Download citation
Download citation
link to html
The mol­ecules of (2RS,4SR)-2-exo-(5-bromo-2-thienyl)-7-chloro-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C14H11BrClNOS, (I), are linked into cyclic centrosymmetric dimers by C—H...π(thienyl) hydrogen bonds. Each such dimer makes rather short Br...Br contacts with two other dimers. In (2RS,4SR)-2-exo-(5-methyl-2-thienyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C15H15NOS, (II), a com­bination of C—H...O and C—H...π(thienyl) hydrogen bonds links the mol­ecules into chains of rings. A more complex chain of rings is formed in (2RS,4SR)-7-chloro-2-exo-(5-methyl-2-thienyl)-2,3,4,5-tetra­hydro-1H-1,4-ep­oxy-1-benzazepine, C15H14ClNOS, (III), built from a combination of two independent C—H...O hydrogen bonds, one C—H...π(arene) hydrogen bond and one C—H...π(thienyl) hydro­gen bond.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109031199/gg3212sup1.cif
Contains datablocks global, I, II, III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109031199/gg3212Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109031199/gg3212IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109031199/gg3212IIIsup4.hkl
Contains datablock III

CCDC references: 749734; 749735; 749736

Comment top

We report here the structures of three racemic thienyl-substituted tetrahydro-1,4-epoxy-1-benzazepines, namely (2RS,4SR)-2-exo-(5-bromo-2-thienyl)-7-chloro-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (I), (2RS,4SR)-2-exo-(5-methyl-2-thienyl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (II), and (2RS,4SR)-7-chloro-2-exo-(5-methyl-2-thienyl)-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (III) (Fig. 1), and we compare these structures with those of two close analogues, (2RS,4SR)-2-exo-(5-bromo-2-thienyl)-7-fluoro-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (IV), and (2S,4R)-2-exo-(5-bromo-2-thienyl)-7-trifluoromethoxy-2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine, (V) (see scheme), the structures of which were reported recently (Blanco et al., 2008). The present work is a continuation of a structural study of this class of epoxybenzazepines (Acosta et al., 2008; Blanco et al., 2008; Gómez et al., 2008, 2009), which is itself part of a wider programme aimed at the identification of novel antiparasitic agents (Gómez et al., 2006; Yépez et al., 2006). The synthesis of compounds (I)–(III) followed the previously reported procedure (Acosta et al., 2008), in which an appropriately N-substituted 2-allylaniline is oxidized with hydrogen peroxide in the presence of sodium tungstate to give a nitrone, which then undergoes an internal 1,3-dipolar cycloaddition to generate the tricyclic epoxybenzazepine product in satisfactory yield via a single-stage process.

While compound (I) differs from (IV) only in the identity of the halogen substituent in the fused aryl ring [Cl in (I) versus F in (IV)], these two compounds nonetheless crystallize in different space groups, Pbca for (I) and P21/c for (IV). Similarly, although (II) and (III) differ only in the presence or absence of the Cl substituent in the fused aryl ring, again these two compounds crystallize in, respectively, space groups Pbca and P21/c. Although (I) and (II) crystallize in a common space group, as do (III) and (IV), within each pair the unit-cell dimensions differ substantially. Finally, while compounds (I)–(IV) all crystallize as racemic mixtures in centrosymmetric space groups, the crystals of (V) in space group P21 contain only one enantiomer. Hence, despite their close similarities, particularly for (I)–(IV), there are no isomorphisms between any pairs of these compounds.

In each of the racemic compounds (I)–(III), the reference molecules were selected to have the S configuration at atom C2, as for (IV) and (V) (Blanco et al., 2008), and on this basis each of the reference molecules had configuration R at atom C4. The ring-puckering parameters (Cremer & Pople, 1975) in Table 1 show that the heterobicyclic systems in (I)–(V) all have very similar shapes, with the five- and six-membered rings all adopting conformations intermediate between envelope and half-chair forms. However, the orientations of the substituted 2-thienyl rings relative to the adjacent fused-ring system show some sharp variations. The orientation of this ring can conveniently be defined by the N1—C2—C22—S21 torsion angle, which takes the values 31.4 (4), 37.7 (3), -88.3 (2), -60.1 (3) and 36.6 (4)° in (I)–(V), respectively. Thus, the orientation of the 2-thienyl ring is similar in (I), (II) and (V), but in (III) and (IV) the orientation of this ring is almost orthogonal to that found in the first group. It is notable, however, that in none of compounds (I)–(V) does the substituted 2-thienyl ring exhibit any orientational disorder. While such disorder, usually characterized by a 180° rotation about the exocyclic C—C bond, here C22—C2, is not uncommon with unsubstituted 2-thienyl groups, it is possible that the steric requirement of the single substituent at position 5 of the thienyl ring effectively locks this ring into a single preferred orientation.

There are short C—H···Cl contacts in both (I) and (III) (Table 2), but these are not regarded as structurally significant because it has been well established that Cl atoms, when bound to C atoms, are extremely poor acceptors of hydrogen bonds, even from donors such as O or N (Aakeröy et al., 1999; Brammer et al., 2001; Thallapally & Nangia, 2001).

The supramolecular aggregation in (I) is very simple. Pairs of molecules related by inversion are linked by C—H···π(thienyl) hydrogen bonds (Table 2) to form cyclic dimers (Fig. 2). The only direction-specific interaction between adjacent dimers is a rather short Br···Br contact. Atoms Br25 in the molecules at (x, y, z) and (1 - x, 2 - y, - z), which form parts of the cyclic dimers centred at (1/2, 1/2, 0) and (1/2, 3/2, 0) respectively, are separated by 3.5234 (7) Å, and the corresponding C—Br···Br angle is 143.9 (2)°. Studies (Ramasubbu et al., 1986) of the preferred orientation of C—X···X—C contacts, where X represents a halogen other than F, based on data extracted from the Cambridge Structural Database (CSD, Version?; Allen, 2002), have shown that such contacts fall into two main clusters, with C—X···X angles of ca 90 and 180°. The Br···Br contact in (I) thus deviates from this pattern. While the Br···Br distance is certainly less than twice the van der Waals radius estimated on the basis of a spherical atom (1.85 Å; Bondi, 1964), in terms of the polar flattening model (Nyburg & Faerman, 1985) the effective radius to be applied here appropriate for the observed C—Br···Br angle lies approximately midway between the major and minor radii, which were estimated using database analysis (Nyburg & Faerman, 1985) for covalently bonded Br as 1.84 and 1.54 Å, respectively. On this basis, the observed Br···Br distance of 3.5234 (7) Å in (I) does not appear to be exceptional and it cannot be taken as evidence of any significant electrostatic attraction (Lommerse et al., 1996; Bui et al., 2009) between the dimers stacked along [010].

The dimer formation via hydrogen bonding in (I) may be contrasted with that in the very close analogue, (IV) (see scheme). There are no hydrogen bonds of any kind in the crystal structure of (IV), but instead pairs of molecules are linked into centrosymmetric dimers by means of an aromatic ππ stacking interaction involving the fluoro-substituted aryl rings (Blanco et al., 2008).

In the structure of (II), the cooperative action of C—H···O and C—H···π(thienyl) hydrogen bonds, one of each type (Table 2), links the molecules into a chain of rings. Atoms C2 and C3 in the molecule at (x, y, z) act as hydrogen-bond donors to, respectively, the thienyl ring and atom O14, both in the molecule at (3/2 - x, 1/2 + y, z). Hence, molecules related by the b-glide plane at x = 3/4 are linked to form a chain of rings running parallel to the [010] direction (Fig. 3). Four chains of this type pass through each unit cell, in the domains 0.0 < z < 1/4, 1/4 < z < 1/2, 1/2 < z < 3/4 and 3/4 < z < 1.0, respectively, but there are no direction-specific interactions between the chains.

The chain formation in (III) is more complex than that in (II) because it is based on four independent hydrogen bonds, as opposed to just two in (II) (Table 2). Atoms C5 and C6 in the molecule at (x, y, z) act as hydrogen-bond donors, via atoms H5A and H6, to, respectively, atom O14 and the fused aryl ring C5a/C6–C9/C9a, both in the molecule at (x, 1/2 - y, 1/2 + z), so linking molecules related by the c-glide plane at y = 1/4 into a chain running parallel to the [001] direction. At the same time, atoms C3 and C5 at (x, y, z) act as donors, via H3B and H5B, to, respectively, atom O14 and the thienyl ring, both in the molecule at (x, y, 1 + z). The combination of these two pairs of hydrogen bonds thus generates a complex chain of fused rings running parallel to the [001] direction, in which atom C5 acts as a double donor of hydrogen bonds and atom O14 as a double acceptor (Fig. 4).

It is striking that the hydrogen-bonded structure of (III) is only one-dimensional, despite the involvement of four independent hydrogen bonds. By contrast, in the structure of (V) (Blanco et al., 2008), just two C—H···O hydrogen bonds are sufficient to generate a hydrogen-bonded structure in two dimensions.

Experimental top

For the preparation of compounds (I)–(III), sodium tungstate dihydrate (5 mol%), followed by 30% aqueous hydrogen peroxide solution (12 mmol), were added to a stirred and cooled (273 K) solution of the appropriately substituted 2-allyl-N-(thienylmethyl)aniline (4 mmol) in methanol (20 ml). The resulting mixtures were then stirred at ambient temperature for periods ranging from 18 to 20 h. Each mixture was filtered and the solvent was removed under reduced pressure. Toluene (30 ml) was added to the solid residues and the resulting solutions were heated under reflux for periods ranging from 6 to 8 h. After cooling each solution to ambient temperature, the solvent was removed under reduced pressure and the crude product was purified by chromatography on silica using heptane–ethyl acetate (compositions ranging from 60:1 to 10:1 v/v) as eluent. Crystallization from heptane gave colourless crystals of compounds (I)–(III) suitable for single-crystal X-ray diffraction. For compound (I): m.p. 358 K, yield 50%; MS (EI, 70 eV) m/z (%) 257 (M+, 59), 240 (59), 227 (12), 124 (100), 105 (50), 104 (78). For compound (II): m.p. 398 K, yield 64%; MS (EI, 70 eV) m/z (%) 291 (M+, 35Cl, 27), 274 (21), 261 (5), 151 (8), 138 (40), 124 (100). For compound (III): m.p. 362 K, yield 64%; MS (EI, 70 eV) m/z (%) 355 (M+, 35Cl, 79Br, 37), 338 (6), 325 (2), 188 (31), 164 (7), 139 (81), 138 (100).

Refinement top

All H atoms were located in difference maps and then treated as riding atoms in geometrically idealized positions, with C—H = 0.95 (aromatic and heteroaromatic), 0.98 (CH3), 0.99 (CH2) or 1.00 Å (aliphatic CH), and with Uiso(H) = kUeq(C), where k = 1.5 for the methyl groups, which were permitted to rotate but not to tilt, and 1.2 for all other H atoms. For each compound the configuration at C2 was set to be S in the reference molecule, and on that basis the configurations at C4 in the reference molecules are all R.

Computing details top

For all compounds, data collection: COLLECT (Nonius, 1999); cell refinement: DIRAX/LSQ (Duisenberg et al., 2000); data reduction: EVALCCD (Duisenberg et al., 2003); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Figures top
[Figure 1] Fig. 1. The molecular structures of the (2S,4R)-enantiomers of compounds (I)–(III), showing the atom-labelling schemes. (a) Compound (I), (b) (II) and (c) (III). Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a cyclic centrosymmetric dimer. For the sake of clarity, the unit-cell outline and H atoms not involved in the motif shown have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 - x, 1 - y, -z).
[Figure 3] Fig. 3. Part of the crystal structure of (II), showing the formation of a chain of rings parallel to [010] built from a combination of C—H···O and C—H···π(thienyl) hydrogen bonds. The [010] direction is vertical and the chain is viewed approximately along [100]. For the sake of clarity, the unit-cell outline and H atoms bonded to C atoms which are not involved in the motifs shown have been omitted. S atoms marked with an asterisk (*), a dollar sign ($) or an ampersand (&) are at the symmetry positions (3/2 - x, 1/2 + y, z), (x, 1 + y, z) and (3/2 - x, -1/2 + y, z), respectively.
[Figure 4] Fig. 4. Part of the crystal structure of (III), showing the formation of a chain of rings parallel to [001] built from a combination of four independent hydrogen bonds. For the sake of clarity, H atoms bonded to C atoms which are not involved in the motifs shown have been omitted. S atoms marked with an asterisk (*), a dollar sign ($) or an ampersand (&) are at the symmetry positions (x, 1/2 - y, 1/2 + z), (x, y, 1 + z) and (x, 1/2 - y, -1/2 + z), respectively.
(I) (2RS,4SR)-2-exo-(5-bromo-2-thienyl)-7-chloro- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C14H11BrClNOSF(000) = 1424
Mr = 356.66Dx = 1.772 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 3068 reflections
a = 10.7959 (11) Åθ = 3.0–27.5°
b = 14.2116 (16) ŵ = 3.42 mm1
c = 17.4303 (11) ÅT = 120 K
V = 2674.3 (4) Å3Plate, colourless
Z = 80.31 × 0.16 × 0.04 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3068 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1866 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.160
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1414
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1817
Tmin = 0.447, Tmax = 0.875l = 2222
31926 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0072P)2 + 6.9217P]
where P = (Fo2 + 2Fc2)/3
3068 reflections(Δ/σ)max = 0.001
172 parametersΔρmax = 0.55 e Å3
0 restraintsΔρmin = 0.56 e Å3
Crystal data top
C14H11BrClNOSV = 2674.3 (4) Å3
Mr = 356.66Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 10.7959 (11) ŵ = 3.42 mm1
b = 14.2116 (16) ÅT = 120 K
c = 17.4303 (11) Å0.31 × 0.16 × 0.04 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3068 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1866 reflections with I > 2σ(I)
Tmin = 0.447, Tmax = 0.875Rint = 0.160
31926 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.076H-atom parameters constrained
S = 1.05Δρmax = 0.55 e Å3
3068 reflectionsΔρmin = 0.56 e Å3
172 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4866 (3)0.5642 (2)0.16659 (19)0.0163 (8)
C20.3574 (4)0.5611 (3)0.1399 (2)0.0172 (9)
H20.35170.51890.09410.021*
C30.2837 (4)0.5177 (3)0.2062 (2)0.0230 (11)
H3A0.21170.55730.22000.028*
H3B0.25440.45370.19310.028*
C40.3782 (4)0.5148 (3)0.2709 (2)0.0207 (10)
H40.33940.53420.32060.025*
C50.4431 (4)0.4212 (3)0.2794 (2)0.0200 (10)
H5A0.49070.42060.32790.024*
H5B0.38060.37030.28180.024*
C5a0.5283 (4)0.4039 (3)0.2138 (2)0.0153 (10)
C60.5929 (4)0.3209 (3)0.2058 (2)0.0177 (10)
H60.58330.27210.24260.021*
C70.6711 (4)0.3089 (3)0.1447 (3)0.0179 (10)
C80.6855 (4)0.3773 (3)0.0889 (3)0.0200 (10)
H80.73830.36730.04600.024*
C90.6216 (4)0.4596 (3)0.0973 (2)0.0173 (9)
H90.63020.50780.05990.021*
C9a0.5451 (4)0.4735 (3)0.1592 (2)0.0152 (9)
O140.4708 (3)0.58278 (19)0.24713 (16)0.0200 (7)
S210.42813 (10)0.73252 (7)0.08172 (6)0.0191 (2)
C220.3172 (4)0.6580 (3)0.1177 (2)0.0166 (10)
C230.2038 (4)0.6978 (3)0.1154 (3)0.0223 (11)
H230.13080.66740.13310.027*
C240.2049 (4)0.7895 (3)0.0840 (3)0.0235 (11)
H240.13320.82760.07800.028*
C250.3188 (4)0.8162 (3)0.0636 (3)0.0184 (10)
Br250.36945 (4)0.93055 (3)0.02170 (3)0.02481 (12)
Cl70.76096 (10)0.20793 (7)0.13949 (7)0.0264 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0185 (19)0.0160 (18)0.0144 (18)0.0011 (16)0.0002 (16)0.0003 (16)
C20.015 (2)0.016 (2)0.020 (2)0.0002 (19)0.004 (2)0.0038 (19)
C30.018 (3)0.025 (3)0.026 (3)0.003 (2)0.006 (2)0.005 (2)
C40.022 (2)0.020 (2)0.020 (2)0.000 (2)0.011 (2)0.0057 (18)
C50.023 (3)0.016 (2)0.021 (2)0.002 (2)0.007 (2)0.006 (2)
C5a0.011 (2)0.015 (2)0.020 (2)0.0042 (17)0.002 (2)0.0015 (18)
C60.020 (3)0.012 (2)0.021 (2)0.0013 (18)0.002 (2)0.0046 (18)
C70.015 (2)0.015 (2)0.023 (2)0.0014 (17)0.003 (2)0.0038 (19)
C80.013 (2)0.028 (3)0.018 (2)0.005 (2)0.003 (2)0.002 (2)
C90.015 (2)0.018 (2)0.018 (2)0.001 (2)0.003 (2)0.0050 (17)
C9a0.009 (2)0.015 (2)0.022 (2)0.0005 (17)0.0064 (19)0.0011 (18)
O140.0226 (18)0.0185 (16)0.0189 (16)0.0002 (14)0.0018 (14)0.0014 (14)
S210.0156 (6)0.0180 (6)0.0238 (6)0.0004 (5)0.0008 (5)0.0029 (5)
C220.014 (2)0.022 (2)0.014 (2)0.0034 (19)0.0006 (19)0.0011 (19)
C230.016 (2)0.021 (2)0.029 (3)0.001 (2)0.005 (2)0.002 (2)
C240.022 (3)0.019 (2)0.030 (3)0.004 (2)0.000 (2)0.005 (2)
C250.018 (2)0.019 (2)0.018 (2)0.0011 (19)0.002 (2)0.0039 (19)
Br250.0251 (2)0.0201 (2)0.0293 (2)0.0008 (2)0.0018 (2)0.0079 (2)
Cl70.0255 (6)0.0182 (6)0.0355 (7)0.0040 (5)0.0060 (6)0.0018 (5)
Geometric parameters (Å, º) top
N1—O141.439 (4)C6—C71.369 (6)
N1—C9a1.441 (5)C6—H60.9500
N1—C21.471 (5)C7—C81.384 (6)
C2—C221.495 (6)C7—Cl71.734 (4)
C2—C31.533 (5)C8—C91.367 (6)
C2—H21.0000C8—H80.9500
C3—C41.522 (6)C9—C9a1.372 (6)
C3—H3A0.9900C9—H90.9500
C3—H3B0.9900S21—C251.705 (4)
C4—O141.450 (5)S21—C221.717 (4)
C4—C51.510 (5)C22—C231.349 (6)
C4—H41.0000C23—C241.414 (6)
C5—C5a1.488 (5)C23—H230.9500
C5—H5A0.9900C24—C251.335 (6)
C5—H5B0.9900C24—H240.9500
C5a—C61.377 (5)C25—Br251.863 (4)
C5a—C9a1.385 (6)
O14—N1—C9a107.7 (3)C7—C6—C5a119.9 (4)
O14—N1—C2101.6 (3)C7—C6—H6120.1
C9a—N1—C2111.2 (3)C5a—C6—H6120.1
N1—C2—C22109.3 (3)C6—C7—C8121.9 (4)
N1—C2—C3105.4 (3)C6—C7—Cl7119.3 (3)
C22—C2—C3114.5 (4)C8—C7—Cl7118.7 (3)
N1—C2—H2109.2C9—C8—C7118.0 (4)
C22—C2—H2109.2C9—C8—H8121.0
C3—C2—H2109.2C7—C8—H8121.0
C4—C3—C2102.8 (3)C8—C9—C9a120.7 (4)
C4—C3—H3A111.2C8—C9—H9119.6
C2—C3—H3A111.2C9a—C9—H9119.6
C4—C3—H3B111.2C9—C9a—C5a121.1 (4)
C2—C3—H3B111.2C9—C9a—N1117.5 (4)
H3A—C3—H3B109.1C5a—C9a—N1121.3 (4)
O14—C4—C5107.2 (4)N1—O14—C4103.8 (3)
O14—C4—C3103.4 (3)C25—S21—C2290.9 (2)
C5—C4—C3114.0 (4)C23—C22—C2131.1 (4)
O14—C4—H4110.7C23—C22—S21111.3 (3)
C5—C4—H4110.7C2—C22—S21117.4 (3)
C3—C4—H4110.7C22—C23—C24113.0 (4)
C5a—C5—C4111.0 (3)C22—C23—H23123.5
C5a—C5—H5A109.4C24—C23—H23123.5
C4—C5—H5A109.4C25—C24—C23111.9 (4)
C5a—C5—H5B109.4C25—C24—H24124.0
C4—C5—H5B109.4C23—C24—H24124.0
H5A—C5—H5B108.0C24—C25—S21113.0 (3)
C6—C5a—C9a118.4 (4)C24—C25—Br25128.5 (3)
C6—C5a—C5122.2 (4)S21—C25—Br25118.5 (2)
C9a—C5a—C5119.4 (4)
O14—N1—C2—C2288.9 (3)C6—C5a—C9a—N1176.0 (4)
C9a—N1—C2—C22156.8 (3)C5—C5a—C9a—N13.2 (6)
O14—N1—C2—C334.7 (4)O14—N1—C9a—C9149.0 (3)
C9a—N1—C2—C379.7 (4)C2—N1—C9a—C9100.5 (4)
N1—C2—C3—C49.1 (4)O14—N1—C9a—C5a28.8 (5)
C22—C2—C3—C4111.1 (4)C2—N1—C9a—C5a81.7 (4)
C2—C3—C4—O1419.7 (4)C9a—N1—O14—C468.4 (4)
C2—C3—C4—C596.3 (4)C2—N1—O14—C448.5 (4)
O14—C4—C5—C5a44.1 (5)C5—C4—O14—N178.0 (4)
C3—C4—C5—C5a69.7 (5)C3—C4—O14—N142.7 (4)
C4—C5—C5a—C6176.2 (4)N1—C2—C22—C23154.2 (5)
C4—C5—C5a—C9a4.7 (6)C3—C2—C22—C2336.3 (7)
C9a—C5a—C6—C70.3 (6)N1—C2—C22—S2131.4 (4)
C5—C5a—C6—C7179.4 (4)C3—C2—C22—S21149.3 (3)
C5a—C6—C7—C81.5 (6)C25—S21—C22—C230.3 (4)
C5a—C6—C7—Cl7174.9 (3)C25—S21—C22—C2175.1 (3)
C6—C7—C8—C91.8 (6)C2—C22—C23—C24174.3 (4)
Cl7—C7—C8—C9174.7 (3)S21—C22—C23—C240.3 (5)
C7—C8—C9—C9a0.3 (6)C22—C23—C24—C250.1 (6)
C8—C9—C9a—C5a1.5 (6)C23—C24—C25—S210.2 (5)
C8—C9—C9a—N1176.4 (4)C23—C24—C25—Br25178.6 (3)
C6—C5a—C9a—C91.8 (6)C22—S21—C25—C240.3 (4)
C5—C5a—C9a—C9179.1 (4)C22—S21—C25—Br25178.9 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···Cl7i1.002.783.497 (4)129
C8—H8···Cg1ii0.952.873.573 (5)132
Symmetry codes: (i) x+1, y+1/2, z+1/2; (ii) x+1, y+1, z.
(II) (2RS,4SR)-2-exo-(5-methyl-2-thienyl)-2,3,4,5- tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C15H15NOSF(000) = 1088
Mr = 257.34Dx = 1.359 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 2874 reflections
a = 8.3789 (12) Åθ = 2.8–27.5°
b = 9.6964 (14) ŵ = 0.24 mm1
c = 30.952 (4) ÅT = 120 K
V = 2514.7 (6) Å3Lath, colourless
Z = 80.42 × 0.10 × 0.05 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2874 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1730 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.078
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.8°
ϕ and ω scansh = 1010
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 1112
Tmin = 0.916, Tmax = 0.988l = 4040
21293 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.050Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.121H-atom parameters constrained
S = 1.06 w = 1/[σ2(Fo2) + (0.0426P)2 + 1.7346P]
where P = (Fo2 + 2Fc2)/3
2874 reflections(Δ/σ)max = 0.001
164 parametersΔρmax = 0.35 e Å3
0 restraintsΔρmin = 0.35 e Å3
Crystal data top
C15H15NOSV = 2514.7 (6) Å3
Mr = 257.34Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 8.3789 (12) ŵ = 0.24 mm1
b = 9.6964 (14) ÅT = 120 K
c = 30.952 (4) Å0.42 × 0.10 × 0.05 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2874 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
1730 reflections with I > 2σ(I)
Tmin = 0.916, Tmax = 0.988Rint = 0.078
21293 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0500 restraints
wR(F2) = 0.121H-atom parameters constrained
S = 1.06Δρmax = 0.35 e Å3
2874 reflectionsΔρmin = 0.35 e Å3
164 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.5597 (2)0.38687 (19)0.64474 (6)0.0213 (5)
C20.7087 (3)0.4320 (2)0.62350 (7)0.0214 (6)
H20.68730.51940.60740.026*
C30.8249 (3)0.4627 (3)0.66044 (8)0.0248 (6)
H3A0.92670.41240.65660.030*
H3B0.84730.56270.66260.030*
C40.7354 (3)0.4112 (2)0.69995 (7)0.0224 (6)
H40.80970.36240.72010.027*
C50.6453 (3)0.5224 (3)0.72346 (7)0.0247 (6)
H5A0.60590.48610.75140.030*
H5B0.71770.60070.72960.030*
C5A0.5079 (3)0.5713 (2)0.69704 (7)0.0205 (5)
C60.4156 (3)0.6832 (2)0.70913 (8)0.0253 (6)
H60.44010.73110.73510.030*
C70.2893 (3)0.7261 (3)0.68428 (8)0.0291 (6)
H70.22720.80300.69310.035*
C80.2524 (3)0.6579 (3)0.64653 (8)0.0305 (6)
H80.16520.68770.62930.037*
C90.3426 (3)0.5464 (3)0.63405 (8)0.0257 (6)
H90.31790.49890.60810.031*
C9A0.4687 (3)0.5037 (2)0.65915 (8)0.0216 (5)
O140.61991 (19)0.31636 (16)0.68256 (5)0.0230 (4)
S210.62791 (8)0.23531 (7)0.562064 (19)0.02638 (19)
C220.7644 (3)0.3255 (2)0.59239 (7)0.0231 (6)
C230.9144 (3)0.2958 (3)0.57941 (8)0.0271 (6)
H231.00690.33470.59230.033*
C240.9198 (3)0.2011 (3)0.54472 (8)0.0305 (7)
H241.01660.16990.53210.037*
C250.7746 (3)0.1590 (3)0.53127 (8)0.0268 (6)
C260.7350 (4)0.0578 (3)0.49695 (8)0.0360 (7)
H26A0.82420.05140.47650.054*
H26B0.63890.08800.48160.054*
H26C0.71590.03270.51000.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0238 (11)0.0185 (11)0.0216 (10)0.0013 (9)0.0007 (9)0.0021 (9)
C20.0216 (13)0.0179 (13)0.0247 (12)0.0012 (11)0.0030 (10)0.0023 (10)
C30.0242 (13)0.0227 (14)0.0276 (13)0.0004 (12)0.0006 (11)0.0007 (11)
C40.0199 (12)0.0219 (13)0.0253 (12)0.0008 (12)0.0038 (11)0.0016 (11)
C50.0283 (14)0.0233 (14)0.0226 (12)0.0025 (12)0.0029 (11)0.0016 (10)
C5A0.0200 (12)0.0174 (12)0.0241 (13)0.0021 (11)0.0027 (10)0.0021 (10)
C60.0274 (14)0.0204 (13)0.0282 (13)0.0016 (12)0.0082 (11)0.0000 (11)
C70.0287 (15)0.0229 (14)0.0358 (14)0.0048 (12)0.0091 (12)0.0054 (12)
C80.0223 (13)0.0371 (16)0.0322 (14)0.0071 (13)0.0024 (12)0.0076 (13)
C90.0230 (13)0.0303 (15)0.0238 (13)0.0018 (12)0.0005 (11)0.0039 (11)
C9A0.0224 (13)0.0185 (13)0.0240 (13)0.0005 (11)0.0042 (11)0.0028 (11)
O140.0276 (9)0.0164 (8)0.0250 (9)0.0008 (8)0.0010 (8)0.0039 (7)
S210.0287 (4)0.0268 (4)0.0236 (3)0.0033 (3)0.0002 (3)0.0016 (3)
C220.0286 (14)0.0188 (13)0.0219 (12)0.0016 (12)0.0024 (11)0.0050 (10)
C230.0288 (15)0.0251 (14)0.0275 (13)0.0000 (12)0.0034 (12)0.0025 (11)
C240.0333 (16)0.0284 (15)0.0298 (14)0.0073 (13)0.0094 (12)0.0057 (12)
C250.0358 (16)0.0217 (14)0.0229 (12)0.0082 (13)0.0043 (12)0.0057 (11)
C260.0511 (18)0.0316 (15)0.0254 (13)0.0092 (15)0.0017 (13)0.0014 (12)
Geometric parameters (Å, º) top
N1—C9A1.436 (3)C6—H60.9500
N1—O141.446 (2)C7—C81.378 (3)
N1—C21.477 (3)C7—H70.9500
C2—C221.487 (3)C8—C91.375 (3)
C2—C31.531 (3)C8—H80.9500
C2—H21.0000C9—C9A1.375 (3)
C3—C41.519 (3)C9—H90.9500
C3—H3A0.9900S21—C221.719 (3)
C3—H3B0.9900S21—C251.722 (3)
C4—O141.439 (3)C22—C231.350 (3)
C4—C51.504 (3)C23—C241.414 (4)
C4—H41.0000C23—H230.9500
C5—C5A1.490 (3)C24—C251.349 (4)
C5—H5A0.9900C24—H240.9500
C5—H5B0.9900C25—C261.484 (3)
C5A—C9A1.383 (3)C26—H26A0.9800
C5A—C61.383 (3)C26—H26B0.9800
C6—C71.373 (3)C26—H26C0.9800
C9A—N1—O14107.86 (17)C6—C7—C8120.2 (2)
C9A—N1—C2110.68 (18)C6—C7—H7119.9
O14—N1—C2101.83 (16)C8—C7—H7119.9
N1—C2—C22110.36 (19)C9—C8—C7119.5 (2)
N1—C2—C3105.25 (18)C9—C8—H8120.3
C22—C2—C3114.8 (2)C7—C8—H8120.3
N1—C2—H2108.8C8—C9—C9A120.0 (2)
C22—C2—H2108.8C8—C9—H9120.0
C3—C2—H2108.8C9A—C9—H9120.0
C4—C3—C2102.88 (19)C9—C9A—C5A121.2 (2)
C4—C3—H3A111.2C9—C9A—N1118.0 (2)
C2—C3—H3A111.2C5A—C9A—N1120.8 (2)
C4—C3—H3B111.2C4—O14—N1103.62 (16)
C2—C3—H3B111.2C22—S21—C2592.63 (13)
H3A—C3—H3B109.1C23—C22—C2129.3 (2)
O14—C4—C5107.56 (19)C23—C22—S21110.39 (19)
O14—C4—C3103.95 (18)C2—C22—S21119.87 (19)
C5—C4—C3113.7 (2)C22—C23—C24113.2 (2)
O14—C4—H4110.5C22—C23—H23123.4
C5—C4—H4110.5C24—C23—H23123.4
C3—C4—H4110.5C25—C24—C23113.7 (2)
C5A—C5—C4110.52 (19)C25—C24—H24123.2
C5A—C5—H5A109.5C23—C24—H24123.2
C4—C5—H5A109.5C24—C25—C26128.5 (2)
C5A—C5—H5B109.5C24—C25—S21110.05 (19)
C4—C5—H5B109.5C26—C25—S21121.4 (2)
H5A—C5—H5B108.1C25—C26—H26A109.5
C9A—C5A—C6118.0 (2)C25—C26—H26B109.5
C9A—C5A—C5119.8 (2)H26A—C26—H26B109.5
C6—C5A—C5122.2 (2)C25—C26—H26C109.5
C7—C6—C5A121.1 (2)H26A—C26—H26C109.5
C7—C6—H6119.4H26B—C26—H26C109.5
C5A—C6—H6119.4
C9A—N1—C2—C22154.6 (2)C5—C5A—C9A—N10.3 (3)
O14—N1—C2—C2290.9 (2)O14—N1—C9A—C9149.5 (2)
C9A—N1—C2—C381.0 (2)C2—N1—C9A—C9100.0 (2)
O14—N1—C2—C333.4 (2)O14—N1—C9A—C5A30.9 (3)
N1—C2—C3—C47.9 (2)C2—N1—C9A—C5A79.7 (3)
C22—C2—C3—C4113.6 (2)C5—C4—O14—N177.9 (2)
C2—C3—C4—O1420.7 (2)C3—C4—O14—N142.9 (2)
C2—C3—C4—C595.9 (2)C9A—N1—O14—C468.7 (2)
O14—C4—C5—C5A45.4 (2)C2—N1—O14—C447.79 (19)
C3—C4—C5—C5A69.1 (3)N1—C2—C22—C23151.1 (2)
C4—C5—C5A—C9A7.3 (3)C3—C2—C22—C2332.4 (4)
C4—C5—C5A—C6173.0 (2)N1—C2—C22—S2137.7 (3)
C9A—C5A—C6—C70.2 (3)C3—C2—C22—S21156.38 (17)
C5—C5A—C6—C7179.8 (2)C25—S21—C22—C230.7 (2)
C5A—C6—C7—C80.1 (4)C25—S21—C22—C2171.97 (19)
C6—C7—C8—C90.2 (4)C2—C22—C23—C24171.4 (2)
C7—C8—C9—C9A0.0 (4)S21—C22—C23—C240.5 (3)
C8—C9—C9A—C5A0.3 (4)C22—C23—C24—C250.2 (3)
C8—C9—C9A—N1179.9 (2)C23—C24—C25—C26177.9 (2)
C6—C5A—C9A—C90.4 (3)C23—C24—C25—S210.7 (3)
C5—C5A—C9A—C9179.9 (2)C22—S21—C25—C240.8 (2)
C6—C5A—C9A—N1180.0 (2)C22—S21—C25—C26178.2 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cg1i1.002.593.570 (2)167
C3—H3B···O14i0.992.553.527 (3)169
Symmetry code: (i) x+3/2, y+1/2, z.
(III) (2RS,4SR)-7-chloro-2-exo-(5-methyl-2-thienyl)- 2,3,4,5-tetrahydro-1H-1,4-epoxy-1-benzazepine top
Crystal data top
C15H14ClNOSF(000) = 608
Mr = 291.78Dx = 1.479 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 3002 reflections
a = 15.042 (3) Åθ = 2.9–27.5°
b = 15.739 (3) ŵ = 0.44 mm1
c = 5.6216 (13) ÅT = 120 K
β = 100.120 (16)°Block, colourless
V = 1310.2 (5) Å30.27 × 0.15 × 0.14 mm
Z = 4
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3002 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode2221 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.061
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.9°
ϕ and ω scansh = 1917
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
k = 2020
Tmin = 0.913, Tmax = 0.940l = 77
19866 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.094H-atom parameters constrained
S = 1.07 w = 1/[σ2(Fo2) + (0.0322P)2 + 1.0475P]
where P = (Fo2 + 2Fc2)/3
3002 reflections(Δ/σ)max = 0.001
173 parametersΔρmax = 0.29 e Å3
0 restraintsΔρmin = 0.30 e Å3
Crystal data top
C15H14ClNOSV = 1310.2 (5) Å3
Mr = 291.78Z = 4
Monoclinic, P21/cMo Kα radiation
a = 15.042 (3) ŵ = 0.44 mm1
b = 15.739 (3) ÅT = 120 K
c = 5.6216 (13) Å0.27 × 0.15 × 0.14 mm
β = 100.120 (16)°
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
3002 independent reflections
Absorption correction: multi-scan
(SADABS; Sheldrick, 2003)
2221 reflections with I > 2σ(I)
Tmin = 0.913, Tmax = 0.940Rint = 0.061
19866 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.094H-atom parameters constrained
S = 1.07Δρmax = 0.29 e Å3
3002 reflectionsΔρmin = 0.30 e Å3
173 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.73005 (12)0.43670 (12)0.7210 (3)0.0173 (4)
C20.76448 (14)0.51566 (14)0.8526 (4)0.0180 (5)
H20.71210.54730.89690.022*
C30.82369 (15)0.48258 (14)1.0860 (4)0.0207 (5)
H3A0.88450.50861.10980.025*
H3B0.79560.49501.22870.025*
C40.82872 (14)0.38782 (14)1.0453 (4)0.0189 (5)
H40.89150.36671.10300.023*
C50.76197 (15)0.33740 (15)1.1593 (4)0.0200 (5)
H5A0.77370.27591.14510.024*
H5B0.76880.35171.33300.024*
C5a0.66807 (14)0.35771 (14)1.0347 (4)0.0175 (4)
C60.59271 (15)0.33102 (14)1.1247 (4)0.0209 (5)
H60.59950.29791.26810.025*
C70.50801 (16)0.35275 (15)1.0056 (4)0.0222 (5)
C80.49530 (16)0.39888 (16)0.7953 (4)0.0262 (5)
H80.43620.41320.71540.031*
C90.56965 (15)0.42391 (15)0.7029 (4)0.0236 (5)
H90.56220.45490.55570.028*
C9a0.65535 (14)0.40423 (14)0.8227 (4)0.0177 (4)
O140.80492 (10)0.37915 (10)0.7860 (2)0.0185 (3)
S210.92305 (4)0.56314 (4)0.68127 (10)0.02117 (14)
C220.81031 (14)0.57139 (14)0.6971 (4)0.0186 (5)
C230.77158 (16)0.63253 (14)0.5455 (4)0.0215 (5)
H230.70950.64730.52780.026*
C240.83209 (16)0.67250 (15)0.4158 (4)0.0231 (5)
H240.81460.71650.30160.028*
C250.91722 (15)0.64224 (14)0.4695 (4)0.0203 (5)
C260.99841 (16)0.66793 (16)0.3671 (4)0.0270 (5)
H26A0.98420.71850.26590.041*
H26B1.01590.62140.26900.041*
H26C1.04840.68070.49920.041*
Cl70.41442 (4)0.32083 (4)1.12421 (11)0.03082 (17)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0172 (9)0.0178 (10)0.0160 (8)0.0014 (8)0.0007 (7)0.0009 (7)
C20.0194 (11)0.0170 (12)0.0183 (10)0.0009 (9)0.0053 (8)0.0027 (8)
C30.0266 (12)0.0200 (12)0.0151 (10)0.0046 (10)0.0026 (9)0.0021 (9)
C40.0195 (11)0.0221 (12)0.0139 (10)0.0032 (9)0.0006 (8)0.0006 (8)
C50.0255 (12)0.0178 (12)0.0164 (10)0.0024 (9)0.0028 (9)0.0022 (8)
C5a0.0223 (11)0.0149 (11)0.0154 (10)0.0002 (9)0.0033 (8)0.0029 (8)
C60.0284 (12)0.0174 (12)0.0183 (10)0.0003 (10)0.0075 (9)0.0003 (9)
C70.0227 (12)0.0184 (12)0.0281 (12)0.0024 (9)0.0118 (9)0.0013 (9)
C80.0200 (11)0.0275 (14)0.0306 (12)0.0002 (10)0.0024 (9)0.0044 (10)
C90.0222 (12)0.0252 (13)0.0220 (11)0.0004 (10)0.0002 (9)0.0062 (9)
C9a0.0200 (11)0.0166 (11)0.0165 (10)0.0030 (9)0.0034 (8)0.0014 (8)
O140.0200 (8)0.0198 (8)0.0164 (7)0.0029 (6)0.0046 (6)0.0025 (6)
S210.0177 (3)0.0235 (3)0.0226 (3)0.0006 (2)0.0045 (2)0.0040 (2)
C220.0181 (11)0.0178 (12)0.0204 (10)0.0002 (9)0.0043 (8)0.0025 (9)
C230.0221 (11)0.0185 (12)0.0239 (11)0.0021 (9)0.0038 (9)0.0011 (9)
C240.0292 (13)0.0169 (12)0.0233 (11)0.0016 (10)0.0054 (9)0.0037 (9)
C250.0265 (12)0.0159 (11)0.0191 (11)0.0037 (9)0.0056 (9)0.0016 (9)
C260.0292 (13)0.0259 (14)0.0288 (12)0.0027 (11)0.0130 (10)0.0011 (10)
Cl70.0270 (3)0.0281 (3)0.0422 (4)0.0002 (3)0.0197 (3)0.0028 (3)
Geometric parameters (Å, º) top
N1—C9a1.441 (3)C6—H60.9500
N1—O141.441 (2)C7—C81.372 (3)
N1—C21.492 (3)C7—Cl71.735 (2)
C2—C221.490 (3)C8—C91.371 (3)
C2—C31.541 (3)C8—H80.9500
C2—H21.0000C9—C9a1.381 (3)
C3—C41.513 (3)C9—H90.9500
C3—H3A0.9900S21—C251.714 (2)
C3—H3B0.9900S21—C221.719 (2)
C4—O141.445 (2)C22—C231.348 (3)
C4—C51.508 (3)C23—C241.410 (3)
C4—H41.0000C23—H230.9500
C5—C5a1.497 (3)C24—C251.350 (3)
C5—H5A0.9900C24—H240.9500
C5—H5B0.9900C25—C261.495 (3)
C5a—C9a1.383 (3)C26—H26A0.9800
C5a—C61.386 (3)C26—H26B0.9800
C6—C71.374 (3)C26—H26C0.9800
C9a—N1—O14107.80 (16)C8—C7—C6121.9 (2)
C9a—N1—C2109.01 (16)C8—C7—Cl7119.02 (18)
O14—N1—C2102.12 (14)C6—C7—Cl7119.07 (18)
C22—C2—N1110.84 (16)C9—C8—C7118.6 (2)
C22—C2—C3116.15 (18)C9—C8—H8120.7
N1—C2—C3103.83 (17)C7—C8—H8120.7
C22—C2—H2108.6C8—C9—C9a120.3 (2)
N1—C2—H2108.6C8—C9—H9119.9
C3—C2—H2108.6C9a—C9—H9119.9
C4—C3—C2103.95 (17)C9—C9a—C5a121.0 (2)
C4—C3—H3A111.0C9—C9a—N1116.95 (19)
C2—C3—H3A111.0C5a—C9a—N1122.01 (19)
C4—C3—H3B111.0N1—O14—C4103.92 (14)
C2—C3—H3B111.0C25—S21—C2292.90 (11)
H3A—C3—H3B109.0C23—C22—C2126.7 (2)
O14—C4—C5108.27 (17)C23—C22—S21109.99 (17)
O14—C4—C3103.63 (17)C2—C22—S21123.25 (16)
C5—C4—C3113.55 (18)C22—C23—C24113.5 (2)
O14—C4—H4110.4C22—C23—H23123.2
C5—C4—H4110.4C24—C23—H23123.2
C3—C4—H4110.4C25—C24—C23113.6 (2)
C5a—C5—C4109.43 (18)C25—C24—H24123.2
C5a—C5—H5A109.8C23—C24—H24123.2
C4—C5—H5A109.8C24—C25—C26128.7 (2)
C5a—C5—H5B109.8C24—C25—S21110.01 (17)
C4—C5—H5B109.8C26—C25—S21121.23 (17)
H5A—C5—H5B108.2C25—C26—H26A109.5
C9a—C5a—C6118.5 (2)C25—C26—H26B109.5
C9a—C5a—C5119.52 (19)H26A—C26—H26B109.5
C6—C5a—C5121.98 (19)C25—C26—H26C109.5
C7—C6—C5a119.6 (2)H26A—C26—H26C109.5
C7—C6—H6120.2H26B—C26—H26C109.5
C5a—C6—H6120.2
C9a—N1—C2—C22154.72 (18)C6—C5a—C9a—N1178.0 (2)
O14—N1—C2—C2291.41 (19)C5—C5a—C9a—N12.2 (3)
C9a—N1—C2—C379.88 (19)O14—N1—C9a—C9151.67 (19)
O14—N1—C2—C333.99 (19)C2—N1—C9a—C998.2 (2)
C22—C2—C3—C4113.3 (2)O14—N1—C9a—C5a30.3 (3)
N1—C2—C3—C48.6 (2)C2—N1—C9a—C5a79.8 (2)
C2—C3—C4—O1419.8 (2)C9a—N1—O14—C466.53 (18)
C2—C3—C4—C597.4 (2)C2—N1—O14—C448.23 (18)
O14—C4—C5—C5a47.7 (2)C5—C4—O14—N178.36 (19)
C3—C4—C5—C5a66.8 (2)C3—C4—O14—N142.50 (19)
C4—C5—C5a—C9a10.5 (3)N1—C2—C22—C2389.6 (3)
C4—C5—C5a—C6169.8 (2)C3—C2—C22—C23152.2 (2)
C9a—C5a—C6—C71.4 (3)N1—C2—C22—S2188.3 (2)
C5—C5a—C6—C7178.8 (2)C3—C2—C22—S2129.9 (3)
C5a—C6—C7—C81.5 (3)C25—S21—C22—C230.10 (18)
C5a—C6—C7—Cl7178.59 (17)C25—S21—C22—C2178.07 (18)
C6—C7—C8—C90.1 (4)C2—C22—C23—C24177.8 (2)
Cl7—C7—C8—C9179.94 (19)S21—C22—C23—C240.3 (2)
C7—C8—C9—C9a1.2 (4)C22—C23—C24—C250.4 (3)
C8—C9—C9a—C5a1.3 (3)C23—C24—C25—C26179.1 (2)
C8—C9—C9a—N1176.7 (2)C23—C24—C25—S210.3 (3)
C6—C5a—C9a—C90.1 (3)C22—S21—C25—C240.11 (18)
C5—C5a—C9a—C9179.9 (2)C22—S21—C25—C26179.02 (19)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···Cl7i1.002.803.742 (2)156
C3—H3B···Cg1ii0.992.703.372 (3)125
C5—H5A···O14iii0.992.583.518 (3)158
c5—H5B···O14ii0.992.553.530 (3)173
C6—H6···CG2iii0.952.923.689 (3)139
Symmetry codes: (i) x+1, y+1, z+2; (ii) x, y, z+1; (iii) x, y+1/2, z+1/2.

Experimental details

(I)(II)(III)
Crystal data
Chemical formulaC14H11BrClNOSC15H15NOSC15H14ClNOS
Mr356.66257.34291.78
Crystal system, space groupOrthorhombic, PbcaOrthorhombic, PbcaMonoclinic, P21/c
Temperature (K)120120120
a, b, c (Å)10.7959 (11), 14.2116 (16), 17.4303 (11)8.3789 (12), 9.6964 (14), 30.952 (4)15.042 (3), 15.739 (3), 5.6216 (13)
α, β, γ (°)90, 90, 9090, 90, 9090, 100.120 (16), 90
V3)2674.3 (4)2514.7 (6)1310.2 (5)
Z884
Radiation typeMo KαMo KαMo Kα
µ (mm1)3.420.240.44
Crystal size (mm)0.31 × 0.16 × 0.040.42 × 0.10 × 0.050.27 × 0.15 × 0.14
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Bruker Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Multi-scan
(SADABS; Sheldrick, 2003)
Tmin, Tmax0.447, 0.8750.916, 0.9880.913, 0.940
No. of measured, independent and
observed [I > 2σ(I)] reflections
31926, 3068, 1866 21293, 2874, 1730 19866, 3002, 2221
Rint0.1600.0780.061
(sin θ/λ)max1)0.6500.6490.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.050, 0.076, 1.05 0.050, 0.121, 1.06 0.042, 0.094, 1.07
No. of reflections306828743002
No. of parameters172164173
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.55, 0.560.35, 0.350.29, 0.30

Computer programs: COLLECT (Nonius, 1999), DIRAX/LSQ (Duisenberg et al., 2000), EVALCCD (Duisenberg et al., 2003), SIR2004 (Burla et al., 2005), SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Ring-puckering parameters (Å, °) for compounds (I)–(V) top
CompoundFive-membered ringSix-membered ring
Q2ϕ2Qθϕ
(I)0.441 (4)190.8 (6)0.623 (4)54.2 (4)348.6 (5)
(II)0.436 (2)189.6 (3)0.615 (2)52.0 (2)349.1 (3)
(III)0.438 (2)191.0 (3)0.605 (2)50.3 (2)346.2 (3)
(IV)a0.455 (3)199.7 (4)0.626 (3)53.2 (3)343.2 (4)
(V)a0.447 (3)197.2 (5)0.623 (3)54.1 (3)347.0 (4)
Notes: (a) data taken from Blanco et al. (2008). Puckering parameters for five-membered rings are defined for the atom sequence O14/N1/C2–C4 and those for six-membered rings are defined for the atom sequence O14/N1/C9a/C5a/C5/C4.
Hydrogen bonds and short intermolecular contacts (Å, °) for compounds (I)–(III) top
CompoundD—H···AD—HH···AD···AD—H···A
(I)C4—H4···Cl7i1.002.783.497 (4)129
C8—H8···Cg1ii0.952.973.573 (5)132
(II)C2—H2···Cg1iii1.002.593.570 (2)167
C3—H3B···O14iii0.992.553.527 (3)169
(III)C2—H2···Cl7iv1.002.803.742 (4)156
C3—H3B···Cg1v0.992.703.372 (3)125
C5—H5A···O14vi0.992.583.518 (3)158
C5—H5B···O14v0.992.553.530 (3)173
C6—H6···Cg2vi0.952.923.689 (3)139
Cg1 represents the centroid of the S21/C22–C25 ring and Cg2 represents the centroid of the C5a/C6–C9/C9a ring. Symmetry codes: (i) 1 - x, 1/2 + y, 1/2 - z; (ii) 1 - x, 1 - y, -z; (iii) 3/2 - x, 1/2 + y, z; (iv) 1 - x, 1 - y, 2 - z; (v) x, y, 1 + z; (vi) x, 1/2 - y, 1/2 + z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds