the synthesis reported for (III) requires both a palladium-based reagent and an iodinated aryl precursor, such that both of the expensive constituents, Pd and I, are discarded during the synthesis. In addition to the general advantages of the present synthetic approach in terms of both cost and atom efficiency, the rigorous purification necessary for synthetic products aimed at possible pharmaceutical applications should be much more straightforward in the absence of toxic heavy metals.

When the precursor benzylamine carries a substituent in the 3-position of the benzyl ring, the intramolecular Friedel–Crafts reaction can, in principle, occur at a choice of sites, leading to two possible locations for that substituent in the final azocine product. In the case of (I), the ring-closure reaction gives a single product (Fig. 1), but the structure of (II) was found to exhibit extensive whole-molecule disorder involving both configurational and geometric isomers. There are three distinct isomeric forms in the disorder model and these are conveniently denoted forms AC, respectively. In form A, containing atom O141 (Fig. 2a), there is a methyl substituent at position C11 of the fused phenyl ring and, in the selected asymmetric unit, the reference molecule has an R configuration at the stereogenic atom C8. Form B, containing atom O441 (Fig. 2b) is the S enantiomer of form A, and form C, containing atom O641 (Fig. 2c) is a geometric isomer of form A, with the methyl substituent at atom C59 rather than C61, but again with an R configuration at atom C58. These three disorder components occupy similar sets of atomic sites (Fig. 2d) and the refined site occupancies for forms AC, respectively, are 0.634 (6), 0.107 (3) and 0.260 (5). Hence, averaged over the entirety of the crystal selected for data collection, some 89.4% of the reference molecules have an R configuration and 10.7% have an S configuration. Similarly, in some 74.1% of the molecules the methyl location corresponds to that observed in (I). No evidence was found for any significant population of the reference site by the S enantiomer of form C. The centrosymmetric space group accommodates equal numbers of the two enantiomeric forms of each of the geometric isomers identified here, so that, overall, (II) crystallises as a mixture of two geometric isomers, each of which is racemic. This inherent ambiguity in the final location of a 3-substituent in this ring of the precursor molecule necessarily introduces a modest limitation to the general utility of this synthetic approach.

The eight-membered rings in (I) and (II) have very similar conformations, readily illustrated by a comparison of the corresponding torsion angles around the rings (Table 2), noting that the chemical numbering schemes used for (I) and (II) mean that corresponding atoms in the two compounds often carry different labels (Figs. 1 and 2). These torsion angles demonstrate an approximate local two-fold rotation symmetry for the topology of the eight-membered rings, the overall shape of which in each compound is reminiscent of the D2d (42m) boat configuration found in cyclo-octatetraene, C8H8, both in the gas phase (Traetteberg, 1966) and in the crystalline state (Claus & Krüger, 1988).

Compound (III) (Bocelli et al., 2002) exhibits a somewhat different conformation in its eight-membered ring, as indicated by the corresponding torsion angles (Table 3), listed in the same order as those for (I) and (II) (Table 2), but noting here that the atom-numbering scheme employed for (III) by the original authors was an arbitrary one. The difference between (III) on the one hand and (I) and (II) on the other is possibly a consequence of the additional ring fusion present in (III). Nonetheless, the general pattern of the signs of the torsion angles in (III) corresponds with those in (I) and (II), with again an approximate local two-fold rotational symmetry, although the magnitudes of several of the pairs are very different in (III). In particular for (III), the pair of torsion angles C20—C25—C1—C16 and C8—C13—C14—N1, and the pair C25—C1—C6—C8 and C13—C14—N16—C20, have values markedly different from the corresponding torsion angles in (I) and (II).

The bond distances in (I) exhibit no unusual values, but in (II) the distances within the naphthalene ring clearly show evidence of the type of bond fixation found in naphthalene itself (Capelli et al., 2006; Fabbiani et al., 2006), with the bonds C1—C2, C3—C4, C5—C6 and C6a—C14a in the major form A lying in the range 1.364 (4)–1.377 (3) Å, all significantly shorter than the rest of the peripheral C—C distances in this unit, which range from 1.409 (3) to 1.424 (5) Å (Table 1).

The crystal structures of (I) and (II) contain neither C—H···X (X = N or O) nor C—H···π(arene) hydrogen bonds. While aromatic ππ stacking interactions are absent from the structure of (I), there is a weak interaction of this type in (II), where we consider only the major form A. The ring C1-C4/C4a/C14b in the form A molecule at (x, y, z) makes a dihedral angle of 14.7 (2)° with the ring C4a/C5/C6/C6a/C14a/C14b in the corresponding molecule at (x, 3/2 - y, -1/2 + z). The ring-centroid separation is 3.747 (10) Å, with an interplanar spacing of ca 3.35 Å, corresponding to a ring-centroid offset of ca 1.68 Å. By this means, molecules related by the c-glide plane at y = 3/4 are weakly linked into a π-stacked chain running parallel to the [001] direction (Fig. 3). Two chains of this type, related to one another by inversion, pass through each unit cell but there are no direction-specific interactions between adjacent chains.

By contrast, the crystal structure of (III) contains two C—H···O hydrogen bonds, one of them rather long, but neither the structural effect of these nor even their occurrence was mentioned in the original report (Bocelli et al., 2002). The cooperative action of these two hydrogen bonds generates a chain of fused centrosymmetric rings running parallel to the [010] direction, in which R22(16) rings (Bernstein et al., 1995) centred at (1/2, n + 1/2, 1/2), where n represents an integer, alternate with R24(18) rings centred at (1/2, n, 1/2), where n again represents an integer (Fig. 4). It is of interest to note that both hydrogen bonds in (III) involve the acetyl O atom as the acceptor, so accounting for the R24(18) motif of one of the rings, with more donors than acceptors. The ring carbonyl O atom in (III), which represents the principal difference in potential hydrogen-bonding capability between this compound and the pair of compounds (I) and (II) reported here, does not participate in any hydrogen-bond formation. It is thus not easy to understand the difference in intermolecular hydrogen bonding between (I), (II) and (III).

From the co-editor: I have not suggested to the authors but the major selling points of this paper are highlighting the disorder, and the high atom utilisation and the importance of this in `green' chemistry. The Editor may feel an extra line about this in the Abstract is justified.

Related literature top

For related literature, see: Allen (2002); Bernstein et al. (1995); Bocelli et al. (2002); Capelli et al. (2006); Claus & Krüger (1988); Fabbiani et al. (2006); Traetteberg (1966).

Experimental top

For the synthesis of (I) and (II), polyphosphoric acid (6.0 g) was added to a solution containing 0.1 mmol of either N-acetyl-2-allyl-N-benzyl-4-chloroaniline, for (I), or N-acetyl-2-allyl-N-benzyl-1-naphthylamine, for (II), in chloroform (3 ml). The mixtures were stirred at 370 K for 1–3 h until the reactions were complete, as judged by thin-layer chromatographic monitoring, and then brought to pH 7–8 using aqueous ammonia. Each mixture was extracted with ethyl acetate (3 × 50 ml) and the extracts were dried over anhydrous sodium sulfate. Concentration under reduced [pressure?] gave the crude products, which were purified by column chromatography on silica gel using heptane–ethyl acetate (10:1 to 1:1 v/v) as eluent. Crystallization from heptane gave colourless crystals suitable for single-crystal X-ray diffraction.

Analysis for (I): yield 33%, m.p. 378 K; MS (70 eV) m/z (%) 313 [M+ (35Cl), 74], 298 (35), 270 (100), 256 (93), 254 (38), 227 (3), 230 (26), 117 (69), 91 (52); elemental analysis, found: C 72.6, H 6.5, N 4.5%; C19H20ClNO requires: C 72.7, H 6.4, N 4.5%.

Analysis for (II): yield 55%, m.p. 444 K; MS (70 eV) m/z (%) 329 (M+, 82), 314 (8), 286 (28), 270 (100), 255 (57), 243 (17), 228 (12), 198 (28), 180 (11), 156 (27), 131 (24), 117 (48), 91 (20); elemental analysis, found: C 83.9, H 6.9, N 4.3%; C23H23NO requires: C 83.9, H 7.0, N 4.3%.

Refinement top

For (I), all H atoms were located in difference maps, and they were then treated as riding atoms in geometrically idealised positions, with C—H = 0.95 (aromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms.

It was apparent from an early stage in the refinement of (II) that the molecules were subject to disorder. This disorder was modelled in terms of three isomeric forms occupying closely similar sets of atomic sites. The predominant isomeric form, containing atom O141 and denoted here as form A, has a methyl substituent at C11 in the aryl group and an R configuration at the stereogenic atom C8 (Fig. 2a). A second isomeric form, containing atom O441 and denoted here as form B, is the S enantiomer of form A (Fig. 2b), and the third isomer, containing atom O641 and denoted here as form C, is a geometric isomer of form A, still with an R configuration at atom C58 but now with a methyl group at C59 rather than C61 (Fig. 2c). In each isomeric form of (II), all H atoms were added in calculated positions, based upon those found in (I). In each of forms B and C, the directly bonded intramolecular distances and the one-angle 1,3-distances were all, with the exception of those involving the methyl C atoms C381 and C581, restrained to take the same values as the corresponding distances in form A, subject for both types of distance to an s.u. of 0.005 Å. The seven atoms of the methyl-substituted aryl ring were, in each form, restrained to be planar and the geometry at the methylated C atom in each such ring was subjected to distance restraints, with the C(ipso)—C(methyl) distances restrained to 1.47 (1) Å and the C(ortho)—C(methyl) distances restrained to 2.48 (1) Å. The anisotropic displacement parameters for sets of partial-occupancy atoms occupying essentially the same physical space were restrained to be equal, and the displacement behaviour of atoms C4a, C34a, C54a and C591 was restrained to be approximately isotropic. The low-angle reflection (111) was found to have an unexpectedly low observed intensity, and consequently it was omitted from the final refinements. Finally, the site occupancies for the three isomeric disorder components were restrained to sum to 1.000 (1). On this basis, the disorder model had 386 parameters, 244 restraints and 3262 data, and the site occupancies for isomers A, B and C refined to 0.634 (6), 0.107 (3) and 0.260 (5), respectively.

An alternative four-component model was also investigated. In this model the fourth component, denoted here as form D, was the S enantiomer of form C. Using distance restraints in form D entirely similar to those employed in the first model, but with a common isotropic displacement parameter for all non-H atoms in form D, this model had 461 parameters, 449 restraints and 3262 data. The site occupancy for isomer D refined to 0.010 (2), with only trivial changes in the site occupancies for the other three isomers. This very low occupancy means that the electron density associated with each atom in isomer D is significantly lower than the general background noise in the difference map. This consideration, combined with the data/parameter ratio for this model, led us to discard it in favour of the three-component disorder model, which is the structural model for (II) which is reported here.

Computing details top

For both compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. The molecular components of (II), showing the atom-labelling scheme. (a) Isomer A, (b) isomer B, (c) isomer C, and (d) an overlay of all three disorder components. In parts (a)–(c), displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii. In part (d), atoms are drawn as spheres of arbitrary radii and the H atoms have all been omitted. This part is oriented to show the S configuration at atom C38, as opposed to the R configuration at atoms C8 and C58, and the locations of the methyl C atoms C111, C411 and C591.
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of (II), showing the formation of a chain of π-stacked molecules running parallel to the [001] direction. For the sake of clarity, only the major disorder component is shown and H atoms have all been omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of (III) (CSD refcode OMAZOR; Bocelli et al., 2002), showing the formation of a chain of centrosymmetric R22(16) and R24(18) rings along [010]. For the sake of clarity, H atoms not involved in the motifs shown have been omitted. [Author: considering the large amount of white space between the views, might this be better as just a packing diagram?]
(I) 5-Acetyl-2-chloro-8,11-dimethyl-5,6,11,12- tetrahydrodibenzo[b,f]azocine top
Crystal data top
C19H20ClNOF(000) = 664
Mr = 313.81Dx = 1.306 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3134 reflections
a = 8.3396 (3) Åθ = 3.1–26.0°
b = 21.7131 (7) ŵ = 0.24 mm1
c = 9.2010 (3) ÅT = 120 K
β = 106.683 (2)°Block, colourless
V = 1595.97 (9) Å30.12 × 0.12 × 0.08 mm
Z = 4
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3134 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2342 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.072
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 26.0°, θmin = 3.1°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
k = 2626
Tmin = 0.962, Tmax = 0.981l = 1111
20184 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.055Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.143H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0602P)2 + 1.5414P]
where P = (Fo2 + 2Fc2)/3
3134 reflections(Δ/σ)max = 0.001
202 parametersΔρmax = 0.48 e Å3
0 restraintsΔρmin = 0.38 e Å3
Crystal data top
C19H20ClNOV = 1595.97 (9) Å3
Mr = 313.81Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.3396 (3) ŵ = 0.24 mm1
b = 21.7131 (7) ÅT = 120 K
c = 9.2010 (3) Å0.12 × 0.12 × 0.08 mm
β = 106.683 (2)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3134 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2007)
2342 reflections with I > 2σ(I)
Tmin = 0.962, Tmax = 0.981Rint = 0.072
20184 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0550 restraints
wR(F2) = 0.143H-atom parameters constrained
S = 1.03Δρmax = 0.48 e Å3
3134 reflectionsΔρmin = 0.38 e Å3
202 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.2017 (3)0.28868 (11)0.2854 (3)0.0249 (5)
H10.17700.25320.22250.030*
C20.1000 (3)0.30406 (12)0.3754 (3)0.0268 (6)
C30.1288 (3)0.35604 (12)0.4659 (3)0.0280 (6)
H30.05750.36640.52620.034*
C40.2649 (3)0.39264 (11)0.4658 (3)0.0253 (5)
H40.28570.42910.52550.030*
C4a0.3715 (3)0.37705 (11)0.3800 (3)0.0209 (5)
N50.5143 (2)0.41542 (9)0.3883 (2)0.0213 (4)
C60.4946 (3)0.46898 (11)0.2845 (3)0.0286 (6)
H6A0.60670.48140.27840.034*
H6B0.44810.50390.32870.034*
C6a0.3829 (3)0.45748 (11)0.1253 (3)0.0223 (5)
C70.2713 (3)0.50441 (12)0.0594 (3)0.0283 (6)
H70.26520.54010.11720.034*
C80.1681 (3)0.49997 (14)0.0903 (3)0.0360 (7)
C90.1777 (4)0.44593 (14)0.1695 (3)0.0403 (7)
H90.10610.44080.26970.048*
C100.2898 (4)0.39975 (13)0.1048 (3)0.0373 (7)
H100.29410.36360.16160.045*
C10a0.3963 (3)0.40527 (11)0.0419 (3)0.0283 (6)
C110.5255 (3)0.35585 (12)0.1110 (3)0.0290 (6)
H110.61870.37610.18990.035*
C120.4512 (3)0.30549 (11)0.1901 (3)0.0270 (6)
H12A0.38570.27720.11080.032*
H12B0.54540.28140.25550.032*
C12a0.3401 (3)0.32503 (11)0.2865 (3)0.0217 (5)
C130.6012 (4)0.32533 (13)0.0038 (4)0.0420 (7)
H13A0.51390.30260.07870.063*
H13B0.68980.29680.04910.063*
H13C0.64850.35700.05530.063*
Cl10.06912 (9)0.25649 (3)0.37367 (8)0.0407 (2)
O510.7817 (2)0.44253 (9)0.5061 (2)0.0335 (5)
C510.6633 (3)0.40767 (11)0.4966 (3)0.0245 (5)
C520.6774 (3)0.35412 (13)0.6025 (3)0.0343 (6)
H52A0.78880.35390.67600.051*
H52B0.66040.31570.54420.051*
H52C0.59210.35780.65640.051*
C810.0565 (4)0.55202 (16)0.1646 (4)0.0507 (9)
H81A0.11120.57580.22730.076*
H81B0.03490.57880.08650.076*
H81C0.04970.53550.22850.076*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0280 (13)0.0228 (12)0.0230 (13)0.0047 (10)0.0062 (10)0.0002 (10)
C20.0221 (12)0.0318 (14)0.0269 (14)0.0068 (10)0.0077 (10)0.0031 (11)
C30.0247 (13)0.0343 (14)0.0277 (14)0.0009 (11)0.0117 (11)0.0012 (11)
C40.0261 (13)0.0263 (13)0.0250 (13)0.0028 (10)0.0098 (10)0.0025 (11)
C4a0.0211 (12)0.0207 (12)0.0208 (12)0.0025 (9)0.0061 (9)0.0027 (10)
N50.0218 (10)0.0208 (10)0.0221 (11)0.0022 (8)0.0076 (8)0.0013 (8)
C60.0324 (14)0.0225 (13)0.0301 (15)0.0039 (11)0.0076 (11)0.0015 (11)
C6a0.0234 (12)0.0216 (12)0.0250 (13)0.0033 (10)0.0119 (10)0.0037 (10)
C70.0274 (13)0.0262 (13)0.0353 (15)0.0006 (11)0.0156 (11)0.0061 (11)
C80.0234 (13)0.0446 (17)0.0415 (17)0.0007 (12)0.0118 (12)0.0223 (14)
C90.0387 (16)0.0499 (18)0.0298 (15)0.0131 (14)0.0061 (12)0.0019 (14)
C100.0465 (17)0.0354 (15)0.0311 (16)0.0087 (13)0.0129 (13)0.0025 (12)
C10a0.0386 (15)0.0254 (13)0.0248 (14)0.0048 (11)0.0156 (11)0.0022 (11)
C110.0379 (15)0.0250 (13)0.0286 (14)0.0001 (11)0.0170 (12)0.0005 (11)
C120.0336 (14)0.0214 (12)0.0301 (14)0.0002 (11)0.0157 (11)0.0004 (11)
C12a0.0256 (12)0.0195 (12)0.0216 (13)0.0025 (10)0.0092 (10)0.0043 (10)
C130.063 (2)0.0322 (15)0.0445 (18)0.0018 (14)0.0370 (16)0.0040 (13)
Cl10.0325 (4)0.0482 (4)0.0446 (4)0.0194 (3)0.0162 (3)0.0059 (3)
O510.0247 (9)0.0357 (10)0.0380 (11)0.0068 (8)0.0058 (8)0.0017 (8)
C510.0255 (13)0.0268 (13)0.0233 (13)0.0021 (11)0.0106 (10)0.0033 (10)
C520.0336 (15)0.0372 (15)0.0286 (15)0.0009 (12)0.0034 (11)0.0061 (12)
C810.0301 (15)0.060 (2)0.064 (2)0.0070 (14)0.0160 (15)0.0346 (18)
Geometric parameters (Å, º) top
C1—C21.385 (3)C9—C101.384 (4)
C1—C12a1.396 (3)C9—H90.9500
C1—H10.9500C10—C10a1.392 (4)
C2—C31.382 (4)C10—H100.9500
C2—Cl11.745 (2)C10a—C111.524 (4)
C3—C41.386 (3)C11—C131.528 (4)
C3—H30.9500C11—C121.539 (3)
C4—C4a1.389 (3)C11—H111.0000
C4—H40.9500C12—C12a1.515 (3)
C4a—C12a1.398 (3)C12—H12A0.9900
C4a—N51.437 (3)C12—H12B0.9900
N5—C511.362 (3)C13—H13A0.9800
N5—C61.484 (3)C13—H13B0.9800
C6—C6a1.514 (4)C13—H13C0.9800
C6—H6A0.9900O51—C511.227 (3)
C6—H6B0.9900C51—C521.500 (4)
C6a—C10a1.391 (3)C52—H52A0.9800
C6a—C71.395 (4)C52—H52B0.9800
C7—C81.402 (4)C52—H52C0.9800
C7—H70.9500C81—H81A0.9800
C8—C91.396 (4)C81—H81B0.9800
C8—C811.499 (4)C81—H81C0.9800
C2—C1—C12a120.4 (2)C6a—C10a—C10118.4 (2)
C2—C1—H1119.8C6a—C10a—C11120.2 (2)
C12a—C1—H1119.8C10—C10a—C11121.5 (2)
C3—C2—C1121.8 (2)C10a—C11—C13113.6 (2)
C3—C2—Cl1119.28 (19)C10a—C11—C12111.4 (2)
C1—C2—Cl1118.9 (2)C13—C11—C12108.7 (2)
C2—C3—C4118.0 (2)C10a—C11—H11107.6
C2—C3—H3121.0C13—C11—H11107.6
C4—C3—H3121.0C12—C11—H11107.6
C3—C4—C4a121.2 (2)C12a—C12—C11118.3 (2)
C3—C4—H4119.4C12a—C12—H12A107.7
C4a—C4—H4119.4C11—C12—H12A107.7
C4—C4a—C12a120.6 (2)C12a—C12—H12B107.7
C4—C4a—N5119.0 (2)C11—C12—H12B107.7
C12a—C4a—N5120.4 (2)H12A—C12—H12B107.1
C51—N5—C4a122.4 (2)C1—C12a—C4a118.0 (2)
C51—N5—C6118.5 (2)C1—C12a—C12118.7 (2)
C4a—N5—C6118.92 (19)C4a—C12a—C12123.3 (2)
N5—C6—C6a114.6 (2)C11—C13—H13A109.5
N5—C6—H6A108.6C11—C13—H13B109.5
C6a—C6—H6A108.6H13A—C13—H13B109.5
N5—C6—H6B108.6C11—C13—H13C109.5
C6a—C6—H6B108.6H13A—C13—H13C109.5
H6A—C6—H6B107.6H13B—C13—H13C109.5
C10a—C6a—C7120.3 (2)O51—C51—N5121.5 (2)
C10a—C6a—C6122.9 (2)O51—C51—C52121.4 (2)
C7—C6a—C6116.6 (2)N5—C51—C52117.1 (2)
C6a—C7—C8121.4 (3)C51—C52—H52A109.5
C6a—C7—H7119.3C51—C52—H52B109.5
C8—C7—H7119.3H52A—C52—H52B109.5
C9—C8—C7117.4 (3)C51—C52—H52C109.5
C9—C8—C81121.1 (3)H52A—C52—H52C109.5
C7—C8—C81121.5 (3)H52B—C52—H52C109.5
C10—C9—C8121.2 (3)C8—C81—H81A109.5
C10—C9—H9119.4C8—C81—H81B109.5
C8—C9—H9119.4H81A—C81—H81B109.5
C9—C10—C10a121.3 (3)C8—C81—H81C109.5
C9—C10—H10119.4H81A—C81—H81C109.5
C10a—C10—H10119.4H81B—C81—H81C109.5
C12a—C1—C2—C31.5 (4)C6—C6a—C10a—C10178.6 (2)
C12a—C1—C2—Cl1178.65 (19)C7—C6a—C10a—C11176.4 (2)
C1—C2—C3—C40.7 (4)C6—C6a—C10a—C111.2 (4)
Cl1—C2—C3—C4179.48 (19)C9—C10—C10a—C6a2.7 (4)
C2—C3—C4—C4a1.3 (4)C9—C10—C10a—C11177.1 (2)
C3—C4—C4a—C12a2.5 (4)C6a—C10a—C11—C13144.9 (2)
C3—C4—C4a—N5177.8 (2)C10—C10a—C11—C1334.9 (3)
C4—C4a—N5—C5186.4 (3)C6a—C10a—C11—C1292.0 (3)
C12a—C4a—N5—C5193.9 (3)C10—C10a—C11—C1288.2 (3)
C4—C4a—N5—C687.8 (3)C10a—C11—C12—C12a42.5 (3)
C12a—C4a—N5—C691.9 (3)C13—C11—C12—C12a168.4 (2)
C51—N5—C6—C6a146.7 (2)C2—C1—C12a—C4a0.3 (4)
C4a—N5—C6—C6a38.9 (3)C2—C1—C12a—C12178.1 (2)
N5—C6—C6a—C10a46.9 (3)C4—C4a—C12a—C11.7 (3)
N5—C6—C6a—C7137.8 (2)N5—C4a—C12a—C1178.6 (2)
C10a—C6a—C7—C81.2 (4)C4—C4a—C12a—C12180.0 (2)
C6—C6a—C7—C8176.7 (2)N5—C4a—C12a—C120.3 (3)
C6a—C7—C8—C91.8 (4)C11—C12—C12a—C1142.8 (2)
C6a—C7—C8—C81175.9 (2)C11—C12—C12a—C4a38.9 (4)
C7—C8—C9—C102.6 (4)C4a—N5—C51—O51176.8 (2)
C81—C8—C9—C10175.1 (3)C6—N5—C51—O512.6 (3)
C8—C9—C10—C10a0.4 (4)C4a—N5—C51—C524.1 (3)
C7—C6a—C10a—C103.5 (4)C6—N5—C51—C52178.3 (2)
(II) 14-acetyl-8,11-dimethyl-7,8,13,14- tetrahydrobenzo[f]naphtho[1,2-b]azocine–14-acetyl- 8,9-dimethyl-7,8,13,14-tetrahydrobenzo[f]naphtho[1,2-b]azocine (74/26) top
Crystal data top
C23H23NOF(000) = 704
Mr = 329.42Dx = 1.247 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4048 reflections
a = 18.9549 (10) Åθ = 3.5–27.5°
b = 9.8917 (4) ŵ = 0.08 mm1
c = 9.4354 (5) ÅT = 120 K
β = 97.348 (3)°Block, colourless
V = 1754.57 (15) Å30.40 × 0.20 × 0.16 mm
Z = 4
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3262 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2250 reflections with I > 2σ(I)
10cm confocal mirrors monochromatorRint = 0.080
Detector resolution: 4096x4096pixels / 62x62mm pixels mm-1θmax = 25.5°, θmin = 3.5°
ϕ and ω scansh = 2222
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1111
Tmin = 0.959, Tmax = 0.988l = 1111
23961 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.054H-atom parameters constrained
wR(F2) = 0.142 w = 1/[σ2(Fo2) + (0.0653P)2 + 0.551P]
where P = (Fo2 + 2Fc2)/3
S = 1.04(Δ/σ)max = 0.001
3262 reflectionsΔρmax = 0.22 e Å3
386 parametersΔρmin = 0.18 e Å3
244 restraintsExtinction correction: SHELXL97 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.013 (2)
Crystal data top
C23H23NOV = 1754.57 (15) Å3
Mr = 329.42Z = 4
Monoclinic, P21/cMo Kα radiation
a = 18.9549 (10) ŵ = 0.08 mm1
b = 9.8917 (4) ÅT = 120 K
c = 9.4354 (5) Å0.40 × 0.20 × 0.16 mm
β = 97.348 (3)°
Data collection top
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
3262 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2250 reflections with I > 2σ(I)
Tmin = 0.959, Tmax = 0.988Rint = 0.080
23961 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.054244 restraints
wR(F2) = 0.142H-atom parameters constrained
S = 1.04Δρmax = 0.22 e Å3
3262 reflectionsΔρmin = 0.18 e Å3
386 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/UeqOcc. (<1)
C10.9103 (9)0.5559 (10)0.721 (2)0.0323 (10)0.634 (6)
H10.91090.46090.70640.039*0.634 (6)
C20.9540 (6)0.6372 (12)0.6524 (13)0.0313 (12)0.634 (6)
H20.98340.59850.58890.038*0.634 (6)
C30.9551 (9)0.7779 (11)0.676 (2)0.0375 (19)0.634 (6)
H30.98600.83370.62990.045*0.634 (6)
C40.9119 (14)0.8342 (10)0.765 (4)0.0377 (12)0.634 (6)
H40.91280.92930.77960.045*0.634 (6)
C4a0.8655 (5)0.7531 (7)0.8370 (11)0.0256 (16)0.634 (6)
C50.8177 (6)0.8106 (7)0.9227 (15)0.031 (2)0.634 (6)
H50.81830.90550.93860.037*0.634 (6)
C60.7705 (12)0.7320 (9)0.983 (3)0.0349 (13)0.634 (6)
H60.73910.77301.04130.042*0.634 (6)
C6a0.7673 (4)0.5900 (7)0.9609 (12)0.0337 (6)0.634 (6)
C70.7169 (3)0.5081 (8)1.0394 (6)0.0383 (11)0.634 (6)
H7A0.68560.57201.08270.046*0.634 (6)
H7B0.74550.45961.11860.046*0.634 (6)
C80.6695 (3)0.4044 (5)0.9520 (5)0.0412 (9)0.634 (6)
H80.69780.31960.94730.049*0.634 (6)
C8a0.6478 (3)0.4535 (6)0.7984 (5)0.0401 (9)0.634 (6)
C90.5866 (2)0.5305 (5)0.7585 (6)0.0446 (11)0.634 (6)
H90.55570.55100.82730.054*0.634 (6)
C100.5706 (2)0.5773 (5)0.6191 (6)0.0483 (14)0.634 (6)
H100.52850.62860.59470.058*0.634 (6)
C110.6134 (4)0.5519 (7)0.5159 (5)0.0442 (13)0.634 (6)
C120.6753 (5)0.4755 (11)0.5552 (5)0.0425 (11)0.634 (6)
H120.70610.45710.48570.051*0.634 (6)
C12a0.6925 (4)0.4263 (10)0.6933 (5)0.0372 (8)0.634 (6)
C130.7585 (3)0.3410 (8)0.7243 (7)0.0393 (8)0.634 (6)
H13A0.74420.24730.74420.047*0.634 (6)
H13B0.78310.33870.63800.047*0.634 (6)
N140.8093 (3)0.3899 (6)0.8472 (10)0.0320 (5)0.634 (6)
C14a0.8130 (4)0.5330 (7)0.8754 (13)0.0296 (6)0.634 (6)
C14b0.8643 (4)0.6110 (7)0.8139 (11)0.0240 (16)0.634 (6)
C1410.8482 (9)0.2958 (9)0.9292 (16)0.0294 (14)0.634 (6)
O1410.8467 (11)0.1756 (8)0.8945 (19)0.040 (2)0.634 (6)
C1510.8989 (10)0.3474 (14)1.0533 (18)0.0359 (17)0.634 (6)
H15A0.87240.36931.13290.054*0.634 (6)
H15B0.92280.42881.02430.054*0.634 (6)
H15C0.93440.27771.08330.054*0.634 (6)
C810.6044 (3)0.3704 (7)1.0293 (6)0.0512 (16)0.634 (6)
H81A0.62070.33811.12610.077*0.634 (6)
H81B0.57590.29980.97610.077*0.634 (6)
H81C0.57520.45171.03460.077*0.634 (6)
C1110.5956 (3)0.6008 (5)0.3635 (5)0.0673 (16)0.634 (6)
H11A0.54730.63800.35010.101*0.634 (6)
H11B0.59850.52500.29770.101*0.634 (6)
H11C0.62950.67120.34390.101*0.634 (6)
C310.907 (3)0.541 (3)0.711 (9)0.0323 (10)0.107 (3)
H310.90990.44480.70520.039*0.107 (3)
C320.954 (3)0.618 (4)0.647 (8)0.0313 (12)0.107 (3)
H320.98370.57790.58460.038*0.107 (3)
C330.959 (4)0.759 (4)0.674 (10)0.0375 (19)0.107 (3)
H330.99350.81150.63510.045*0.107 (3)
C340.914 (4)0.818 (3)0.757 (10)0.0377 (12)0.107 (3)
H340.91930.91110.78080.045*0.107 (3)
C34a0.858 (2)0.743 (2)0.808 (5)0.0256 (16)0.107 (3)
C350.811 (3)0.8034 (19)0.894 (6)0.031 (2)0.107 (3)
H350.81190.89860.90750.037*0.107 (3)
C360.763 (2)0.727 (2)0.957 (6)0.0349 (13)0.107 (3)
H360.72990.77071.00800.042*0.107 (3)
C36a0.7637 (10)0.584 (2)0.947 (3)0.0337 (6)0.107 (3)
C370.7101 (10)0.505 (3)1.0214 (18)0.0383 (11)0.107 (3)
H37A0.70560.55111.11320.046*0.107 (3)
H37B0.73000.41441.04450.046*0.107 (3)
C380.6354 (7)0.4877 (15)0.9411 (14)0.0412 (9)0.107 (3)
H380.60520.56050.97550.049*0.107 (3)
C38a0.6340 (9)0.5082 (18)0.7799 (13)0.0401 (9)0.107 (3)
C390.5852 (10)0.594 (2)0.7007 (18)0.0446 (11)0.107 (3)
H390.55270.64500.74800.054*0.107 (3)
C400.5837 (12)0.605 (2)0.5536 (18)0.0483 (14)0.107 (3)
H400.55130.66680.50300.058*0.107 (3)
C410.627 (2)0.531 (4)0.4790 (15)0.0442 (13)0.107 (3)
C420.679 (2)0.450 (4)0.5582 (16)0.0425 (11)0.107 (3)
H420.71330.40450.51020.051*0.107 (3)
C42a0.6815 (11)0.435 (2)0.7055 (14)0.0372 (8)0.107 (3)
C430.7305 (8)0.3284 (14)0.777 (2)0.0393 (8)0.107 (3)
H43A0.70810.28790.85610.047*0.107 (3)
H43B0.73610.25590.70690.047*0.107 (3)
N440.8026 (9)0.3805 (17)0.835 (3)0.0320 (5)0.107 (3)
C44a0.8091 (12)0.5238 (19)0.863 (3)0.0296 (6)0.107 (3)
C44b0.8549 (18)0.601 (2)0.786 (4)0.0240 (16)0.107 (3)
C4410.8499 (12)0.288 (3)0.900 (4)0.0294 (14)0.107 (3)
O4410.840 (3)0.166 (3)0.877 (7)0.040 (2)0.107 (3)
C4510.897 (4)0.336 (5)1.031 (7)0.0359 (17)0.107 (3)
H45A0.93240.26641.06250.054*0.107 (3)
H45B0.86830.35481.10780.054*0.107 (3)
H45C0.92170.41911.00800.054*0.107 (3)
C3810.6031 (18)0.352 (3)0.980 (3)0.0512 (16)0.107 (3)
H38A0.61890.33061.08050.077*0.107 (3)
H38B0.61880.28000.91940.077*0.107 (3)
H38C0.55110.35770.96450.077*0.107 (3)
C4110.6222 (17)0.556 (3)0.324 (4)0.0673 (16)0.107 (3)
H41A0.57210.56220.28390.101*0.107 (3)
H41B0.64480.48130.27830.101*0.107 (3)
H41C0.64650.64070.30740.101*0.107 (3)
C510.905 (2)0.555 (2)0.720 (5)0.0323 (10)0.260 (5)
H510.90130.46250.69370.039*0.260 (5)
C520.9606 (10)0.631 (3)0.684 (2)0.0313 (12)0.260 (5)
H521.00010.58790.65080.038*0.260 (5)
C530.9592 (18)0.773 (3)0.698 (5)0.0375 (19)0.260 (5)
H530.99430.82660.66090.045*0.260 (5)
C540.907 (3)0.833 (2)0.763 (9)0.0377 (12)0.260 (5)
H540.90730.92890.77340.045*0.260 (5)
C54a0.8532 (12)0.7558 (16)0.817 (3)0.0256 (16)0.260 (5)
C550.8072 (18)0.8138 (15)0.906 (4)0.031 (2)0.260 (5)
H550.80440.90930.91390.037*0.260 (5)
C560.767 (3)0.735 (2)0.982 (7)0.0349 (13)0.260 (5)
H560.74050.77501.05080.042*0.260 (5)
C56a0.7626 (10)0.5923 (17)0.961 (3)0.0337 (6)0.260 (5)
C570.7018 (8)0.516 (2)1.0148 (15)0.0383 (11)0.260 (5)
H57A0.66730.58391.04200.046*0.260 (5)
H57B0.72100.46761.10290.046*0.260 (5)
C580.6610 (6)0.4148 (13)0.9134 (11)0.0412 (9)0.260 (5)
H580.69170.33270.91340.049*0.260 (5)
C58a0.6492 (7)0.4663 (16)0.7594 (11)0.0401 (9)0.260 (5)
C590.5918 (6)0.5480 (12)0.7055 (10)0.0446 (11)0.260 (5)
C600.5812 (7)0.5831 (16)0.5616 (11)0.0483 (14)0.260 (5)
H600.54180.63870.52780.058*0.260 (5)
C610.6255 (10)0.541 (2)0.4669 (10)0.0442 (13)0.260 (5)
H610.61660.56340.36840.053*0.260 (5)
C620.6846 (10)0.462 (3)0.5207 (13)0.0425 (11)0.260 (5)
H620.71620.43100.45740.051*0.260 (5)
C62a0.6978 (9)0.428 (3)0.6647 (14)0.0372 (8)0.260 (5)
C630.7622 (8)0.343 (2)0.7131 (17)0.0393 (8)0.260 (5)
H63A0.74660.24890.72620.047*0.260 (5)
H63B0.79360.34260.63700.047*0.260 (5)
N640.8040 (8)0.3905 (14)0.849 (2)0.0320 (5)0.260 (5)
C64a0.8077 (10)0.5344 (15)0.875 (3)0.0296 (6)0.260 (5)
C64b0.8520 (12)0.6132 (17)0.796 (3)0.0240 (16)0.260 (5)
C6410.851 (2)0.301 (2)0.920 (4)0.0294 (14)0.260 (5)
O6410.841 (3)0.1778 (19)0.905 (5)0.040 (2)0.260 (5)
C6510.903 (2)0.357 (3)1.040 (4)0.0359 (17)0.260 (5)
C65a0.94650.30351.05010.054*0.260 (5)
H65B0.88120.35181.12960.054*0.260 (5)
H65C0.91330.45111.02020.054*0.260 (5)
C5810.5921 (8)0.3698 (19)0.9706 (15)0.0512 (16)0.260 (5)
H58A0.60340.30151.04520.077*0.260 (5)
H58B0.55930.33120.89230.077*0.260 (5)
H58C0.56970.44791.01050.077*0.260 (5)
C5910.5421 (6)0.6037 (15)0.7996 (13)0.103 (5)0.260 (5)
H59A0.50810.53360.81910.154*0.260 (5)
H59B0.51640.68060.75230.154*0.260 (5)
H59C0.56900.63370.88980.154*0.260 (5)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.038 (3)0.0260 (13)0.0308 (19)0.0014 (14)0.0045 (19)0.0011 (14)
C20.0348 (16)0.041 (2)0.015 (3)0.001 (2)0.0092 (19)0.006 (3)
C30.040 (2)0.0372 (19)0.032 (5)0.008 (2)0.007 (3)0.009 (3)
C40.044 (3)0.0253 (14)0.040 (2)0.0057 (15)0.011 (2)0.0038 (16)
C4a0.026 (3)0.0243 (11)0.021 (3)0.0004 (13)0.020 (3)0.0002 (13)
C50.037 (4)0.0187 (10)0.031 (4)0.0038 (12)0.018 (4)0.0052 (12)
C60.040 (3)0.0266 (11)0.036 (3)0.0094 (11)0.006 (2)0.0046 (11)
C6a0.0342 (14)0.0259 (11)0.0392 (14)0.0040 (9)0.0023 (12)0.0003 (9)
C70.032 (2)0.0344 (14)0.048 (2)0.0123 (18)0.0033 (17)0.0063 (16)
C80.0354 (18)0.0280 (15)0.059 (3)0.0037 (12)0.0002 (19)0.0111 (18)
C8a0.0348 (15)0.0250 (19)0.059 (3)0.0056 (12)0.0001 (18)0.004 (2)
C90.0384 (17)0.039 (2)0.056 (3)0.0035 (16)0.003 (2)0.001 (2)
C100.043 (2)0.0416 (19)0.056 (4)0.0010 (15)0.008 (2)0.005 (3)
C110.048 (3)0.036 (2)0.044 (3)0.0079 (19)0.010 (3)0.002 (3)
C120.046 (2)0.029 (3)0.049 (3)0.0115 (15)0.0044 (19)0.004 (3)
C12a0.0373 (19)0.0248 (11)0.048 (2)0.0083 (13)0.0020 (17)0.000 (2)
C130.0384 (16)0.0286 (12)0.048 (2)0.0001 (11)0.0031 (13)0.0084 (12)
N140.0341 (12)0.0201 (9)0.0402 (12)0.0001 (8)0.0011 (10)0.0035 (8)
C14a0.0322 (15)0.0190 (10)0.0350 (13)0.0028 (9)0.0056 (12)0.0035 (8)
C14b0.024 (3)0.0226 (11)0.020 (3)0.0012 (14)0.017 (3)0.0009 (12)
C1410.0388 (16)0.0230 (12)0.028 (3)0.0037 (11)0.0107 (18)0.0010 (12)
O1410.061 (3)0.0211 (10)0.039 (4)0.0059 (11)0.007 (3)0.0015 (11)
C1510.0487 (18)0.026 (2)0.033 (4)0.0016 (19)0.003 (2)0.0024 (19)
C810.044 (2)0.0463 (18)0.064 (4)0.0038 (18)0.009 (3)0.014 (3)
C1110.061 (3)0.069 (3)0.065 (3)0.010 (2)0.017 (2)0.021 (3)
C310.038 (3)0.0260 (13)0.0308 (19)0.0014 (14)0.0045 (19)0.0011 (14)
C320.0348 (16)0.041 (2)0.015 (3)0.001 (2)0.0092 (19)0.006 (3)
C330.040 (2)0.0372 (19)0.032 (5)0.008 (2)0.007 (3)0.009 (3)
C340.044 (3)0.0253 (14)0.040 (2)0.0057 (15)0.011 (2)0.0038 (16)
C34a0.026 (3)0.0243 (11)0.021 (3)0.0004 (13)0.020 (3)0.0002 (13)
C350.037 (4)0.0187 (10)0.031 (4)0.0038 (12)0.018 (4)0.0052 (12)
C360.040 (3)0.0266 (11)0.036 (3)0.0094 (11)0.006 (2)0.0046 (11)
C36a0.0342 (14)0.0259 (11)0.0392 (14)0.0040 (9)0.0023 (12)0.0003 (9)
C370.032 (2)0.0344 (14)0.048 (2)0.0123 (18)0.0033 (17)0.0063 (16)
C380.0354 (18)0.0280 (15)0.059 (3)0.0037 (12)0.0002 (19)0.0111 (18)
C38a0.0348 (15)0.0250 (19)0.059 (3)0.0056 (12)0.0001 (18)0.004 (2)
C390.0384 (17)0.039 (2)0.056 (3)0.0035 (16)0.003 (2)0.001 (2)
C400.043 (2)0.0416 (19)0.056 (4)0.0010 (15)0.008 (2)0.005 (3)
C410.048 (3)0.036 (2)0.044 (3)0.0079 (19)0.010 (3)0.002 (3)
C420.046 (2)0.029 (3)0.049 (3)0.0115 (15)0.0044 (19)0.004 (3)
C42a0.0373 (19)0.0248 (11)0.048 (2)0.0083 (13)0.0020 (17)0.000 (2)
C430.0384 (16)0.0286 (12)0.048 (2)0.0001 (11)0.0031 (13)0.0084 (12)
N440.0341 (12)0.0201 (9)0.0402 (12)0.0001 (8)0.0011 (10)0.0035 (8)
C44a0.0322 (15)0.0190 (10)0.0350 (13)0.0028 (9)0.0056 (12)0.0035 (8)
C44b0.024 (3)0.0226 (11)0.020 (3)0.0012 (14)0.017 (3)0.0009 (12)
C4410.0388 (16)0.0230 (12)0.028 (3)0.0037 (11)0.0107 (18)0.0010 (12)
O4410.061 (3)0.0211 (10)0.039 (4)0.0059 (11)0.007 (3)0.0015 (11)
C4510.0487 (18)0.026 (2)0.033 (4)0.0016 (19)0.003 (2)0.0024 (19)
C3810.044 (2)0.0463 (18)0.064 (4)0.0038 (18)0.009 (3)0.014 (3)
C4110.061 (3)0.069 (3)0.065 (3)0.010 (2)0.017 (2)0.021 (3)
C510.038 (3)0.0260 (13)0.0308 (19)0.0014 (14)0.0045 (19)0.0011 (14)
C520.0348 (16)0.041 (2)0.015 (3)0.001 (2)0.0092 (19)0.006 (3)
C530.040 (2)0.0372 (19)0.032 (5)0.008 (2)0.007 (3)0.009 (3)
C540.044 (3)0.0253 (14)0.040 (2)0.0057 (15)0.011 (2)0.0038 (16)
C54a0.026 (3)0.0243 (11)0.021 (3)0.0004 (13)0.020 (3)0.0002 (13)
C550.037 (4)0.0187 (10)0.031 (4)0.0038 (12)0.018 (4)0.0052 (12)
C560.040 (3)0.0266 (11)0.036 (3)0.0094 (11)0.006 (2)0.0046 (11)
C56a0.0342 (14)0.0259 (11)0.0392 (14)0.0040 (9)0.0023 (12)0.0003 (9)
C570.032 (2)0.0344 (14)0.048 (2)0.0123 (18)0.0033 (17)0.0063 (16)
C580.0354 (18)0.0280 (15)0.059 (3)0.0037 (12)0.0002 (19)0.0111 (18)
C58a0.0348 (15)0.0250 (19)0.059 (3)0.0056 (12)0.0001 (18)0.004 (2)
C590.0384 (17)0.039 (2)0.056 (3)0.0035 (16)0.003 (2)0.001 (2)
C600.043 (2)0.0416 (19)0.056 (4)0.0010 (15)0.008 (2)0.005 (3)
C610.048 (3)0.036 (2)0.044 (3)0.0079 (19)0.010 (3)0.002 (3)
C620.046 (2)0.029 (3)0.049 (3)0.0115 (15)0.0044 (19)0.004 (3)
C62a0.0373 (19)0.0248 (11)0.048 (2)0.0083 (13)0.0020 (17)0.000 (2)
C630.0384 (16)0.0286 (12)0.048 (2)0.0001 (11)0.0031 (13)0.0084 (12)
N640.0341 (12)0.0201 (9)0.0402 (12)0.0001 (8)0.0011 (10)0.0035 (8)
C64a0.0322 (15)0.0190 (10)0.0350 (13)0.0028 (9)0.0056 (12)0.0035 (8)
C64b0.024 (3)0.0226 (11)0.020 (3)0.0012 (14)0.017 (3)0.0009 (12)
C6410.0388 (16)0.0230 (12)0.028 (3)0.0037 (11)0.0107 (18)0.0010 (12)
O6410.061 (3)0.0211 (10)0.039 (4)0.0059 (11)0.007 (3)0.0015 (11)
C6510.0487 (18)0.026 (2)0.033 (4)0.0016 (19)0.003 (2)0.0024 (19)
C5810.044 (2)0.0463 (18)0.064 (4)0.0038 (18)0.009 (3)0.014 (3)
C5910.068 (8)0.122 (12)0.122 (12)0.038 (8)0.029 (8)0.006 (9)
Geometric parameters (Å, º) top
C1—C21.375 (5)C39—H390.9500
C1—H10.9500C40—C411.369 (6)
C2—C31.409 (3)C40—H400.9500
C2—H20.9500C41—C421.403 (5)
C3—C41.366 (6)C41—C4111.47 (4)
C3—H30.9500C42—C42a1.393 (5)
C4—C4a1.424 (5)C42—H420.9500
C4—H40.9500C42a—C431.507 (5)
C4a—C51.410 (3)C43—N441.496 (5)
C5—C61.364 (4)C43—H43A0.9900
C5—H50.9500C43—H43B0.9900
C6—C6a1.421 (3)N44—C4411.374 (5)
C6—H60.9500N44—C44a1.446 (4)
C6a—C14a1.377 (3)C44a—C44b1.424 (5)
C14a—C14b1.423 (3)C441—O4411.235 (6)
C14b—C11.419 (3)C441—C4511.507 (5)
C4a—C14b1.423 (3)C451—H45A0.9800
C6a—C71.516 (3)C451—H45B0.9800
C7—C81.533 (4)C451—H45C0.9800
C7—H7A0.9900C381—H38A0.9800
C7—H7B0.9900C381—H38B0.9800
C8—C8a1.534 (4)C381—H38C0.9800
C8—C811.549 (4)C411—H41A0.9800
C8—H81.0000C411—H41B0.9800
C8a—C91.398 (4)C411—H41C0.9800
C8a—C12a1.409 (3)C51—C521.375 (7)
C9—C101.391 (5)C51—C64b1.422 (4)
C9—H90.9500C51—H510.9500
C10—C111.368 (5)C52—C531.410 (5)
C10—H100.9500C52—H520.9500
C11—C121.404 (4)C53—C541.365 (7)
C11—C1111.514 (7)C53—H530.9500
C12—C12a1.390 (4)C54—C54a1.425 (6)
C12—H120.9500C54—H540.9500
C12a—C131.506 (3)C54a—C551.411 (4)
C13—N141.490 (3)C54a—C64b1.424 (4)
C13—H13A0.9900C55—C561.364 (6)
C13—H13B0.9900C55—H550.9500
N14—C1411.364 (3)C56—C56a1.422 (4)
N14—C14a1.440 (3)C56—H560.9500
C141—O1411.233 (4)C56a—C64a1.376 (4)
C141—C1511.505 (3)C56a—C571.518 (4)
C151—H15A0.9800C57—C581.528 (5)
C151—H15B0.9800C57—H57A0.9900
C151—H15C0.9800C57—H57B0.9900
C81—H81A0.9800C58—C58a1.529 (5)
C81—H81B0.9800C58—C5811.541 (6)
C81—H81C0.9800C58—H581.0000
C111—H11A0.9800C58a—C591.397 (5)
C111—H11B0.9800C58a—C62a1.414 (4)
C111—H11C0.9800C59—C601.391 (6)
C31—C321.375 (6)C59—C5911.481 (7)
C31—C44b1.422 (5)C60—C611.368 (6)
C31—H310.9500C60—H600.9500
C32—C331.410 (5)C61—C621.404 (5)
C32—H320.9500C61—H610.9500
C33—C341.366 (7)C62—C62a1.389 (5)
C33—H330.9500C62—H620.9500
C34—C34a1.425 (7)C62a—C631.506 (4)
C34—H340.9500C63—N641.496 (5)
C34a—C351.410 (5)C63—H63A0.9900
C34a—C44b1.424 (4)C63—H63B0.9900
C35—C361.364 (5)N64—C6411.370 (5)
C35—H350.9500N64—C64a1.444 (4)
C36—C36a1.421 (4)C64a—C64b1.424 (4)
C36—H360.9500C641—O6411.234 (6)
C36a—C44a1.376 (4)C641—C6511.507 (5)
C36a—C371.517 (4)C651—C65a0.9800
C37—C381.528 (6)C651—H65B0.9800
C37—H37A0.9900C651—H65C0.9800
C37—H37B0.9900C581—H58A0.9800
C38—C38a1.531 (5)C581—H58B0.9800
C38—C3811.543 (6)C581—H58C0.9800
C38—H381.0000C591—H59A0.9800
C38a—C391.400 (5)C591—H59B0.9800
C38a—C42a1.409 (5)C591—H59C0.9800
C39—C401.389 (6)
C2—C1—C14b121.3 (2)C2—C1—C14b121.3 (2)
C2—C1—H1119.3C2—C1—H1119.3
C14b—C1—H1119.3C14b—C1—H1119.3
C1—C2—C3120.1 (3)C1—C2—C3120.1 (3)
C1—C2—H2120.0C1—C2—H2120.0
C3—C2—H2120.0C3—C2—H2120.0
C4—C3—C2120.1 (3)C4—C3—C2120.1 (3)
C4—C3—H3119.9C4—C3—H3119.9
C2—C3—H3119.9C2—C3—H3119.9
C3—C4—C4a121.2 (2)C3—C4—C4a121.2 (2)
C3—C4—H4119.4C3—C4—H4119.4
C4a—C4—H4119.4C4a—C4—H4119.4
C5—C4a—C14b119.2 (2)C5—C4a—C14b119.2 (2)
C5—C4a—C4121.8 (2)C5—C4a—C4121.8 (2)
C14b—C4a—C4118.8 (2)C14b—C4a—C4118.8 (2)
C6—C5—C4a120.9 (2)C6—C5—C4a120.9 (2)
C6—C5—H5119.5C6—C5—H5119.5
C4a—C5—H5119.5C4a—C5—H5119.5
C5—C6—C6a121.3 (2)C5—C6—C6a121.3 (2)
C5—C6—H6119.3C5—C6—H6119.3
C6a—C6—H6119.3C6a—C6—H6119.3
C14a—C6a—C6118.2 (2)C14a—C6a—C6118.2 (2)
C14a—C6a—C7123.4 (2)C14a—C6a—C7123.4 (2)
C6—C6a—C7118.3 (3)C6—C6a—C7118.3 (3)
C6a—C7—C8117.3 (3)C6a—C7—C8117.3 (3)
C6a—C7—H7A108.0C6a—C7—H7A108.0
C8—C7—H7A108.0C8—C7—H7A108.0
C6a—C7—H7B108.0C6a—C7—H7B108.0
C8—C7—H7B108.0C8—C7—H7B108.0
H7A—C7—H7B107.2H7A—C7—H7B107.2
C7—C8—C8a111.3 (2)C7—C8—C8a111.3 (2)
C7—C8—C81109.9 (3)C7—C8—C81109.9 (3)
C8a—C8—C81112.4 (3)C8a—C8—C81112.4 (3)
C7—C8—H8107.7C7—C8—H8107.7
C8a—C8—H8107.7C8a—C8—H8107.7
C81—C8—H8107.7C81—C8—H8107.7
C9—C8a—C12a117.9 (3)C9—C8a—C12a117.9 (3)
C9—C8a—C8122.6 (3)C9—C8a—C8122.6 (3)
C12a—C8a—C8119.5 (3)C12a—C8a—C8119.5 (3)
C10—C9—C8a120.6 (3)C10—C9—C8a120.6 (3)
C10—C9—H9119.7C10—C9—H9119.7
C8a—C9—H9119.7C8a—C9—H9119.7
C11—C10—C9122.3 (3)C11—C10—C9122.3 (3)
C11—C10—H10118.8C11—C10—H10118.8
C9—C10—H10118.8C9—C10—H10118.8
C10—C11—C12117.5 (3)C10—C11—C12117.5 (3)
C10—C11—C111122.5 (4)C10—C11—C111122.5 (4)
C12—C11—C111120.0 (4)C12—C11—C111120.0 (4)
C12a—C12—C11121.6 (3)C12a—C12—C11121.6 (3)
C12a—C12—H12119.2C12a—C12—H12119.2
C11—C12—H12119.2C11—C12—H12119.2
C12—C12a—C8a120.2 (3)C12—C12a—C8a120.2 (3)
C12—C12a—C13117.9 (3)C12—C12a—C13117.9 (3)
C8a—C12a—C13121.9 (3)C8a—C12a—C13121.9 (3)
N14—C13—C12a114.1 (2)N14—C13—C12a114.1 (2)
N14—C13—H13A108.7N14—C13—H13A108.7
C12a—C13—H13A108.7C12a—C13—H13A108.7
N14—C13—H13B108.7N14—C13—H13B108.7
C12a—C13—H13B108.7C12a—C13—H13B108.7
H13A—C13—H13B107.6H13A—C13—H13B107.6
C141—N14—C14a123.8 (2)C141—N14—C14a123.8 (2)
C141—N14—C13117.9 (2)C141—N14—C13117.9 (2)
C14a—N14—C13118.3 (2)C14a—N14—C13118.3 (2)
C6a—C14a—C14b122.1 (2)C6a—C14a—C14b122.1 (2)
C6a—C14a—N14119.4 (2)C6a—C14a—N14119.4 (2)
C14b—C14a—N14118.5 (2)C14b—C14a—N14118.5 (2)
C1—C14b—C14a123.3 (2)C1—C14b—C14a123.3 (2)
C1—C14b—C4a118.4 (2)C1—C14b—C4a118.4 (2)
C14a—C14b—C4a118.1 (2)C14a—C14b—C4a118.1 (2)
O141—C141—N14121.0 (3)O141—C141—N14121.0 (3)
O141—C141—C151121.6 (3)O141—C141—C151121.6 (3)
N14—C141—C151117.0 (2)N14—C141—C151117.0 (2)
C141—C151—H15A109.5C141—C151—H15A109.5
C141—C151—H15B109.5C141—C151—H15B109.5
H15A—C151—H15B109.5H15A—C151—H15B109.5
C141—C151—H15C109.5C141—C151—H15C109.5
H15A—C151—H15C109.5H15A—C151—H15C109.5
H15B—C151—H15C109.5H15B—C151—H15C109.5
C8—C81—H81A109.5C8—C81—H81A109.5
C8—C81—H81B109.5C8—C81—H81B109.5
H81A—C81—H81B109.5H81A—C81—H81B109.5
C8—C81—H81C109.5C8—C81—H81C109.5
H81A—C81—H81C109.5H81A—C81—H81C109.5
H81B—C81—H81C109.5H81B—C81—H81C109.5
C11—C111—H11A109.5C11—C111—H11A109.5
C11—C111—H11B109.5C11—C111—H11B109.5
H11A—C111—H11B109.5H11A—C111—H11B109.5
C11—C111—H11C109.5C11—C111—H11C109.5
H11A—C111—H11C109.5H11A—C111—H11C109.5
H11B—C111—H11C109.5H11B—C111—H11C109.5
C32—C31—C44b121.2 (5)C32—C31—C44b121.2 (5)
C32—C31—H31119.4C32—C31—H31119.4
C44b—C31—H31119.4C44b—C31—H31119.4
C31—C32—C33119.9 (5)C31—C32—C33119.9 (5)
C31—C32—H32120.0C31—C32—H32120.0
C33—C32—H32120.0C33—C32—H32120.0
C34—C33—C32120.0 (4)C34—C33—C32120.0 (4)
C34—C33—H33120.0C34—C33—H33120.0
C32—C33—H33120.0C32—C33—H33120.0
C33—C34—C34a121.2 (6)C33—C34—C34a121.2 (6)
C33—C34—H34119.4C33—C34—H34119.4
C34a—C34—H34119.4C34a—C34—H34119.4
C35—C34a—C44b119.2 (3)C35—C34a—C44b119.2 (3)
C35—C34a—C34121.7 (6)C35—C34a—C34121.7 (6)
C44b—C34a—C34118.8 (5)C44b—C34a—C34118.8 (5)
C36—C35—C34a120.9 (4)C36—C35—C34a120.9 (4)
C36—C35—H35119.5C36—C35—H35119.5
C34a—C35—H35119.5C34a—C35—H35119.5
C35—C36—C36a121.2 (4)C35—C36—C36a121.2 (4)
C35—C36—H36119.4C35—C36—H36119.4
C36a—C36—H36119.4C36a—C36—H36119.4
C44a—C36a—C36118.2 (4)C44a—C36a—C36118.2 (4)
C44a—C36a—C37123.3 (4)C44a—C36a—C37123.3 (4)
C36—C36a—C37118.3 (4)C36—C36a—C37118.3 (4)
C36a—C37—C38117.5 (5)C36a—C37—C38117.5 (5)
C36a—C37—H37A107.9C36a—C37—H37A107.9
C38—C37—H37A107.9C38—C37—H37A107.9
C36a—C37—H37B107.9C36a—C37—H37B107.9
C38—C37—H37B107.9C38—C37—H37B107.9
H37A—C37—H37B107.2H37A—C37—H37B107.2
C37—C38—C38a112.0 (5)C37—C38—C38a112.0 (5)
C37—C38—C381110.7 (5)C37—C38—C381110.7 (5)
C38a—C38—C381113.2 (5)C38a—C38—C381113.2 (5)
C37—C38—H38106.8C37—C38—H38106.8
C38a—C38—H38106.8C38a—C38—H38106.8
C381—C38—H38106.8C381—C38—H38106.8
C39—C38a—C42a117.8 (4)C39—C38a—C42a117.8 (4)
C39—C38a—C38122.4 (4)C39—C38a—C38122.4 (4)
C42a—C38a—C38119.8 (4)C42a—C38a—C38119.8 (4)
C40—C39—C38a120.6 (4)C40—C39—C38a120.6 (4)
C40—C39—H39119.7C40—C39—H39119.7
C38a—C39—H39119.7C38a—C39—H39119.7
C41—C40—C39122.3 (4)C41—C40—C39122.3 (4)
C41—C40—H40118.8C41—C40—H40118.8
C39—C40—H40118.8C39—C40—H40118.8
C40—C41—C42117.4 (5)C40—C41—C42117.4 (5)
C40—C41—C411116.8 (18)C40—C41—C411116.8 (18)
C42—C41—C411125.3 (18)C42—C41—C411125.3 (18)
C42a—C42—C41121.5 (4)C42a—C42—C41121.5 (4)
C42a—C42—H42119.3C42a—C42—H42119.3
C41—C42—H42119.3C41—C42—H42119.3
C42—C42a—C38a120.1 (4)C42—C42a—C38a120.1 (4)
C42—C42a—C43117.4 (5)C42—C42a—C43117.4 (5)
C38a—C42a—C43122.2 (5)C38a—C42a—C43122.2 (5)
N44—C43—C42a113.8 (5)N44—C43—C42a113.8 (5)
N44—C43—H43A108.8N44—C43—H43A108.8
C42a—C43—H43A108.8C42a—C43—H43A108.8
N44—C43—H43B108.8N44—C43—H43B108.8
C42a—C43—H43B108.8C42a—C43—H43B108.8
H43A—C43—H43B107.7H43A—C43—H43B107.7
C441—N44—C44a122.4 (5)C441—N44—C44a122.4 (5)
C441—N44—C43116.6 (5)C441—N44—C43116.6 (5)
C44a—N44—C43117.3 (4)C44a—N44—C43117.3 (4)
C36a—C44a—C44b122.2 (3)C36a—C44a—C44b122.2 (3)
C36a—C44a—N44119.0 (4)C36a—C44a—N44119.0 (4)
C44b—C44a—N44118.1 (4)C44b—C44a—N44118.1 (4)
C31—C44b—C44a122.9 (6)C31—C44b—C44a122.9 (6)
C31—C44b—C34a118.1 (4)C31—C44b—C34a118.1 (4)
C44a—C44b—C34a117.9 (4)C44a—C44b—C34a117.9 (4)
O441—C441—N44119.9 (7)O441—C441—N44119.9 (7)
O441—C441—C451121.1 (7)O441—C441—C451121.1 (7)
N44—C441—C451116.2 (5)N44—C441—C451116.2 (5)
C441—C451—H45A109.5C441—C451—H45A109.5
C441—C451—H45B109.5C441—C451—H45B109.5
H45A—C451—H45B109.5H45A—C451—H45B109.5
C441—C451—H45C109.5C441—C451—H45C109.5
H45A—C451—H45C109.5H45A—C451—H45C109.5
H45B—C451—H45C109.5H45B—C451—H45C109.5
C38—C381—H38A109.5C38—C381—H38A109.5
C38—C381—H38B109.5C38—C381—H38B109.5
H38A—C381—H38B109.5H38A—C381—H38B109.5
C38—C381—H38C109.5C38—C381—H38C109.5
H38A—C381—H38C109.5H38A—C381—H38C109.5
H38B—C381—H38C109.5H38B—C381—H38C109.5
C41—C411—H41A109.5C41—C411—H41A109.5
C41—C411—H41B109.5C41—C411—H41B109.5
H41A—C411—H41B109.5H41A—C411—H41B109.5
C41—C411—H41C109.5C41—C411—H41C109.5
H41A—C411—H41C109.5H41A—C411—H41C109.5
H41B—C411—H41C109.5H41B—C411—H41C109.5
C52—C51—C64b121.1 (5)C52—C51—C64b121.1 (5)
C52—C51—H51119.5C52—C51—H51119.5
C64b—C51—H51119.5C64b—C51—H51119.5
C51—C52—C53119.8 (5)C51—C52—C53119.8 (5)
C51—C52—H52120.1C51—C52—H52120.1
C53—C52—H52120.1C53—C52—H52120.1
C54—C53—C52119.9 (4)C54—C53—C52119.9 (4)
C54—C53—H53120.0C54—C53—H53120.0
C52—C53—H53120.0C52—C53—H53120.0
C53—C54—C54a121.3 (4)C53—C54—C54a121.3 (4)
C53—C54—H54119.4C53—C54—H54119.4
C54a—C54—H54119.4C54a—C54—H54119.4
C55—C54a—C64b119.1 (3)C55—C54a—C64b119.1 (3)
C55—C54a—C54121.5 (5)C55—C54a—C54121.5 (5)
C64b—C54a—C54118.9 (3)C64b—C54a—C54118.9 (3)
C56—C55—C54a120.9 (4)C56—C55—C54a120.9 (4)
C56—C55—H55119.5C56—C55—H55119.5
C54a—C55—H55119.5C54a—C55—H55119.5
C55—C56—C56a121.1 (5)C55—C56—C56a121.1 (5)
C55—C56—H56119.4C55—C56—H56119.4
C56a—C56—H56119.4C56a—C56—H56119.4
C64a—C56a—C56118.1 (3)C64a—C56a—C56118.1 (3)
C64a—C56a—C57123.3 (4)C64a—C56a—C57123.3 (4)
C56—C56a—C57118.0 (4)C56—C56a—C57118.0 (4)
C56a—C57—C58117.4 (4)C56a—C57—C58117.4 (4)
C56a—C57—H57A107.9C56a—C57—H57A107.9
C58—C57—H57A107.9C58—C57—H57A107.9
C56a—C57—H57B107.9C56a—C57—H57B107.9
C58—C57—H57B107.9C58—C57—H57B107.9
H57A—C57—H57B107.2H57A—C57—H57B107.2
C57—C58—C58a112.1 (4)C57—C58—C58a112.1 (4)
C57—C58—C581110.8 (5)C57—C58—C581110.8 (5)
C58a—C58—C581113.7 (4)C58a—C58—C581113.7 (4)
C57—C58—H58106.6C57—C58—H58106.6
C58a—C58—H58106.6C58a—C58—H58106.6
C581—C58—H58106.6C581—C58—H58106.6
C59—C58a—C62a117.6 (4)C59—C58a—C62a117.6 (4)
C59—C58a—C58123.4 (4)C59—C58a—C58123.4 (4)
C62a—C58a—C58119.0 (4)C62a—C58a—C58119.0 (4)
C60—C59—C58a120.5 (4)C60—C59—C58a120.5 (4)
C60—C59—C591118.0 (6)C60—C59—C591118.0 (6)
C58a—C59—C591121.5 (6)C58a—C59—C591121.5 (6)
C61—C60—C59122.5 (4)C61—C60—C59122.5 (4)
C61—C60—H60118.7C61—C60—H60118.7
C59—C60—H60118.7C59—C60—H60118.7
C60—C61—C62117.4 (4)C60—C61—C62117.4 (4)
C60—C61—H61121.3C60—C61—H61121.3
C62—C61—H61121.3C62—C61—H61121.3
C62a—C62—C61121.5 (4)C62a—C62—C61121.5 (4)
C62a—C62—H62119.3C62a—C62—H62119.3
C61—C62—H62119.3C61—C62—H62119.3
C62—C62a—C58a120.3 (3)C62—C62a—C58a120.3 (3)
C62—C62a—C63117.9 (4)C62—C62a—C63117.9 (4)
C58a—C62a—C63121.7 (4)C58a—C62a—C63121.7 (4)
N64—C63—C62a113.9 (4)N64—C63—C62a113.9 (4)
N64—C63—H63A108.8N64—C63—H63A108.8
C62a—C63—H63A108.8C62a—C63—H63A108.8
N64—C63—H63B108.8N64—C63—H63B108.8
C62a—C63—H63B108.8C62a—C63—H63B108.8
H63A—C63—H63B107.7H63A—C63—H63B107.7
C641—N64—C64a122.9 (5)C641—N64—C64a122.9 (5)
C641—N64—C63117.0 (5)C641—N64—C63117.0 (5)
C64a—N64—C63117.5 (4)C64a—N64—C63117.5 (4)
C56a—C64a—C64b122.2 (3)C56a—C64a—C64b122.2 (3)
C56a—C64a—N64119.2 (3)C56a—C64a—N64119.2 (3)
C64b—C64a—N64118.1 (3)C64b—C64a—N64118.1 (3)
C51—C64b—C64a122.8 (5)C51—C64b—C64a122.8 (5)
C51—C64b—C54a118.1 (3)C51—C64b—C54a118.1 (3)
C64a—C64b—C54a118.0 (3)C64a—C64b—C54a118.0 (3)
O641—C641—N64120.3 (8)O641—C641—N64120.3 (8)
O641—C641—C651121.3 (6)O641—C641—C651121.3 (6)
N64—C641—C651116.6 (5)N64—C641—C651116.6 (5)
C641—C651—C65a109.5C641—C651—C65a109.5
C641—C651—H65B109.5C641—C651—H65B109.5
C65a—C651—H65B109.5C65a—C651—H65B109.5
C641—C651—H65C109.5C641—C651—H65C109.5
C65a—C651—H65C109.5C65a—C651—H65C109.5
H65B—C651—H65C109.5H65B—C651—H65C109.5
C58—C581—H58A109.5C58—C581—H58A109.5
C58—C581—H58B109.5C58—C581—H58B109.5
H58A—C581—H58B109.5H58A—C581—H58B109.5
C58—C581—H58C109.5C58—C581—H58C109.5
H58A—C581—H58C109.5H58A—C581—H58C109.5
H58B—C581—H58C109.5H58B—C581—H58C109.5
C59—C591—H59A109.5C59—C591—H59A109.5
C59—C591—H59B109.5C59—C591—H59B109.5
H59A—C591—H59B109.5H59A—C591—H59B109.5
C59—C591—H59C109.5C59—C591—H59C109.5
H59A—C591—H59C109.5H59A—C591—H59C109.5
H59B—C591—H59C109.5H59B—C591—H59C109.5
C14b—C1—C2—C32 (2)C39—C38a—C42a—C43172.9 (18)
C1—C2—C3—C41 (3)C38—C38a—C42a—C435 (3)
C2—C3—C4—C4a1 (4)C42—C42a—C43—N4494 (3)
C3—C4—C4a—C5176 (3)C38a—C42a—C43—N4493 (2)
C3—C4—C4a—C14b0 (4)C42a—C43—N44—C441179.5 (18)
C14b—C4a—C5—C60 (2)C42a—C43—N44—C44a21.7 (18)
C4—C4a—C5—C6176 (3)C36—C36a—C44a—C44b1 (4)
C4a—C5—C6—C6a1 (3)C37—C36a—C44a—C44b175 (3)
C5—C6—C6a—C14a0 (3)C36—C36a—C44a—N44171 (3)
C5—C6—C6a—C7176 (2)C37—C36a—C44a—N445 (3)
C14a—C6a—C7—C850.5 (12)C441—N44—C44a—C36a105 (2)
C6—C6a—C7—C8133.1 (14)C43—N44—C44a—C36a53 (2)
C6a—C7—C8—C8a33.8 (6)C441—N44—C44a—C44b85 (3)
C6a—C7—C8—C81159.0 (6)C43—N44—C44a—C44b118 (3)
C7—C8—C8a—C989.5 (5)C32—C31—C44b—C44a175 (6)
C81—C8—C8a—C934.2 (6)C32—C31—C44b—C34a8 (7)
C7—C8—C8a—C12a87.5 (7)C36a—C44a—C44b—C31173 (4)
C81—C8—C8a—C12a148.8 (7)N44—C44a—C44b—C3117 (4)
C12a—C8a—C9—C100.4 (7)C36a—C44a—C44b—C34a6 (4)
C8—C8a—C9—C10177.5 (4)N44—C44a—C44b—C34a176 (3)
C8a—C9—C10—C110.6 (7)C35—C34a—C44b—C31174 (5)
C9—C10—C11—C120.1 (11)C34—C34a—C44b—C311 (6)
C9—C10—C11—C111179.0 (5)C35—C34a—C44b—C44a6 (5)
C10—C11—C12—C12a0.5 (15)C34—C34a—C44b—C44a167 (6)
C111—C11—C12—C12a178.5 (9)C44a—N44—C441—O441177 (5)
C11—C12—C12a—C8a0.6 (17)C43—N44—C441—O44120 (5)
C11—C12—C12a—C13177.8 (9)C44a—N44—C441—C45116 (5)
C9—C8a—C12a—C120.1 (13)C43—N44—C441—C451142 (5)
C8—C8a—C12a—C12177.0 (8)C64b—C51—C52—C5312 (5)
C9—C8a—C12a—C13178.2 (6)C51—C52—C53—C549 (7)
C8—C8a—C12a—C134.7 (9)C52—C53—C54—C54a1 (10)
C12—C12a—C13—N14126.1 (10)C53—C54—C54a—C55169 (6)
C8a—C12a—C13—N1455.5 (9)C53—C54—C54a—C64b3 (9)
C12a—C13—N14—C141147.0 (11)C64b—C54a—C55—C566 (5)
C12a—C13—N14—C14a31.1 (8)C54—C54a—C55—C56165 (6)
C6—C6a—C14a—C14b2.4 (16)C54a—C55—C56—C56a8 (7)
C7—C6a—C14a—C14b174.0 (9)C55—C56—C56a—C64a8 (6)
C6—C6a—C14a—N14178.0 (14)C55—C56—C56a—C57163 (5)
C7—C6a—C14a—N145.7 (13)C64a—C56a—C57—C5837 (3)
C141—N14—C14a—C6a90.7 (14)C56—C56a—C57—C58133 (3)
C13—N14—C14a—C6a87.3 (9)C56a—C57—C58—C58a39.7 (15)
C141—N14—C14a—C14b89.0 (14)C56a—C57—C58—C581167.9 (15)
C13—N14—C14a—C14b93.0 (11)C57—C58—C58a—C5986.2 (13)
C2—C1—C14b—C14a173.2 (16)C581—C58—C58a—C5940.5 (14)
C2—C1—C14b—C4a1 (2)C57—C58—C58a—C62a94.9 (18)
C6a—C14a—C14b—C1177.6 (14)C581—C58—C58a—C62a138.5 (18)
N14—C14a—C14b—C12.7 (16)C62a—C58a—C59—C603.8 (17)
C6a—C14a—C14b—C4a3.1 (16)C58—C58a—C59—C60175.2 (12)
N14—C14a—C14b—C4a177.3 (8)C62a—C58a—C59—C591174.0 (19)
C5—C4a—C14b—C1176.7 (14)C58—C58a—C59—C5917.0 (16)
C4—C4a—C14b—C11 (2)C58a—C59—C60—C610.0 (19)
C5—C4a—C14b—C14a1.9 (16)C591—C59—C60—C61177.8 (19)
C4—C4a—C14b—C14a174 (2)C59—C60—C61—C622 (3)
C14a—N14—C141—O141175.0 (16)C60—C61—C62—C62a0 (4)
C13—N14—C141—O1417 (2)C61—C62—C62a—C58a4 (4)
C14a—N14—C141—C1512 (2)C61—C62—C62a—C63180 (2)
C13—N14—C141—C151179.6 (15)C59—C58a—C62a—C626 (3)
C44b—C31—C32—C3310 (9)C58—C58a—C62a—C62173 (2)
C31—C32—C33—C344 (11)C59—C58a—C62a—C63178.7 (14)
C32—C33—C34—C34a5 (12)C58—C58a—C62a—C632 (2)
C33—C34—C34a—C35180 (7)C62—C62a—C63—N64136 (3)
C33—C34—C34a—C44b7 (10)C58a—C62a—C63—N6448 (2)
C44b—C34a—C35—C361 (7)C62a—C63—N64—C641163 (3)
C34—C34a—C35—C36172 (7)C62a—C63—N64—C64a34.5 (17)
C34a—C35—C36—C36a5 (9)C56—C56a—C64a—C64b7 (4)
C35—C36—C36a—C44a5 (7)C57—C56a—C64a—C64b163 (2)
C35—C36—C36a—C37179 (5)C56—C56a—C64a—N64179 (3)
C44a—C36a—C37—C3892 (2)C57—C56a—C64a—N649 (3)
C36—C36a—C37—C3884 (4)C641—N64—C64a—C56a101 (3)
C36a—C37—C38—C38a20.4 (18)C63—N64—C64a—C56a98 (2)
C36a—C37—C38—C381147.7 (19)C641—N64—C64a—C64b87 (3)
C37—C38—C38a—C39130 (2)C63—N64—C64a—C64b74 (3)
C381—C38—C38a—C39104 (2)C52—C51—C64b—C64a159 (4)
C37—C38—C38a—C42a53 (2)C52—C51—C64b—C54a8 (5)
C381—C38—C38a—C42a73 (2)C56a—C64a—C64b—C51172 (3)
C42a—C38a—C39—C400.4 (18)N64—C64a—C64b—C5115 (3)
C38—C38a—C39—C40177.2 (16)C56a—C64a—C64b—C54a5 (4)
C38a—C39—C40—C412 (2)N64—C64a—C64b—C54a177 (2)
C39—C40—C41—C426 (5)C55—C54a—C64b—C51172 (3)
C39—C40—C41—C411178 (3)C54—C54a—C64b—C511 (5)
C40—C41—C42—C42a7 (6)C55—C54a—C64b—C64a5 (4)
C411—C41—C42—C42a178 (4)C54—C54a—C64b—C64a167 (4)
C41—C42—C42a—C38a4 (5)C64a—N64—C641—O641172 (4)
C41—C42—C42a—C43170 (3)C63—N64—C641—O64127 (5)
C39—C38a—C42a—C420 (4)C64a—N64—C641—C6518 (5)
C38—C38a—C42a—C42178 (3)C63—N64—C641—C651169 (3)

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H20ClNOC23H23NO
Mr313.81329.42
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)120120
a, b, c (Å)8.3396 (3), 21.7131 (7), 9.2010 (3)18.9549 (10), 9.8917 (4), 9.4354 (5)
β (°) 106.683 (2) 97.348 (3)
V3)1595.97 (9)1754.57 (15)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.240.08
Crystal size (mm)0.12 × 0.12 × 0.080.40 × 0.20 × 0.16
Data collection
DiffractometerBruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Bruker Nonius APEXII CCD camera on κ-goniostat
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2007)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.962, 0.9810.959, 0.988
No. of measured, independent and
observed [I > 2σ(I)] reflections
20184, 3134, 2342 23961, 3262, 2250
Rint0.0720.080
(sin θ/λ)max1)0.6170.606
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.055, 0.143, 1.03 0.054, 0.142, 1.04
No. of reflections31343262
No. of parameters202386
No. of restraints0244
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.48, 0.380.22, 0.18

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Selected bond lengths (Å) for (II) top
C1—C21.375 (5)C6—C6a1.421 (3)
C2—C31.409 (3)C6a—C14a1.377 (3)
C3—C41.366 (6)C14a—C14b1.423 (3)
C4—C4a1.424 (5)C14b—C11.419 (3)
C4a—C51.410 (3)C4a—C14b1.423 (3)
C5—C61.364 (4)
Selected torsion angles (°) for compounds (I) and (II) top
(I)(II)
N5—C4a—C12a—C120.3 (3)N14—C14a—C6a—C75.7 (13)
C4a—C12a—C12—C11-38.9 (4)C14a—C6a—C7—C8-50.5 (12)
C12a—C12—C11—C10a-42.5 (3)C6a—C7—C8—C8a-33.8 (6)
C12—C11—C10a—C6a92.0 (3)C7—C8—C8a—C12a87.5 (7)
C11—C10a—C6a—C61.2 (4)C8—C8a—C12a—C134.7 (9)
C10a—C6a—C6—N5-46.9 (3)C8a—C12a—C13—N14-55.5 (9)
C6a—C6—N5—C4a-38.9 (3)C12a—C13—N14—C14a-31.1 (8)
C6—N5—C4a—C12a91.9 (3)C13—N14—C14a—C6a87.3 (9)
Notes: the values for (II) refer to the major disorder component, form A. The corresponding values (°) for the geometric isomer C are fairly similar to those in isomer A: -9(3), -37 (3), -39.7 (15), 94.9 (18), -2(2), -48 (2), -34.5 (17) and 98 (2)°, respectively, while a somewhat different pattern is apparent in the corresponding values for the enantiomer B: 5(3), -92 (2), 20.4 (18), 53 (2), 5(3), -93 (2), 21.7 (18) and 53 (2)°, respectively.
Selected torsion angles (°) for compound (III) top
N16—C20—C25—C11.2 (10)C6—C8—C13—C141.8 (9)
C20—C25—C1—C6-68.9 (8)C8—C13—C14—N1-64.3 (8)
C25—C1—C6—C8-4.2 (8)C13—C14—N16—C20-16.3 (8)
C1—C6—C8—C1373.7 (7)C14—N16—C20—C2587.3 (8)
Notes: the atom numbering is that depicted in Fig. 1 of the original publication (Bocelli et al., 2002), which was stated by the authors to be arbitrary, i.e. unrelated to the chemical numbering scheme. This is not the atom numbering given in the CIF retrieved from the CSD.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds