Download citation
Download citation
link to html
The lophine derivative 2-(2-nitro­phen­yl)-4,5-diphenyl-1H-imidazole, C21H15N3O2, (I), crystallized from ethanol as a sol­vent-free crystal and from acetonitrile as the monosolvate, C21H15N3O2·C2H3N, (II). Crystallization of 2-(4-nitro­phen­yl)-4,5-diphenyl-1H-imidazole from methanol yielded the me­thanol monosolvate, C21H15N3O2·CH4O, (III). Three lophine derivatives of methyl­ated imidazole, namely, 1-methyl-2-(2-nitro­phen­yl)-4,5-diphenyl-1H-imidazole methan­ol sol­vate, C22H17N3O2·CH4O, (IV), 1-methyl-2-(3-nitro­phen­yl)-4,5-diphenyl-1H-imidazole, C22H17N3O2, (V), and 1-methyl-2-(4-nitro­phen­yl)-4,5-diphenyl-1H-imidazole, C22H17N3O2, (VI), were recrystallized from methanol, aceto­nitrile and ethanol, respectively, but only (IV) produced a solvate. Compounds (III) and (IV) each crystallize with two independent molecules in the asymmetric unit. Five imidazole mol­ecules in the six crystals differ in their mol­ecular conformations by rotation of the aromatic rings with respect to the central imidazole ring. In the absence of a methyl group on the imidazole [com­pounds (I)–(III)], the rotation angles are not strongly affected by the position of the nitro group [44.8 (2) and 45.5 (1)° in (I) and (II), respectively, and 15.7 (2) and 31.5 (1)° in the two molecules of (III)]. However, the rotation angle is strongly affected by the presence of a methyl group on the imidazole [com­pounds (IV)–(VI)], and the position of the nitro group (ortho, meta or para) on a neighbouring benzene ring; values of the rotation angle range from 26.0 (1) [in (VI)] to 85.2 (1)° [in (IV)]. This group repulsion also affects the outer N—C—N bond angle. The packing of the mol­ecules in (I), (II) and (III) is determined by hydrogen bonding. In (I) and (II), mol­ecules form extended chains through N—H...N hydrogen bonds [with an N...N distance of 2.944 (5) Å in (I) and 2.920 (3) Å in (II)], while in (III) the chain is formed with a methanol solvent mol­ecule as the mediator between two imidazole rings, with O...N distances of 2.788 (4)–2.819 (4) Å. In the absence of the imidazole N—H H-atom donor, the packing of mol­ecules (IV)–(VI) is determined by weaker inter­molecular inter­actions. The methanol solvent mol­ecule in (IV) is hydrogen bonded to imidazole [O...N = 2.823 (4) Å] but has no effect on the packing of mol­ecules in the unit cell.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270109022203/gg3195sup1.cif
Contains datablocks global, I, II, III, IV, V, VI

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195IIsup3.hkl
Contains datablock II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195IIIsup4.hkl
Contains datablock III

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195IVsup5.hkl
Contains datablock IV

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195Vsup6.hkl
Contains datablock V

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270109022203/gg3195VIsup7.hkl
Contains datablock VI

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270109022203/gg3195sup8.pdf
Supplementary material

CCDC references: 746064; 746065; 746066; 746067; 746068; 746069

Comment top

Recently, heterocyclic imidazole derivatives have attracted considerable attention because of their unique linear and nonlinear optical properties (Santos et al., 2001). Lophine (2,4,5-triphenyl-1H-imidazole) is an attractive fluorescence and chemiluminescence compound. The chemiluminescence properties of lophine were reported for the first time by Radziszewski (1877) who showed that it emits yellow light when it reacts with oxygen in the presence of a strong base. The chemistry of lophine derivatives has a long history in relation to important physicochemical phenomena such as chemiluminescence through its oxidation and photo-, piezo- and thermochromic properties (Zimmerman et al., 1961; Maeda & Hayashi, 1969, 1970). Only a few imidazole analogues or nitro lophine derivatives are known (Inouye & Sakaino, 1985,1986, 2000; Sakaino, Fujii et al., 1990; Sakaino, Shimizu et al., 1990; Kaftory et al., 1998; Inouye et al., 2003; Bu et al., 2003). The spectral properties of lophine derivatives are of interest: the colour change is dependent on the solvation in the crystal and in different derivatives. We have recently synthesized various lophine derivatives to study their spectral properties with the aim of understanding the relationship between molecular and crystal structures and colour change (Fridman, Kaftory, Eichen et al., 2007; Fridman, Kaftory & Speiser, 2007; Fridman et al., 2008). In order to examine the effect of the imidazole ring's ability to form hydrogen bonds on the crystal colour, we have prepared lophine derivatives with nitrophenyl at position 2 of the imidazole (for notation see scheme) as well as compounds where the hydrogen donor ability is blocked (N—H) in imidazole by replacing the H atom by a methyl group. We present here a comparison between molecular and crystal structures of six lophine o-, m- and p-nitrophenyl derivatives (Fig. 1–6).

Comparison of the bond lengths in the imidazole rings of (I) to (IV) reveals the following ranges: N1—C7 1.350–1.375 Å, N2—C7 1.317–1.333 Å, N1—C8 1.377–1.395 Å, N2—C9 1.369–1.383 Å and C8—C9 1.374–1.377 Å. Statistical calculation of the related bond lengths in the imidazole rings in 56 lophine derivatives taken from the Cambridge Structural Database (CSD; Allen, 2002) provided corresponding average values of 1.353 (8), 1.333 (7), 1.370 (16), 1.386 (7) and 1.375 (8) Å, respectively.

The conformation of the molecules differs by rotation of the phenyl rings with respect to the central imidazole. The conformation is affected by the presence or absence of a bulky group [H atom in (I)–(III) and methyl group in (IV)–(VI)], and is also dependent on the position of the nitro group (o, m, p) on the phenyl ring at position 2 of the imidazole with respect to the H atom or methyl group. An overlay of the molecules in the six crystals [only one of the two molecules of (III) and (VI) is shown] is shown in Figs. 7(a) and 7(b), and the rotation angles of the phenyl rings are given in Table 1. The main difference between the conformation of molecule (I) and (III) is the rotation of the phenyl ring at position 2. The rotation angles in (I) and (II) are 44.8 (7) and 45.5 (4)°, respectively, compared with 15.7 (5)° and 31.5 (6)° in molecules (IIIa) and (IIIb), respectively. This difference can be explained by the larger repulsion of the nitro group in the ortho position compared with that in the para position. In the presence of a methyl group, the rotation angle decreases in the sequence: nitro at the ortho position (IV) > meta position (V) > para position (VI) [85.2 (1)°, 36.0 (1)°, 26.0 (1)° (VIa) and 30.8 (1)° (VIb), respectively]. It should be noted that the conformation of the two crystallographically independent molecules in (VI) are different with respect to the rotation of the phenyl rings in positions 4 and 5 (see notation in the scheme). The effect of the methyl group is also seen in the bond angles C1—C7—N1 and C1—C7—N2, where the bond angle is larger on the side with the methyl group: 124.7 (3) and 123.2 (3)° in (IV), 126.1 (2) and 122.6 (2)° in (V), 126.9 (2) and 122.2 (2)° in (VIa), and 125.8 (2) and 123.2 (2)° in (VIb), respectively. In the absence of the methyl group [compounds (I)–(III)] the opposite relation between values of the equivalent bond angles is observed: 123.2 (3) and 126.1 (3)° in (I), 122.9 (2) and 125.2 (2)° (nitro group in ortho position) in (II), 124.4 (3) and 125.2 (3)° in(IIIa), and 124.1 (3)° and 125.3 (3)° (nitro group in para position) in (IIIb).

The molecular packing is similar in compounds (I)–(III) as they all form folded chains comprising molecules bonded to each other by hydrogen bonds. However, while in the crystals of (I) and (II) the molecules are connected to each other through N—H···N hydrogen bonds, in (III) a mediator molecule, methanol, forms the hydrogen bonds between each pair of molecules of (III). The hydrogen-bonding schemes are shown in Figs. 8–10, and the geometry of the hydrogen bonds is given in Table 2. A similar chain formation by hydrogen bonds has been observed in five other lophine derivatives (Seethalakshmi et al., 2006; Inouye & Sakaino, 1986; Thuer et al., 2004; Liu et al., 2005, Thiruvalluvar et al., 2007). While the methanol solvent molecule in (III) has a specific role in the packing arrangement as described above, the role of the acetonitrile molecules in solvate (II) is to occupy lattice voids. In the absence of the hydrogen donor (N—H) of the imidazole, the packing of molecules in (IV)–(VI) is determined by much weaker intermolecular interactions such as weak hydrogen bonds between the O atoms of the nitro group and aromatic H atoms (Table 2). The methanol solvent in (IV), although hydrogen bonded to the imidazole, does not play any significant role in the molecular packing [the HO···N distance is 2.823 (4) Å]. Differential scanning calorimetry (DSC) thermographs (see Supplementary material) show that the solvent molecules are removed at 394 and 377 K for (II) and (III), respectively. Upon removal of acetonitrile from (II) there is no change in the crystal colour, whereas removal of the methanol from (III) changes the crystal colour to red. It is therefore suggested that the change of colour is a result of the change in the hydrogen bonding. This assumption needs further investigation.

Related literature top

For related literature, see: Allen (2002); Bu et al. (2003); Fridman et al. (2008); Fridman, Kaftory & Speiser (2007); Fridman, Kaftory, Eichen & Speiser (2007); Inouye & Sakaino (1985, 1986, 2000); Kaftory et al. (1998); Liu et al. (2005); Maeda & Hayashi (1969, 1970); Radziszewski (1877); Sakaino et al. (1986); Sakaino, Fujii & Fujiwara (1990); Sakaino, Shimizu, Takahashi & Matsushima (1990); Santos et al. (2001); Seethalakshmi et al. (2006); Thiruvalluvar et al. (2007); Thuer et al. (2004); Zimmerman et al. (1961).

Experimental top

Benzil (1 mmol), the appropriate benzaldehyde (1 mmol) and ammonium acetate (1.2 g) were dissolved in boiling glacial acetic acid (16 ml) and refluxed for 5–24 h. On completion of the reaction, the reaction mixture was poured into ice water, washed with NaHCO3 and then washed several times with EtOAc. The combined extracts were dried over MgSO4. The purification was done by flash column chromatography. Compound (I) crystallizes from ethanol as light yellow plates, in the monoclinic space group Cc (Fig. 1) and from acetonitrile as light yellow plates to form the solvatee (II) in the orthorhombic space group Pbca (Fig. 2). Compound (III) crystallizes from methanol as the solvate in light yellow plates in the monoclinic space group P21/c with Z' = 2 (Figs. 3a,b). Compound (IV) crystallizes from methanol as light yellow solvate plates (Fig. 4), (V) from acetonitrile as light yellow plates, both in the monoclinic space group P21/c (Fig. 5). Compound (VI) crystallizes from ethanol as light yellow prisms in the triclinic space group P1 with Z' = 2 for (III) (Figs. 6a,b).

Refinement top

H atoms were clearly found in the difference Fourier maps. The amine H atom was refined at the earlier stages of the refinement and was fixed at the later stages. All other H atoms were refined at idealized positions riding on the C and N atoms with C—H = 0.96 Å, N—H = 0.86 Å and O—H = 0.82 Å; Uiso(H) = 1.2Ueq(C N or O).

Computing details top

For all compounds, data collection: COLLECT (Nonius, 2000). Cell refinement: DENZO HKL-2000 (Otwinowski & Minor ,1997) for (I); DENZO HKL-2000 (Otwinowski & Minor, 1997) for (II), (III), (IV), (V), (VI). Data reduction: DENZO HKL-2000 (Otwinowski & Minor, 1997) for (I), (III), (IV), (V), (VI); DENZO HKL-2000 (Otwinowski & Minor ,1997) for (II). For all compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1999).

Figures top
[Figure 1]
[Figure 2]
[Figure 3]
[Figure 4]
[Figure 5]
[Figure 6]
[Figure 7]
[Figure 8]
[Figure 9]
[Figure 10]
Fig. 1. Molecular structure of (I). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 2. Molecular structure of (II). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 3. Molecular structures of (IIIa) and (IIIb). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 4. Molecular structure of (IV). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 5. Molecular structure of (V). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 6. Molecular structures of (VIa) and (VIb). Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii (Farrugia, 1999).

Fig. 7. Overlay of molecules (a) of (I)–(III) (red, green and blue, respectively) and (b) of (IV)–(VI) (red, green and blue, respectively). [Only molecules (IIIa) and (VIa) are shown.].

Fig. 8. Hydrogen-bonding scheme in (I). Symmetry code: (vi) x, -y, 1/2 + z.

Fig. 9. Hydrogen-bonding scheme in (II). Symmetry code: (iii) -1/2 + x, y, 3/2 - z.

Fig. 10. Hydrogen-bonding scheme in (III). Symmetry codes: (iii) 1 - x, 1/2 + y, 1/2 - z; (v) 1 - x, -1/2 + y, 1/2 - z.

#Figure S1. DSC thermograph of (II).

#Figure S2. DSC thermograph of (III).
(I) 2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole top
Crystal data top
C21H15N3O2F(000) = 712
Mr = 341.36Dx = 1.294 Mg m3
Monoclinic, CcMo Kα radiation, λ = 0.71073 Å
Hall symbol: C -2ycCell parameters from 6192 reflections
a = 10.521 (2) Åθ = 2.1–25.0°
b = 19.769 (4) ŵ = 0.09 mm1
c = 9.056 (2) ÅT = 293 K
β = 111.49 (3)°Plate, yellow
V = 1752.6 (7) Å30.59 × 0.37 × 0.08 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
943 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.083
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ– and ω–scansh = 012
6192 measured reflectionsk = 023
1533 independent reflectionsl = 1010
Refinement top
Refinement on F2Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.043 w = 1/[σ2(Fo2) + (0.043P)2]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.090(Δ/σ)max < 0.001
S = 0.88Δρmax = 0.12 e Å3
1533 reflectionsΔρmin = 0.13 e Å3
236 parametersExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
2 restraintsExtinction coefficient: 0.0063 (10)
Primary atom site location: structure-invariant direct methodsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
Secondary atom site location: difference Fourier mapAbsolute structure parameter: 0 (10)
Crystal data top
C21H15N3O2V = 1752.6 (7) Å3
Mr = 341.36Z = 4
Monoclinic, CcMo Kα radiation
a = 10.521 (2) ŵ = 0.09 mm1
b = 19.769 (4) ÅT = 293 K
c = 9.056 (2) Å0.59 × 0.37 × 0.08 mm
β = 111.49 (3)°
Data collection top
Nonius KappaCCD
diffractometer
943 reflections with I > 2σ(I)
6192 measured reflectionsRint = 0.083
1533 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.043H-atom parameters constrained
wR(F2) = 0.090Δρmax = 0.12 e Å3
S = 0.88Δρmin = 0.13 e Å3
1533 reflectionsAbsolute structure: Flack H D (1983), Acta Cryst. A39, 876-881
236 parametersAbsolute structure parameter: 0 (10)
2 restraints
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O11.0133 (4)0.07649 (19)0.5894 (5)0.0882 (11)
O21.0818 (5)0.0473 (2)0.4015 (5)0.1215 (17)
N10.6824 (3)0.01307 (16)0.6075 (3)0.0458 (9)
H10.68940.01470.68320.055*
N20.7172 (3)0.05953 (16)0.4034 (3)0.0441 (9)
N31.0259 (5)0.0362 (3)0.4955 (5)0.0779 (13)
C10.8504 (4)0.0436 (2)0.5167 (4)0.0476 (12)
C20.8143 (5)0.1106 (3)0.5325 (5)0.0632 (14)
H20.73000.11900.54770.076*
C30.8998 (8)0.1628 (3)0.5278 (7)0.093 (2)
H30.87450.20850.53970.111*
C41.0185 (8)0.1499 (4)0.5053 (8)0.098 (2)
H41.07450.18760.50090.117*
C51.0567 (6)0.0851 (4)0.4913 (6)0.0832 (17)
H51.13940.07530.47380.100*
C60.9739 (5)0.0324 (3)0.4997 (5)0.0589 (13)
C70.7540 (4)0.0099 (2)0.5090 (4)0.0439 (10)
C80.5973 (4)0.0680 (2)0.5649 (4)0.0422 (10)
C90.6182 (4)0.09628 (18)0.4374 (4)0.0426 (10)
C100.5523 (5)0.1545 (2)0.3382 (4)0.0474 (11)
C110.6255 (5)0.1963 (2)0.2735 (5)0.0608 (13)
H110.71880.17850.30650.073*
C120.5661 (6)0.2520 (3)0.1820 (5)0.0750 (16)
H120.61850.28040.13950.090*
C130.4324 (7)0.2668 (3)0.1529 (6)0.0815 (17)
H130.39090.30550.08970.098*
C140.3564 (6)0.2266 (3)0.2127 (6)0.0805 (16)
H140.26180.23670.18950.097*
C150.4170 (5)0.1701 (3)0.3060 (5)0.0637 (13)
H150.36240.14310.34810.076*
C160.5125 (4)0.0873 (2)0.6572 (4)0.0466 (11)
C170.5084 (4)0.1539 (2)0.7027 (5)0.0576 (12)
H170.55770.18800.67040.069*
C180.4345 (6)0.1718 (3)0.7930 (6)0.0748 (15)
H180.43050.21830.82190.090*
C190.3669 (6)0.1234 (4)0.8429 (6)0.0861 (19)
H190.31590.13550.90780.103*
C200.3687 (5)0.0577 (3)0.7994 (6)0.0757 (16)
H200.31960.02420.83410.091*
C210.4417 (5)0.0395 (2)0.7067 (5)0.0578 (12)
H210.44340.00700.67630.069*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.080 (3)0.079 (3)0.108 (3)0.006 (2)0.035 (2)0.014 (2)
O20.117 (4)0.157 (5)0.115 (3)0.027 (3)0.071 (3)0.004 (3)
N10.058 (2)0.045 (2)0.0388 (18)0.0096 (19)0.0235 (18)0.0066 (15)
N20.050 (2)0.043 (2)0.0427 (19)0.0058 (18)0.0218 (16)0.0010 (16)
N30.066 (3)0.096 (4)0.075 (3)0.002 (3)0.029 (3)0.005 (3)
C10.056 (3)0.050 (3)0.040 (2)0.021 (2)0.021 (2)0.0048 (19)
C20.083 (4)0.054 (3)0.061 (3)0.014 (3)0.035 (3)0.001 (2)
C30.131 (6)0.055 (4)0.089 (4)0.038 (4)0.038 (4)0.005 (3)
C40.100 (5)0.090 (5)0.103 (4)0.054 (4)0.036 (4)0.007 (4)
C50.072 (4)0.106 (5)0.076 (4)0.029 (4)0.032 (3)0.006 (3)
C60.058 (3)0.073 (4)0.048 (3)0.015 (3)0.021 (2)0.003 (2)
C70.051 (3)0.048 (3)0.037 (2)0.004 (2)0.021 (2)0.0007 (19)
C80.047 (3)0.042 (3)0.040 (2)0.000 (2)0.0196 (19)0.0005 (19)
C90.053 (3)0.037 (2)0.041 (2)0.006 (2)0.022 (2)0.0050 (18)
C100.050 (3)0.045 (3)0.044 (2)0.004 (2)0.013 (2)0.0037 (19)
C110.077 (4)0.053 (3)0.047 (2)0.005 (3)0.017 (2)0.003 (2)
C120.098 (5)0.060 (4)0.055 (3)0.001 (3)0.014 (3)0.010 (2)
C130.092 (5)0.055 (4)0.070 (3)0.008 (3)0.002 (3)0.005 (3)
C140.071 (4)0.075 (5)0.075 (3)0.023 (3)0.002 (3)0.013 (3)
C150.058 (3)0.063 (4)0.062 (3)0.007 (3)0.014 (2)0.009 (2)
C160.049 (3)0.047 (3)0.048 (2)0.005 (2)0.023 (2)0.001 (2)
C170.061 (3)0.063 (3)0.059 (3)0.006 (3)0.035 (2)0.008 (2)
C180.092 (4)0.067 (4)0.078 (3)0.008 (3)0.047 (3)0.018 (3)
C190.087 (5)0.111 (5)0.082 (4)0.033 (4)0.058 (4)0.010 (4)
C200.072 (4)0.089 (5)0.079 (3)0.005 (3)0.043 (3)0.016 (3)
C210.061 (3)0.062 (3)0.060 (3)0.007 (3)0.034 (3)0.005 (2)
Geometric parameters (Å, º) top
O1—N31.207 (5)C10—C151.379 (6)
O2—N31.219 (5)C10—C111.396 (6)
N1—C71.364 (4)C11—C121.383 (6)
N1—C81.370 (5)C11—H110.9793
N1—H10.8600C12—C131.364 (7)
N2—C71.324 (5)C12—H120.9600
N2—C91.394 (5)C13—C141.371 (7)
N3—C61.469 (6)C13—H130.9599
C1—C61.382 (6)C14—C151.405 (7)
C1—C21.400 (6)C14—H140.9600
C1—C71.449 (6)C15—H150.9600
C2—C31.380 (7)C16—C211.375 (6)
C2—H20.9600C16—C171.386 (5)
C3—C41.361 (8)C17—C181.366 (6)
C3—H30.9584C17—H170.9600
C4—C51.363 (8)C18—C191.365 (7)
C4—H40.9600C18—H180.9600
C5—C61.377 (7)C19—C201.360 (8)
C5—H50.9600C19—H190.9600
C8—C91.371 (5)C20—C211.378 (6)
C8—C161.478 (5)C20—H200.9600
C9—C101.469 (5)C21—H210.9600
C7—N1—C8108.2 (3)C15—C10—C9121.6 (4)
C7—N1—H1125.9C11—C10—C9120.7 (4)
C8—N1—H1125.9C12—C11—C10121.6 (5)
C7—N2—C9105.8 (3)C12—C11—H11130.6
O1—N3—O2125.4 (5)C10—C11—H11107.8
O1—N3—C6117.0 (4)C13—C12—C11119.6 (5)
O2—N3—C6117.6 (5)C13—C12—H12120.0
C6—C1—C2117.7 (4)C11—C12—H12120.4
C6—C1—C7123.2 (4)C12—C13—C14120.6 (5)
C2—C1—C7119.0 (4)C12—C13—H13119.8
C3—C2—C1120.0 (5)C14—C13—H13119.5
C3—C2—H2121.5C13—C14—C15119.7 (5)
C1—C2—H2118.5C13—C14—H14120.1
C4—C3—C2120.6 (6)C15—C14—H14120.2
C4—C3—H3120.0C10—C15—C14120.7 (5)
C2—C3—H3119.4C10—C15—H15120.8
C5—C4—C3120.5 (6)C14—C15—H15118.4
C5—C4—H4121.3C21—C16—C17118.5 (4)
C3—C4—H4118.1C21—C16—C8121.2 (4)
C4—C5—C6119.5 (6)C17—C16—C8120.2 (4)
C4—C5—H5121.4C18—C17—C16120.8 (4)
C6—C5—H5119.1C18—C17—H17119.3
C1—C6—C5121.6 (5)C16—C17—H17119.9
C1—C6—N3121.7 (4)C19—C18—C17119.7 (5)
C5—C6—N3116.7 (5)C19—C18—H18120.1
N2—C7—N1110.6 (3)C17—C18—H18120.2
N2—C7—C1126.2 (3)C20—C19—C18120.7 (5)
N1—C7—C1123.1 (3)C20—C19—H19119.0
C9—C8—N1105.7 (3)C18—C19—H19120.3
C9—C8—C16133.4 (4)C19—C20—C21119.7 (5)
N1—C8—C16120.8 (3)C19—C20—H20119.8
C8—C9—N2109.7 (3)C21—C20—H20120.4
C8—C9—C10130.5 (4)C20—C21—C16120.6 (5)
N2—C9—C10119.8 (3)C20—C21—H21119.7
C15—C10—C11117.7 (4)C16—C21—H21119.7
C6—C1—C2—C31.2 (6)C16—C8—C9—C105.7 (7)
C7—C1—C2—C3175.0 (4)C7—N2—C9—C80.3 (4)
C1—C2—C3—C41.1 (8)C7—N2—C9—C10178.3 (4)
C2—C3—C4—C51.8 (9)C8—C9—C10—C1533.1 (6)
C3—C4—C5—C60.2 (8)N2—C9—C10—C15145.2 (4)
C2—C1—C6—C52.9 (6)C8—C9—C10—C11146.6 (4)
C7—C1—C6—C5173.2 (4)N2—C9—C10—C1135.1 (5)
C2—C1—C6—N3174.9 (4)C15—C10—C11—C120.9 (6)
C7—C1—C6—N39.1 (6)C9—C10—C11—C12178.8 (4)
C4—C5—C6—C12.2 (7)C10—C11—C12—C130.4 (7)
C4—C5—C6—N3175.7 (5)C11—C12—C13—C140.3 (8)
O1—N3—C6—C142.3 (6)C12—C13—C14—C150.5 (7)
O2—N3—C6—C1140.0 (5)C11—C10—C15—C140.7 (6)
O1—N3—C6—C5135.6 (4)C9—C10—C15—C14179.1 (4)
O2—N3—C6—C542.1 (6)C13—C14—C15—C100.0 (7)
C9—N2—C7—N10.5 (4)C9—C8—C16—C21139.2 (5)
C9—N2—C7—C1177.0 (4)N1—C8—C16—C2144.3 (6)
C8—N1—C7—N21.1 (4)C9—C8—C16—C1744.0 (7)
C8—N1—C7—C1177.7 (4)N1—C8—C16—C17132.5 (4)
C6—C1—C7—N244.3 (6)C21—C16—C17—C180.7 (6)
C2—C1—C7—N2131.7 (4)C8—C16—C17—C18177.5 (4)
C6—C1—C7—N1139.7 (4)C16—C17—C18—C191.8 (7)
C2—C1—C7—N144.3 (6)C17—C18—C19—C202.1 (8)
C7—N1—C8—C91.3 (4)C18—C19—C20—C211.3 (8)
C7—N1—C8—C16176.1 (4)C19—C20—C21—C160.2 (8)
N1—C8—C9—N21.0 (4)C17—C16—C21—C200.1 (6)
C16—C8—C9—N2175.9 (4)C8—C16—C21—C20176.7 (4)
N1—C8—C9—C10177.4 (4)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.862.102.942 (5)165
Symmetry code: (i) x, y, z+1/2.
(II) 2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole acetonitrile solvate top
Crystal data top
C21H15N3O2·C2H3NF(000) = 1600
Mr = 382.41Dx = 1.247 Mg m3
Orthorhombic, PbcaMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ac 2abCell parameters from 24379 reflections
a = 9.111 (2) Åθ = 2.2–25.3°
b = 18.830 (4) ŵ = 0.08 mm1
c = 23.754 (5) ÅT = 293 K
V = 4075.2 (15) Å3Plate, yellow
Z = 80.50 × 0.09 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1506 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.080
Graphite monochromatorθmax = 25.0°, θmin = 2.2°
ϕ– and ω scansh = 010
6703 measured reflectionsk = 022
3584 independent reflectionsl = 2828
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.047H-atom parameters constrained
wR(F2) = 0.106 w = 1/[σ2(Fo2) + (0.0394P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.81(Δ/σ)max < 0.001
3584 reflectionsΔρmax = 0.15 e Å3
263 parametersΔρmin = 0.16 e Å3
0 restraintsExtinction correction: SHELXL, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.0038 (4)
Crystal data top
C21H15N3O2·C2H3NV = 4075.2 (15) Å3
Mr = 382.41Z = 8
Orthorhombic, PbcaMo Kα radiation
a = 9.111 (2) ŵ = 0.08 mm1
b = 18.830 (4) ÅT = 293 K
c = 23.754 (5) Å0.50 × 0.09 × 0.05 mm
Data collection top
Nonius KappaCCD
diffractometer
1506 reflections with I > 2σ(I)
6703 measured reflectionsRint = 0.080
3584 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0470 restraints
wR(F2) = 0.106H-atom parameters constrained
S = 0.81Δρmax = 0.15 e Å3
3584 reflectionsΔρmin = 0.16 e Å3
263 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4034 (2)0.07349 (10)0.74120 (8)0.0429 (5)
H10.32120.06910.76810.051*
N20.6218 (2)0.05601 (10)0.70178 (8)0.0434 (5)
N30.6575 (3)0.10449 (13)0.72208 (11)0.0680 (7)
N40.7829 (6)0.0663 (3)0.5086 (2)0.158 (2)
O10.5569 (3)0.09679 (11)0.68841 (8)0.0854 (7)
O20.7726 (3)0.13453 (14)0.71084 (9)0.1177 (10)
C10.5680 (3)0.01302 (13)0.78898 (10)0.0417 (6)
C20.5409 (3)0.00577 (15)0.84461 (12)0.0589 (8)
H20.49560.05080.85230.071*
C30.5785 (3)0.03916 (19)0.88872 (12)0.0779 (10)
H30.55510.02590.92670.094*
C40.6486 (4)0.10247 (18)0.87748 (13)0.0814 (10)
H40.67750.13280.90800.098*
C50.6778 (3)0.12183 (15)0.82327 (13)0.0677 (9)
H50.72790.16520.81440.081*
C60.6355 (3)0.07766 (14)0.77963 (11)0.0487 (7)
C70.5321 (3)0.03758 (12)0.74350 (10)0.0415 (6)
C80.4079 (3)0.11710 (13)0.69452 (9)0.0423 (6)
C90.5441 (3)0.10624 (13)0.67071 (9)0.0415 (6)
C100.6158 (3)0.14148 (15)0.62226 (10)0.0473 (7)
C110.7147 (3)0.10408 (15)0.58886 (10)0.0568 (8)
H110.73530.05520.59740.068*
C120.7845 (3)0.1364 (2)0.54365 (11)0.0729 (9)
H120.85350.11020.52130.088*
C130.7544 (4)0.2055 (2)0.53050 (12)0.0801 (11)
H130.80130.22790.49890.096*
C140.6562 (4)0.24378 (18)0.56297 (13)0.0784 (10)
H140.63580.29220.55310.094*
C150.5884 (3)0.21192 (15)0.60868 (11)0.0605 (8)
H150.52190.23840.63200.073*
C160.2788 (3)0.16029 (13)0.67881 (11)0.0450 (7)
C170.2335 (3)0.16581 (15)0.62305 (11)0.0588 (8)
H170.29070.14320.59420.071*
C180.1072 (3)0.20251 (17)0.60922 (13)0.0701 (9)
H180.07680.20650.57060.084*
C190.0237 (3)0.23444 (15)0.65040 (14)0.0682 (9)
H190.06410.25990.64070.082*
C200.0671 (3)0.23033 (14)0.70607 (13)0.0601 (8)
H200.00790.25160.73490.072*
C210.1953 (3)0.19412 (13)0.71993 (11)0.0492 (7)
H210.22800.19300.75830.059*
C220.6739 (8)0.0766 (3)0.5277 (2)0.120 (2)
C230.5327 (6)0.0861 (3)0.55276 (19)0.174 (2)
H23A0.47530.11820.53030.208*
H23B0.48540.04060.55390.208*
H23C0.54150.10460.59030.208*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0359 (13)0.0421 (13)0.0506 (13)0.0021 (11)0.0019 (10)0.0041 (11)
N20.0429 (13)0.0400 (13)0.0473 (12)0.0003 (11)0.0018 (11)0.0031 (10)
N30.086 (2)0.0478 (17)0.0698 (18)0.0050 (16)0.0076 (17)0.0002 (14)
N40.225 (6)0.134 (4)0.115 (4)0.007 (4)0.004 (3)0.005 (3)
O10.118 (2)0.0697 (15)0.0687 (14)0.0114 (14)0.0172 (14)0.0132 (12)
O20.125 (2)0.126 (2)0.1024 (18)0.0546 (19)0.0255 (16)0.0161 (15)
C10.0342 (15)0.0418 (17)0.0491 (17)0.0031 (13)0.0013 (13)0.0021 (13)
C20.064 (2)0.053 (2)0.0590 (19)0.0042 (16)0.0033 (16)0.0022 (16)
C30.095 (3)0.082 (3)0.0565 (19)0.007 (2)0.0043 (19)0.0074 (19)
C40.101 (3)0.080 (3)0.063 (2)0.014 (2)0.004 (2)0.0192 (19)
C50.077 (2)0.0472 (19)0.079 (2)0.0146 (16)0.0010 (18)0.0149 (17)
C60.0525 (18)0.0452 (18)0.0485 (16)0.0003 (14)0.0043 (14)0.0008 (15)
C70.0378 (16)0.0362 (16)0.0506 (16)0.0008 (13)0.0039 (14)0.0032 (13)
C80.0369 (16)0.0435 (16)0.0465 (15)0.0009 (13)0.0019 (13)0.0021 (13)
C90.0399 (16)0.0403 (16)0.0443 (14)0.0006 (13)0.0005 (13)0.0017 (12)
C100.0392 (17)0.0532 (19)0.0496 (16)0.0017 (14)0.0027 (13)0.0016 (14)
C110.058 (2)0.064 (2)0.0490 (16)0.0009 (17)0.0008 (15)0.0014 (15)
C120.068 (2)0.096 (3)0.0547 (18)0.003 (2)0.0076 (17)0.0025 (18)
C130.068 (3)0.112 (3)0.061 (2)0.019 (2)0.0026 (18)0.020 (2)
C140.073 (2)0.080 (2)0.082 (2)0.006 (2)0.0022 (19)0.036 (2)
C150.053 (2)0.060 (2)0.0687 (19)0.0002 (16)0.0052 (16)0.0132 (16)
C160.0387 (16)0.0420 (17)0.0542 (16)0.0010 (13)0.0013 (14)0.0061 (13)
C170.0455 (19)0.073 (2)0.0576 (18)0.0015 (16)0.0045 (15)0.0044 (15)
C180.053 (2)0.083 (2)0.074 (2)0.0032 (19)0.0129 (18)0.0149 (18)
C190.045 (2)0.058 (2)0.101 (3)0.0060 (16)0.0112 (19)0.0220 (19)
C200.051 (2)0.0457 (19)0.083 (2)0.0045 (15)0.0090 (17)0.0076 (16)
C210.0439 (17)0.0415 (16)0.0621 (17)0.0001 (14)0.0014 (14)0.0080 (14)
C220.198 (8)0.077 (3)0.084 (4)0.028 (5)0.022 (4)0.005 (3)
C230.175 (6)0.216 (6)0.130 (4)0.069 (5)0.043 (4)0.054 (4)
Geometric parameters (Å, º) top
N1—C71.355 (3)C11—C121.388 (3)
N1—C81.380 (3)C11—H110.9602
N1—H10.9883C12—C131.366 (4)
N2—C71.331 (3)C12—H120.9600
N2—C91.393 (3)C13—C141.384 (4)
N3—O21.222 (3)C13—H130.9601
N3—O11.225 (3)C14—C151.386 (3)
N3—C61.471 (3)C14—H140.9602
N4—C221.110 (6)C15—H150.9600
C1—C61.381 (3)C16—C171.391 (3)
C1—C21.390 (3)C16—C211.393 (3)
C1—C71.477 (3)C17—C181.382 (3)
C2—C31.390 (3)C17—H170.9601
C2—H20.9601C18—C191.378 (4)
C3—C41.378 (4)C18—H180.9600
C3—H30.9599C19—C201.383 (3)
C4—C51.364 (4)C19—H190.9602
C4—H40.9600C20—C211.392 (3)
C5—C61.384 (3)C20—H200.9596
C5—H50.9599C21—H210.9601
C8—C91.379 (3)C22—C231.429 (6)
C8—C161.478 (3)C23—H23A0.9600
C9—C101.480 (3)C23—H23B0.9599
C10—C151.388 (3)C23—H23C0.9602
C10—C111.392 (3)
C7—N1—C8107.7 (2)C10—C11—H11119.3
C7—N1—H1126.0C13—C12—C11120.2 (3)
C8—N1—H1126.4C13—C12—H12119.6
C7—N2—C9105.0 (2)C11—C12—H12120.2
O2—N3—O1123.7 (3)C12—C13—C14119.9 (3)
O2—N3—C6118.6 (3)C12—C13—H13120.5
O1—N3—C6117.7 (3)C14—C13—H13119.7
C6—C1—C2117.2 (2)C13—C14—C15120.0 (3)
C6—C1—C7123.3 (2)C13—C14—H14118.9
C2—C1—C7119.4 (2)C15—C14—H14121.1
C3—C2—C1121.2 (3)C14—C15—C10121.1 (3)
C3—C2—H2120.0C14—C15—H15120.6
C1—C2—H2118.8C10—C15—H15118.4
C4—C3—C2119.7 (3)C17—C16—C21118.1 (2)
C4—C3—H3120.7C17—C16—C8121.2 (2)
C2—C3—H3119.6C21—C16—C8120.6 (2)
C5—C4—C3120.3 (3)C18—C17—C16120.7 (3)
C5—C4—H4120.0C18—C17—H17120.3
C3—C4—H4119.7C16—C17—H17119.0
C4—C5—C6119.5 (3)C19—C18—C17120.6 (3)
C4—C5—H5121.9C19—C18—H18119.0
C6—C5—H5118.6C17—C18—H18120.4
C1—C6—C5122.2 (2)C18—C19—C20119.8 (3)
C1—C6—N3120.8 (2)C18—C19—H19120.5
C5—C6—N3116.9 (2)C20—C19—H19119.7
N2—C7—N1111.8 (2)C19—C20—C21119.6 (3)
N2—C7—C1125.2 (2)C19—C20—H20119.9
N1—C7—C1122.9 (2)C21—C20—H20120.5
C9—C8—N1105.5 (2)C20—C21—C16121.1 (2)
C9—C8—C16134.0 (2)C20—C21—H21119.7
N1—C8—C16120.4 (2)C16—C21—H21119.1
C8—C9—N2109.9 (2)N4—C22—C23177.2 (7)
C8—C9—C10130.5 (2)C22—C23—H23A109.8
N2—C9—C10119.5 (2)C22—C23—H23B107.7
C15—C10—C11117.9 (2)H23A—C23—H23B109.5
C15—C10—C9122.0 (2)C22—C23—H23C110.9
C11—C10—C9120.1 (3)H23A—C23—H23C109.5
C12—C11—C10121.0 (3)H23B—C23—H23C109.5
C12—C11—H11119.6
C6—C1—C2—C30.8 (4)C16—C8—C9—C107.5 (5)
C7—C1—C2—C3177.4 (2)C7—N2—C9—C80.1 (3)
C1—C2—C3—C42.2 (5)C7—N2—C9—C10176.6 (2)
C2—C3—C4—C51.6 (5)C8—C9—C10—C1531.1 (4)
C3—C4—C5—C60.5 (5)N2—C9—C10—C15144.7 (2)
C2—C1—C6—C51.4 (4)C8—C9—C10—C11149.3 (3)
C7—C1—C6—C5175.1 (2)N2—C9—C10—C1134.9 (3)
C2—C1—C6—N3174.9 (2)C15—C10—C11—C120.4 (4)
C7—C1—C6—N38.6 (4)C9—C10—C11—C12179.2 (2)
C4—C5—C6—C12.0 (4)C10—C11—C12—C131.4 (4)
C4—C5—C6—N3174.4 (3)C11—C12—C13—C141.2 (5)
O2—N3—C6—C1140.3 (3)C12—C13—C14—C150.1 (5)
O1—N3—C6—C141.5 (4)C13—C14—C15—C100.9 (4)
O2—N3—C6—C543.3 (4)C11—C10—C15—C140.7 (4)
O1—N3—C6—C5135.0 (3)C9—C10—C15—C14179.7 (2)
C9—N2—C7—N10.7 (3)C9—C8—C16—C1740.0 (4)
C9—N2—C7—C1177.9 (2)N1—C8—C16—C17136.8 (2)
C8—N1—C7—N21.2 (3)C9—C8—C16—C21142.9 (3)
C8—N1—C7—C1178.4 (2)N1—C8—C16—C2140.3 (3)
C6—C1—C7—N245.3 (4)C21—C16—C17—C181.5 (4)
C2—C1—C7—N2131.1 (3)C8—C16—C17—C18175.7 (2)
C6—C1—C7—N1137.8 (2)C16—C17—C18—C190.1 (4)
C2—C1—C7—N145.8 (3)C17—C18—C19—C200.6 (5)
C7—N1—C8—C91.2 (3)C18—C19—C20—C210.2 (4)
C7—N1—C8—C16176.5 (2)C19—C20—C21—C161.7 (4)
N1—C8—C9—N20.8 (3)C17—C16—C21—C202.3 (4)
C16—C8—C9—N2176.4 (2)C8—C16—C21—C20175.0 (2)
N1—C8—C9—C10175.4 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···N2i0.991.972.920 (3)161
Symmetry code: (i) x1/2, y, z+3/2.
(III) 2-(4-nitrophenyl)-4,5-diphenyl-1H-imidazole methanol solvate top
Crystal data top
C21H15N3O2·CH4OF(000) = 1568
Mr = 373.40Dx = 1.277 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 22154 reflections
a = 11.728 (2) Åθ = 2.2–25.0°
b = 11.365 (2) ŵ = 0.09 mm1
c = 29.241 (6) ÅT = 293 K
β = 94.62 (2)°Plate, yellow
V = 3884.8 (12) Å30.20 × 0.20 × 0.05 mm
Z = 8
Data collection top
Nonius Kappa CCD
diffractometer
2718 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.105
Graphite monochromatorθmax = 25.0°, θmin = 1.9°
ϕ– and ω– scansh = 013
22154 measured reflectionsk = 013
6747 independent reflectionsl = 3434
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.067Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H-atom parameters constrained
S = 0.88 w = 1/[σ2(Fo2) + (0.0689P)2]
where P = (Fo2 + 2Fc2)/3
6747 reflections(Δ/σ)max = 0.001
505 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.18 e Å3
Crystal data top
C21H15N3O2·CH4OV = 3884.8 (12) Å3
Mr = 373.40Z = 8
Monoclinic, P21/cMo Kα radiation
a = 11.728 (2) ŵ = 0.09 mm1
b = 11.365 (2) ÅT = 293 K
c = 29.241 (6) Å0.20 × 0.20 × 0.05 mm
β = 94.62 (2)°
Data collection top
Nonius Kappa CCD
diffractometer
2718 reflections with I > 2σ(I)
22154 measured reflectionsRint = 0.105
6747 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0670 restraints
wR(F2) = 0.156H-atom parameters constrained
S = 0.88Δρmax = 0.17 e Å3
6747 reflectionsΔρmin = 0.18 e Å3
505 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1a0.6772 (2)0.5838 (3)0.41409 (8)0.0944 (11)
O2a0.8607 (2)0.5836 (3)0.41847 (8)0.0928 (10)
N1a0.69010 (19)0.5116 (3)0.17410 (9)0.0442 (8)
H1a0.64530.45750.18280.053*
N2a0.81539 (18)0.6566 (3)0.17794 (9)0.0438 (8)
N3a0.7679 (3)0.5816 (3)0.39644 (10)0.0638 (9)
C1a0.7585 (2)0.5805 (3)0.25228 (10)0.0411 (9)
C2a0.8460 (3)0.6361 (3)0.27870 (11)0.0543 (11)
H2a0.90570.67440.26370.065*
C3a0.8509 (3)0.6364 (3)0.32602 (11)0.0532 (11)
H3a0.91230.67580.34340.064*
C4a0.7657 (3)0.5798 (3)0.34658 (10)0.0469 (10)
C5a0.6775 (3)0.5225 (3)0.32200 (11)0.0506 (10)
H5a0.61850.48400.33730.061*
C6a0.6754 (2)0.5220 (3)0.27496 (11)0.0472 (10)
H6a0.61560.48150.25700.057*
C7a0.7561 (2)0.5826 (3)0.20230 (10)0.0402 (9)
C8a0.7060 (2)0.5396 (3)0.12947 (11)0.0438 (10)
C9a0.7845 (2)0.6304 (3)0.13254 (10)0.0427 (9)
C10a0.8308 (3)0.6980 (3)0.09517 (10)0.0454 (10)
C11a0.9469 (3)0.7220 (4)0.09614 (12)0.0698 (13)
H11a0.99700.69400.12140.084*
C12a0.9910 (3)0.7856 (4)0.06090 (13)0.0889 (16)
H12a1.07140.80240.06150.107*
C13a0.9190 (3)0.8264 (4)0.02500 (12)0.0737 (13)
H13a0.95030.87020.00090.088*
C14a0.8041 (3)0.8044 (4)0.02371 (11)0.0642 (12)
H14a0.75460.83330.00160.077*
C15a0.7602 (3)0.7413 (4)0.05872 (11)0.0546 (11)
H15a0.67950.72620.05790.065*
C16a0.6503 (3)0.4757 (3)0.09046 (11)0.0494 (10)
C17a0.7065 (3)0.4511 (4)0.05184 (12)0.0612 (11)
H17a0.78460.47550.05080.073*
C18a0.6522 (4)0.3897 (4)0.01599 (13)0.0791 (14)
H18a0.69330.37230.01030.095*
C19a0.5412 (4)0.3519 (4)0.01767 (15)0.0893 (15)
H19a0.50300.31090.00790.107*
C20a0.4840 (3)0.3761 (4)0.05563 (16)0.0887 (15)
H20a0.40710.34770.05630.106*
C21a0.5382 (3)0.4384 (4)0.09179 (12)0.0667 (12)
H21a0.49790.45610.11830.080*
N1b0.18791 (19)0.5121 (3)0.24788 (9)0.0446 (8)
H1b0.13690.46470.25660.054*
O1b0.3684 (3)0.5780 (3)0.49230 (9)0.0974 (11)
O2b0.1878 (3)0.6186 (3)0.48783 (9)0.1040 (12)
N2b0.33046 (19)0.6392 (3)0.25154 (9)0.0421 (8)
N3b0.2759 (3)0.5938 (3)0.47055 (11)0.0730 (10)
C1b0.2650 (2)0.5750 (3)0.32610 (10)0.0430 (9)
C2b0.3682 (3)0.5957 (3)0.35227 (11)0.0543 (10)
H2b0.43670.60730.33690.065*
C3b0.3718 (3)0.5991 (4)0.39940 (11)0.0563 (11)
H3b0.44230.61150.41780.068*
C4b0.2722 (3)0.5852 (3)0.42034 (11)0.0523 (10)
C5b0.1692 (3)0.5639 (4)0.39558 (12)0.0648 (12)
H5b0.10180.55400.41180.078*
C6b0.1669 (3)0.5587 (3)0.34865 (11)0.0551 (11)
H6b0.09620.54360.33070.066*
C7b0.2625 (2)0.5757 (3)0.27591 (11)0.0428 (9)
C8b0.2079 (2)0.5366 (3)0.20302 (11)0.0415 (9)
C9b0.2965 (2)0.6173 (3)0.20595 (11)0.0426 (9)
C10b0.3505 (3)0.6807 (3)0.16992 (10)0.0439 (9)
C11b0.4659 (3)0.7104 (3)0.17592 (11)0.0521 (10)
H11b0.50940.68550.20350.063*
C12b0.5186 (3)0.7756 (4)0.14338 (13)0.0591 (11)
H12b0.59810.79590.14840.071*
C13b0.4555 (3)0.8105 (4)0.10364 (12)0.0618 (11)
H13b0.49210.85500.08110.074*
C14b0.3417 (3)0.7820 (3)0.09691 (11)0.0568 (11)
H14b0.29780.80630.06940.068*
C15b0.2905 (3)0.7192 (3)0.12961 (11)0.0508 (10)
H15b0.21060.70070.12450.061*
C16b0.1429 (3)0.4759 (3)0.16525 (11)0.0467 (10)
C17b0.1915 (3)0.4505 (3)0.12422 (12)0.0570 (11)
H17b0.26920.47360.12110.068*
C18b0.1285 (3)0.3928 (4)0.08869 (13)0.0724 (13)
H18b0.16330.37620.06080.087*
C19b0.0174 (4)0.3599 (4)0.09315 (15)0.0763 (13)
H19b0.02600.32010.06860.092*
C20b0.0317 (3)0.3831 (4)0.13311 (15)0.0655 (12)
H20b0.10900.35840.13590.079*
C21b0.0300 (3)0.4413 (3)0.16882 (12)0.0552 (11)
H21b0.00590.45870.19640.066*
O3a0.55378 (17)0.3298 (2)0.20625 (7)0.0594 (7)
H3Oa0.58050.27050.21900.089*
C22a0.4354 (3)0.3277 (4)0.20601 (14)0.0981 (16)
H22a0.41370.31670.23670.118*
H22b0.40560.26430.18690.118*
H22C0.40500.40100.19410.118*
O3b0.94845 (17)0.8441 (2)0.21350 (7)0.0573 (7)
H3Ob0.91050.79300.19960.086*
C22b1.0643 (3)0.8157 (4)0.21422 (15)0.0982 (16)
H22D1.10640.86150.23740.118*
H22E1.09160.83280.18480.118*
H22F1.07460.73350.22090.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1a0.104 (2)0.126 (3)0.0576 (19)0.018 (2)0.0329 (16)0.0146 (19)
O2a0.106 (2)0.129 (3)0.0409 (17)0.012 (2)0.0119 (15)0.0023 (18)
N1a0.0478 (15)0.050 (2)0.0348 (17)0.0054 (15)0.0028 (13)0.0000 (17)
N2a0.0446 (15)0.055 (2)0.0317 (17)0.0007 (15)0.0009 (12)0.0054 (16)
N3a0.084 (3)0.067 (3)0.040 (2)0.008 (2)0.0024 (18)0.0041 (19)
C1a0.0432 (19)0.045 (3)0.035 (2)0.0038 (18)0.0001 (15)0.0006 (19)
C2a0.053 (2)0.068 (3)0.042 (2)0.015 (2)0.0047 (16)0.005 (2)
C3a0.059 (2)0.064 (3)0.036 (2)0.020 (2)0.0011 (16)0.002 (2)
C4a0.064 (2)0.048 (3)0.028 (2)0.004 (2)0.0016 (17)0.001 (2)
C5a0.059 (2)0.058 (3)0.036 (2)0.004 (2)0.0097 (16)0.006 (2)
C6a0.046 (2)0.053 (3)0.042 (2)0.0117 (18)0.0003 (16)0.004 (2)
C7a0.0454 (19)0.046 (3)0.029 (2)0.0051 (18)0.0006 (15)0.001 (2)
C8a0.044 (2)0.051 (3)0.037 (2)0.0057 (18)0.0016 (16)0.000 (2)
C9a0.0459 (19)0.056 (3)0.027 (2)0.0002 (19)0.0017 (15)0.0018 (19)
C10a0.052 (2)0.049 (3)0.035 (2)0.0008 (18)0.0048 (16)0.0014 (19)
C11a0.055 (2)0.099 (4)0.056 (2)0.000 (2)0.0062 (18)0.029 (3)
C12a0.070 (3)0.134 (5)0.063 (3)0.014 (3)0.010 (2)0.030 (3)
C13a0.093 (3)0.085 (4)0.044 (2)0.008 (3)0.009 (2)0.024 (2)
C14a0.084 (3)0.071 (4)0.037 (2)0.000 (2)0.0008 (19)0.007 (2)
C15a0.059 (2)0.066 (3)0.038 (2)0.005 (2)0.0004 (17)0.005 (2)
C16a0.055 (2)0.050 (3)0.042 (2)0.0046 (19)0.0076 (17)0.001 (2)
C17a0.077 (2)0.066 (3)0.040 (2)0.010 (2)0.004 (2)0.008 (2)
C18a0.114 (3)0.077 (4)0.044 (3)0.020 (3)0.008 (2)0.019 (3)
C19a0.123 (4)0.071 (4)0.066 (3)0.005 (3)0.043 (3)0.016 (3)
C20a0.087 (3)0.095 (4)0.078 (3)0.011 (3)0.025 (3)0.009 (3)
C21a0.074 (3)0.072 (4)0.052 (3)0.004 (2)0.0086 (19)0.008 (2)
N1b0.0462 (15)0.040 (2)0.0475 (19)0.0078 (14)0.0058 (13)0.0012 (17)
O1b0.117 (2)0.125 (3)0.0488 (19)0.012 (2)0.0035 (16)0.0063 (19)
O2b0.118 (2)0.141 (4)0.0577 (19)0.020 (2)0.0352 (17)0.027 (2)
N2b0.0439 (15)0.046 (2)0.0365 (17)0.0014 (14)0.0033 (13)0.0017 (16)
N3b0.105 (3)0.069 (3)0.046 (2)0.017 (2)0.015 (2)0.003 (2)
C1b0.047 (2)0.045 (3)0.037 (2)0.0013 (17)0.0048 (17)0.0007 (19)
C2b0.051 (2)0.067 (3)0.045 (2)0.0024 (19)0.0058 (17)0.003 (2)
C3b0.062 (2)0.064 (3)0.041 (2)0.004 (2)0.0038 (17)0.001 (2)
C4b0.075 (3)0.045 (3)0.037 (2)0.005 (2)0.0101 (19)0.007 (2)
C5b0.064 (2)0.081 (4)0.051 (3)0.015 (2)0.0185 (19)0.010 (2)
C6b0.057 (2)0.070 (3)0.039 (2)0.010 (2)0.0066 (17)0.007 (2)
C7b0.0391 (19)0.050 (3)0.039 (2)0.0029 (18)0.0033 (16)0.000 (2)
C8b0.047 (2)0.043 (3)0.034 (2)0.0045 (18)0.0005 (16)0.0007 (19)
C9b0.0434 (19)0.048 (3)0.036 (2)0.0041 (18)0.0035 (15)0.002 (2)
C10b0.052 (2)0.045 (3)0.037 (2)0.0034 (18)0.0096 (16)0.0015 (19)
C11b0.054 (2)0.055 (3)0.048 (2)0.0042 (19)0.0103 (17)0.002 (2)
C12b0.049 (2)0.066 (3)0.065 (3)0.004 (2)0.016 (2)0.000 (2)
C13b0.078 (3)0.057 (3)0.053 (3)0.003 (2)0.025 (2)0.001 (2)
C14b0.081 (3)0.055 (3)0.035 (2)0.001 (2)0.0086 (18)0.003 (2)
C15b0.053 (2)0.058 (3)0.041 (2)0.0024 (19)0.0036 (17)0.006 (2)
C16b0.050 (2)0.042 (3)0.047 (2)0.0053 (18)0.0040 (17)0.003 (2)
C17b0.066 (2)0.055 (3)0.049 (2)0.006 (2)0.0005 (19)0.005 (2)
C18b0.091 (3)0.074 (4)0.050 (3)0.003 (3)0.011 (2)0.015 (2)
C19b0.086 (3)0.062 (4)0.074 (3)0.006 (3)0.033 (2)0.006 (3)
C20b0.054 (2)0.054 (3)0.085 (3)0.002 (2)0.017 (2)0.002 (3)
C21b0.055 (2)0.048 (3)0.060 (3)0.006 (2)0.0070 (18)0.000 (2)
O3a0.0577 (15)0.0487 (19)0.0706 (17)0.0001 (13)0.0023 (11)0.0100 (14)
C22a0.070 (3)0.088 (4)0.133 (4)0.007 (3)0.013 (2)0.030 (3)
O3b0.0548 (14)0.0518 (19)0.0660 (16)0.0021 (12)0.0096 (11)0.0084 (14)
C22b0.060 (3)0.089 (4)0.148 (4)0.005 (3)0.021 (2)0.038 (3)
Geometric parameters (Å, º) top
O1a—N3a1.220 (3)N2b—C7b1.325 (4)
O2a—N3a1.219 (3)N2b—C9b1.383 (4)
N1a—C7a1.352 (4)N3b—C4b1.469 (4)
N1a—C8a1.370 (4)C1b—C6b1.383 (4)
N1a—H1a0.8600C1b—C2b1.399 (4)
N2a—C7a1.333 (4)C1b—C7b1.465 (4)
N2a—C9a1.380 (4)C2b—C3b1.376 (4)
N3a—C4a1.456 (4)C2b—H2b0.9599
C1a—C2a1.386 (4)C3b—C4b1.371 (4)
C1a—C6a1.392 (4)C3b—H3b0.9599
C1a—C7a1.460 (4)C4b—C5b1.378 (4)
C2a—C3a1.380 (4)C5b—C6b1.372 (4)
C2a—H2a0.9598C5b—H5b0.9599
C3a—C4a1.368 (4)C6b—H6b0.9600
C3a—H3a0.9598C8b—C9b1.383 (4)
C4a—C5a1.375 (4)C8b—C16b1.464 (4)
C5a—C6a1.374 (4)C9b—C10b1.463 (4)
C5a—H5a0.9600C10b—C11b1.392 (4)
C6a—H6a0.9602C10b—C15b1.394 (4)
C8a—C9a1.381 (4)C11b—C12b1.389 (5)
C8a—C16a1.461 (4)C11b—H11b0.9600
C9a—C10a1.474 (4)C12b—C13b1.384 (4)
C10a—C15a1.386 (4)C12b—H12b0.9602
C10a—C11a1.387 (4)C13b—C14b1.372 (4)
C11a—C12a1.392 (5)C13b—H13b0.9598
C11a—H11a0.9602C14b—C15b1.370 (4)
C12a—C13a1.374 (5)C14b—H14b0.9600
C12a—H12a0.9601C15b—H15b0.9602
C13a—C14a1.368 (4)C16b—C21b1.393 (4)
C13a—H13a0.9601C16b—C17b1.399 (4)
C14a—C15a1.383 (4)C17b—C18b1.389 (5)
C14a—H14a0.9597C17b—H17b0.9600
C15a—H15a0.9600C18b—C19b1.372 (5)
C16a—C17a1.381 (4)C18b—H18b0.9596
C16a—C21a1.385 (4)C19b—C20b1.369 (5)
C17a—C18a1.373 (5)C19b—H19b0.9596
C17a—H17a0.9600C20b—C21b1.389 (5)
C18a—C19a1.375 (5)C20b—H20b0.9600
C18a—H18a0.9599C21b—H21b0.9600
C19a—C20a1.370 (5)O3a—C22a1.388 (4)
C19a—H19a0.9599O3a—H3Oa0.8200
C20a—C21a1.384 (5)C22a—H22a0.9601
C20a—H20a0.9600C22a—H22b0.9599
C21a—H21a0.9598C22a—H22C0.9599
N1b—C7b1.358 (4)O3b—C22b1.395 (4)
N1b—C8b1.379 (4)O3b—H3Ob0.8200
N1b—H1b0.8600C22b—H22D0.9598
O1b—N3b1.226 (3)C22b—H22E0.9600
O2b—N3b1.220 (4)C22b—H22F0.9600
C7a—N1a—C8a109.1 (3)C6b—C1b—C2b118.5 (3)
C7a—N1a—H1a125.5C6b—C1b—C7b121.9 (3)
C8a—N1a—H1a125.5C2b—C1b—C7b119.6 (3)
C7a—N2a—C9a105.7 (3)C3b—C2b—C1b120.5 (3)
O2a—N3a—O1a123.2 (3)C3b—C2b—H2b120.3
O2a—N3a—C4a118.2 (3)C1b—C2b—H2b119.2
O1a—N3a—C4a118.5 (3)C4b—C3b—C2b119.0 (3)
C2a—C1a—C6a117.9 (3)C4b—C3b—H3b119.5
C2a—C1a—C7a120.3 (3)C2b—C3b—H3b121.5
C6a—C1a—C7a121.8 (3)C3b—C4b—C5b121.8 (3)
C3a—C2a—C1a121.9 (3)C3b—C4b—N3b118.7 (3)
C3a—C2a—H2a118.9C5b—C4b—N3b119.4 (3)
C1a—C2a—H2a119.2C6b—C5b—C4b118.6 (3)
C4a—C3a—C2a117.8 (3)C6b—C5b—H5b122.5
C4a—C3a—H3a122.0C4b—C5b—H5b118.9
C2a—C3a—H3a120.1C5b—C6b—C1b121.4 (3)
C3a—C4a—C5a122.6 (3)C5b—C6b—H6b120.1
C3a—C4a—N3a118.6 (3)C1b—C6b—H6b118.5
C5a—C4a—N3a118.8 (3)N2b—C7b—N1b110.6 (3)
C6a—C5a—C4a118.5 (3)N2b—C7b—C1b125.3 (3)
C6a—C5a—H5a120.7N1b—C7b—C1b124.1 (3)
C4a—C5a—H5a120.8N1b—C8b—C9b105.0 (3)
C5a—C6a—C1a121.2 (3)N1b—C8b—C16b120.3 (3)
C5a—C6a—H6a120.2C9b—C8b—C16b134.6 (3)
C1a—C6a—H6a118.5C8b—C9b—N2b109.6 (3)
N2a—C7a—N1a110.4 (3)C8b—C9b—C10b130.5 (3)
N2a—C7a—C1a125.2 (3)N2b—C9b—C10b119.9 (3)
N1a—C7a—C1a124.4 (3)C11b—C10b—C15b116.8 (3)
N1a—C8a—C9a104.6 (3)C11b—C10b—C9b120.1 (3)
N1a—C8a—C16a122.8 (3)C15b—C10b—C9b123.0 (3)
C9a—C8a—C16a132.5 (3)C12b—C11b—C10b121.6 (3)
N2a—C9a—C8a110.2 (3)C12b—C11b—H11b119.8
N2a—C9a—C10a121.1 (3)C10b—C11b—H11b118.7
C8a—C9a—C10a128.6 (3)C13b—C12b—C11b119.4 (3)
C15a—C10a—C11a118.0 (3)C13b—C12b—H12b120.3
C15a—C10a—C9a121.5 (3)C11b—C12b—H12b120.2
C11a—C10a—C9a120.5 (3)C14b—C13b—C12b120.0 (3)
C10a—C11a—C12a120.7 (3)C14b—C13b—H13b120.6
C10a—C11a—H11a119.3C12b—C13b—H13b119.4
C12a—C11a—H11a120.0C15b—C14b—C13b120.0 (3)
C13a—C12a—C11a119.9 (4)C15b—C14b—H14b119.9
C13a—C12a—H12a119.3C13b—C14b—H14b120.1
C11a—C12a—H12a120.8C14b—C15b—C10b122.2 (3)
C14a—C13a—C12a120.2 (4)C14b—C15b—H15b118.8
C14a—C13a—H13a120.5C10b—C15b—H15b118.9
C12a—C13a—H13a119.3C21b—C16b—C17b117.5 (3)
C13a—C14a—C15a119.9 (3)C21b—C16b—C8b121.1 (3)
C13a—C14a—H14a119.5C17b—C16b—C8b121.4 (3)
C15a—C14a—H14a120.6C18b—C17b—C16b120.7 (3)
C14a—C15a—C10a121.2 (3)C18b—C17b—H17b120.5
C14a—C15a—H15a120.0C16b—C17b—H17b118.8
C10a—C15a—H15a118.8C19b—C18b—C17b120.6 (4)
C17a—C16a—C21a118.5 (3)C19b—C18b—H18b119.9
C17a—C16a—C8a121.8 (3)C17b—C18b—H18b119.5
C21a—C16a—C8a119.7 (3)C20b—C19b—C18b119.7 (4)
C18a—C17a—C16a120.3 (4)C20b—C19b—H19b119.7
C18a—C17a—H17a120.6C18b—C19b—H19b120.6
C16a—C17a—H17a119.1C19b—C20b—C21b120.3 (4)
C17a—C18a—C19a120.9 (4)C19b—C20b—H20b118.8
C17a—C18a—H18a118.9C21b—C20b—H20b120.9
C19a—C18a—H18a120.1C20b—C21b—C16b121.2 (4)
C20a—C19a—C18a119.5 (4)C20b—C21b—H21b119.5
C20a—C19a—H19a120.0C16b—C21b—H21b119.3
C18a—C19a—H19a120.5C22a—O3a—H3Oa109.5
C19a—C20a—C21a119.9 (4)O3a—C22a—H22a109.7
C19a—C20a—H20a118.1O3a—C22a—H22b109.5
C21a—C20a—H20a122.0H22a—C22a—H22b109.5
C20a—C21a—C16a120.9 (4)O3a—C22a—H22C109.2
C20a—C21a—H21a119.9H22a—C22a—H22C109.5
C16a—C21a—H21a119.3H22b—C22a—H22C109.5
C7b—N1b—C8b108.4 (3)C22b—O3b—H3Ob109.5
C7b—N1b—H1b125.8O3b—C22b—H22D109.3
C8b—N1b—H1b125.8O3b—C22b—H22E109.5
C7b—N2b—C9b106.3 (3)H22D—C22b—H22E109.5
O2b—N3b—O1b124.3 (3)O3b—C22b—H22F109.6
O2b—N3b—C4b118.1 (4)H22D—C22b—H22F109.5
O1b—N3b—C4b117.6 (3)H22E—C22b—H22F109.5
C6a—C1a—C2a—C3a1.3 (5)C6b—C1b—C2b—C3b0.3 (6)
C7a—C1a—C2a—C3a179.7 (3)C7b—C1b—C2b—C3b177.9 (4)
C1a—C2a—C3a—C4a0.1 (6)C1b—C2b—C3b—C4b1.8 (6)
C2a—C3a—C4a—C5a0.7 (6)C2b—C3b—C4b—C5b2.2 (6)
C2a—C3a—C4a—N3a178.6 (3)C2b—C3b—C4b—N3b177.6 (4)
O2a—N3a—C4a—C3a32.1 (5)O2b—N3b—C4b—C3b157.2 (4)
O1a—N3a—C4a—C3a146.2 (4)O1b—N3b—C4b—C3b21.2 (6)
O2a—N3a—C4a—C5a148.6 (4)O2b—N3b—C4b—C5b22.6 (6)
O1a—N3a—C4a—C5a33.1 (5)O1b—N3b—C4b—C5b159.0 (4)
C3a—C4a—C5a—C6a0.2 (6)C3b—C4b—C5b—C6b1.2 (6)
N3a—C4a—C5a—C6a179.5 (3)N3b—C4b—C5b—C6b178.6 (4)
C4a—C5a—C6a—C1a1.7 (5)C4b—C5b—C6b—C1b0.4 (6)
C2a—C1a—C6a—C5a2.3 (5)C2b—C1b—C6b—C5b0.8 (6)
C7a—C1a—C6a—C5a178.8 (3)C7b—C1b—C6b—C5b176.8 (4)
C9a—N2a—C7a—N1a0.1 (4)C9b—N2b—C7b—N1b1.2 (4)
C9a—N2a—C7a—C1a177.9 (3)C9b—N2b—C7b—C1b177.7 (3)
C8a—N1a—C7a—N2a0.1 (4)C8b—N1b—C7b—N2b0.6 (4)
C8a—N1a—C7a—C1a177.9 (3)C8b—N1b—C7b—C1b178.3 (3)
C2a—C1a—C7a—N2a17.1 (5)C6b—C1b—C7b—N2b147.3 (4)
C6a—C1a—C7a—N2a164.0 (3)C2b—C1b—C7b—N2b30.2 (5)
C2a—C1a—C7a—N1a165.2 (3)C6b—C1b—C7b—N1b31.5 (6)
C6a—C1a—C7a—N1a13.7 (5)C2b—C1b—C7b—N1b151.0 (3)
C7a—N1a—C8a—C9a0.0 (3)C7b—N1b—C8b—C9b0.3 (3)
C7a—N1a—C8a—C16a177.4 (3)C7b—N1b—C8b—C16b177.2 (3)
C7a—N2a—C9a—C8a0.1 (4)N1b—C8b—C9b—N2b1.1 (3)
C7a—N2a—C9a—C10a178.0 (3)C16b—C8b—C9b—N2b175.9 (3)
N1a—C8a—C9a—N2a0.0 (3)N1b—C8b—C9b—C10b176.1 (3)
C16a—C8a—C9a—N2a177.0 (3)C16b—C8b—C9b—C10b7.0 (6)
N1a—C8a—C9a—C10a177.9 (3)C7b—N2b—C9b—C8b1.4 (4)
C16a—C8a—C9a—C10a5.1 (6)C7b—N2b—C9b—C10b176.0 (3)
N2a—C9a—C10a—C15a131.9 (3)C8b—C9b—C10b—C11b148.4 (4)
C8a—C9a—C10a—C15a45.8 (5)N2b—C9b—C10b—C11b34.7 (5)
N2a—C9a—C10a—C11a46.8 (5)C8b—C9b—C10b—C15b34.7 (6)
C8a—C9a—C10a—C11a135.5 (4)N2b—C9b—C10b—C15b142.1 (3)
C15a—C10a—C11a—C12a1.4 (6)C15b—C10b—C11b—C12b0.3 (5)
C9a—C10a—C11a—C12a179.9 (4)C9b—C10b—C11b—C12b176.8 (3)
C10a—C11a—C12a—C13a0.9 (7)C10b—C11b—C12b—C13b1.1 (5)
C11a—C12a—C13a—C14a0.2 (7)C11b—C12b—C13b—C14b0.8 (6)
C12a—C13a—C14a—C15a0.2 (7)C12b—C13b—C14b—C15b0.2 (6)
C13a—C14a—C15a—C10a0.8 (6)C13b—C14b—C15b—C10b1.0 (6)
C11a—C10a—C15a—C14a1.4 (6)C11b—C10b—C15b—C14b0.8 (5)
C9a—C10a—C15a—C14a179.9 (4)C9b—C10b—C15b—C14b177.7 (3)
N1a—C8a—C16a—C17a141.1 (3)N1b—C8b—C16b—C21b32.4 (5)
C9a—C8a—C16a—C17a35.5 (6)C9b—C8b—C16b—C21b151.0 (4)
N1a—C8a—C16a—C21a38.9 (5)N1b—C8b—C16b—C17b147.8 (3)
C9a—C8a—C16a—C21a144.5 (4)C9b—C8b—C16b—C17b28.8 (6)
C21a—C16a—C17a—C18a0.8 (6)C21b—C16b—C17b—C18b0.1 (5)
C8a—C16a—C17a—C18a179.3 (4)C8b—C16b—C17b—C18b179.9 (3)
C16a—C17a—C18a—C19a0.1 (6)C16b—C17b—C18b—C19b0.2 (6)
C17a—C18a—C19a—C20a0.2 (7)C17b—C18b—C19b—C20b0.6 (7)
C18a—C19a—C20a—C21a0.1 (7)C18b—C19b—C20b—C21b0.9 (6)
C19a—C20a—C21a—C16a0.8 (7)C19b—C20b—C21b—C16b0.9 (6)
C17a—C16a—C21a—C20a1.1 (6)C17b—C16b—C21b—C20b0.5 (5)
C8a—C16a—C21a—C20a179.0 (4)C8b—C16b—C21b—C20b179.7 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1a—H1a···O30.861.962.819 (4)175
N1b—H1b···O3bi0.861.952.788 (4)166
O3a—H3Oa···N2bi0.821.982.791 (4)171
O3b—H3Ob···N2a0.821.982.792 (4)169
Symmetry code: (i) x+1, y1/2, z+1/2.
(IV) 1-methyl-2-(2-nitrophenyl)-4,5-diphenyl-1H-imidazole methanol solvate top
Crystal data top
C22H17N3O2·CH4OF(000) = 816
Mr = 387.43Dx = 1.275 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 11012 reflections
a = 5.813 (1) Åθ = 1.6–25.0°
b = 15.003 (3) ŵ = 0.09 mm1
c = 23.243 (5) ÅT = 293 K
β = 95.480 (3)°Plate, yellow
V = 2017.8 (7) Å30.09 × 0.02 × 0.02 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1604 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.084
Graphite monochromatorθmax = 25.0°, θmin = 1.6°
ϕ– and ω scansh = 05
11012 measured reflectionsk = 017
3292 independent reflectionsl = 2727
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.150H-atom parameters constrained
S = 0.91 w = 1/[σ2(Fo2) + (0.0753P)2]
where P = (Fo2 + 2Fc2)/3
3292 reflections(Δ/σ)max = 0.048
263 parametersΔρmax = 0.15 e Å3
0 restraintsΔρmin = 0.24 e Å3
Crystal data top
C22H17N3O2·CH4OV = 2017.8 (7) Å3
Mr = 387.43Z = 4
Monoclinic, P21/cMo Kα radiation
a = 5.813 (1) ŵ = 0.09 mm1
b = 15.003 (3) ÅT = 293 K
c = 23.243 (5) Å0.09 × 0.02 × 0.02 mm
β = 95.480 (3)°
Data collection top
Nonius KappaCCD
diffractometer
1604 reflections with I > 2σ(I)
11012 measured reflectionsRint = 0.084
3292 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.150H-atom parameters constrained
S = 0.91Δρmax = 0.15 e Å3
3292 reflectionsΔρmin = 0.24 e Å3
263 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.2885 (4)0.3380 (2)0.52554 (12)0.0880 (9)
O20.4324 (5)0.2263 (2)0.57504 (14)0.1111 (11)
O330.2762 (5)0.09682 (17)0.37431 (13)0.0935 (9)
H330.26450.14940.38310.112*
N10.0704 (4)0.37648 (18)0.42371 (11)0.0505 (7)
N20.1675 (4)0.27789 (16)0.39029 (11)0.0512 (7)
N30.2822 (5)0.2607 (3)0.54190 (14)0.0726 (9)
C10.0455 (5)0.2257 (2)0.47055 (14)0.0514 (8)
C20.2336 (6)0.1714 (3)0.45527 (17)0.0791 (12)
H20.32560.18180.41930.095*
C30.2915 (7)0.1017 (3)0.4896 (2)0.0923 (14)
H30.42530.06600.47820.111*
C40.1617 (7)0.0836 (3)0.5401 (2)0.0851 (13)
H40.19950.03500.56430.102*
C50.0280 (6)0.1355 (3)0.55661 (16)0.0725 (11)
H50.12460.12490.59180.087*
C60.0808 (5)0.2055 (2)0.52228 (14)0.0532 (8)
C70.0194 (5)0.2935 (2)0.42873 (14)0.0513 (8)
C80.0305 (5)0.41818 (19)0.37860 (13)0.0441 (7)
C90.1740 (5)0.3553 (2)0.35840 (13)0.0470 (8)
C100.3154 (5)0.3597 (2)0.30860 (13)0.0459 (8)
C110.5046 (5)0.3035 (2)0.30674 (15)0.0567 (9)
H110.54020.26250.33800.068*
C120.6398 (6)0.3065 (2)0.26103 (17)0.0648 (10)
H120.77150.26800.26020.078*
C130.5869 (6)0.3646 (3)0.21620 (16)0.0656 (10)
H130.68120.36580.18450.079*
C140.3998 (6)0.4205 (2)0.21691 (15)0.0641 (9)
H140.36030.46160.18590.077*
C150.2640 (5)0.4176 (2)0.26310 (14)0.0532 (8)
H150.13220.45610.26320.064*
C160.0185 (4)0.51185 (19)0.36222 (13)0.0427 (8)
C170.1498 (5)0.5766 (2)0.37229 (14)0.0525 (8)
H170.29680.56060.39190.063*
C180.1072 (6)0.6636 (2)0.35467 (16)0.0641 (10)
H180.22420.70840.36180.077*
C190.1041 (6)0.6866 (2)0.32683 (16)0.0666 (10)
H190.13370.74640.31340.080*
C200.2734 (6)0.6228 (2)0.31756 (15)0.0656 (10)
H200.42200.63930.29900.079*
C210.2322 (5)0.5365 (2)0.33454 (15)0.0588 (9)
H210.35140.49240.32780.071*
C220.2369 (6)0.4160 (2)0.45944 (15)0.0689 (10)
H22A0.21290.47920.46180.083*
H22B0.21640.39070.49750.083*
H22C0.39090.40400.44250.083*
C230.1106 (10)0.0763 (3)0.3312 (2)0.1234 (18)
H23A0.16650.08930.29450.148*
H23B0.02550.11100.33540.148*
H23C0.07370.01400.33300.148*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0923 (19)0.089 (2)0.082 (2)0.0329 (16)0.0030 (14)0.0040 (17)
O20.0810 (18)0.137 (3)0.108 (3)0.0089 (18)0.0287 (17)0.003 (2)
O330.107 (2)0.0584 (19)0.111 (2)0.0009 (14)0.0119 (18)0.0022 (16)
N10.0515 (15)0.0465 (17)0.0546 (18)0.0032 (12)0.0110 (12)0.0028 (14)
N20.0587 (16)0.0405 (17)0.0542 (17)0.0028 (12)0.0045 (13)0.0067 (14)
N30.068 (2)0.090 (3)0.059 (2)0.0031 (19)0.0008 (16)0.004 (2)
C10.0610 (19)0.041 (2)0.053 (2)0.0065 (15)0.0057 (16)0.0069 (17)
C20.082 (2)0.079 (3)0.072 (3)0.028 (2)0.0136 (19)0.030 (2)
C30.098 (3)0.084 (3)0.092 (3)0.034 (2)0.004 (3)0.032 (3)
C40.103 (3)0.061 (3)0.093 (4)0.012 (2)0.019 (3)0.027 (2)
C50.084 (3)0.076 (3)0.057 (2)0.007 (2)0.0047 (19)0.022 (2)
C60.060 (2)0.051 (2)0.048 (2)0.0035 (15)0.0045 (16)0.0005 (18)
C70.0595 (19)0.042 (2)0.053 (2)0.0063 (15)0.0066 (16)0.0062 (17)
C80.0467 (16)0.0372 (18)0.049 (2)0.0054 (14)0.0058 (14)0.0059 (16)
C90.0487 (17)0.039 (2)0.052 (2)0.0055 (14)0.0020 (14)0.0054 (17)
C100.0504 (17)0.0396 (19)0.048 (2)0.0053 (14)0.0040 (14)0.0032 (16)
C110.059 (2)0.048 (2)0.063 (2)0.0006 (16)0.0081 (17)0.0007 (18)
C120.067 (2)0.054 (2)0.075 (3)0.0027 (17)0.015 (2)0.007 (2)
C130.071 (2)0.068 (3)0.061 (2)0.0107 (19)0.0226 (18)0.013 (2)
C140.078 (2)0.065 (2)0.050 (2)0.0028 (19)0.0075 (18)0.0039 (19)
C150.0559 (19)0.054 (2)0.049 (2)0.0009 (15)0.0058 (16)0.0005 (18)
C160.0436 (17)0.0406 (19)0.045 (2)0.0024 (13)0.0093 (13)0.0012 (15)
C170.0459 (17)0.047 (2)0.065 (2)0.0046 (15)0.0054 (14)0.0044 (17)
C180.063 (2)0.044 (2)0.087 (3)0.0122 (16)0.0128 (19)0.000 (2)
C190.082 (3)0.040 (2)0.080 (3)0.0076 (19)0.022 (2)0.0101 (19)
C200.059 (2)0.056 (2)0.082 (3)0.0072 (18)0.0074 (18)0.012 (2)
C210.0485 (18)0.051 (2)0.076 (3)0.0069 (15)0.0017 (16)0.0041 (19)
C220.072 (2)0.065 (3)0.073 (3)0.0003 (18)0.0272 (19)0.007 (2)
C230.176 (5)0.081 (4)0.105 (4)0.006 (3)0.029 (4)0.022 (3)
Geometric parameters (Å, º) top
O1—N31.223 (4)C11—C121.381 (4)
O2—N31.222 (4)C11—H110.9599
O33—C231.358 (5)C12—C131.371 (5)
O33—H330.8199C12—H120.9601
N1—C71.350 (4)C13—C141.375 (4)
N1—C81.397 (4)C13—H130.9599
N1—C221.460 (4)C14—C151.393 (4)
N2—C71.320 (4)C14—H140.9600
N2—C91.380 (4)C15—H150.9600
N3—C61.471 (4)C16—C171.382 (4)
C1—C61.381 (4)C16—C211.393 (4)
C1—C21.383 (4)C17—C181.383 (4)
C1—C71.481 (4)C17—H170.9600
C2—C31.377 (5)C18—C191.377 (5)
C2—H20.9601C18—H180.9599
C3—C41.360 (5)C19—C201.375 (5)
C3—H30.9600C19—H190.9600
C4—C51.374 (5)C20—C211.369 (4)
C4—H40.9600C20—H200.9600
C5—C61.371 (5)C21—H210.9599
C5—H50.9598C22—H22A0.9600
C8—C91.372 (4)C22—H22B0.9600
C8—C161.477 (4)C22—H22C0.9600
C9—C101.484 (4)C23—H23A0.9601
C10—C151.378 (4)C23—H23B0.9600
C10—C111.390 (4)C23—H23C0.9600
C23—O33—H33109.5C13—C12—H12119.2
C7—N1—C8106.9 (2)C11—C12—H12120.6
C7—N1—C22126.6 (3)C12—C13—C14119.9 (3)
C8—N1—C22126.4 (3)C12—C13—H13119.6
C7—N2—C9105.5 (2)C14—C13—H13120.5
O2—N3—O1123.8 (3)C13—C14—C15119.8 (3)
O2—N3—C6117.2 (4)C13—C14—H14121.0
O1—N3—C6119.0 (3)C15—C14—H14119.2
C6—C1—C2115.8 (3)C10—C15—C14120.9 (3)
C6—C1—C7125.1 (3)C10—C15—H15119.4
C2—C1—C7118.7 (3)C14—C15—H15119.6
C3—C2—C1122.0 (4)C17—C16—C21118.5 (3)
C3—C2—H2118.7C17—C16—C8120.6 (3)
C1—C2—H2119.3C21—C16—C8120.8 (3)
C4—C3—C2120.3 (4)C16—C17—C18120.6 (3)
C4—C3—H3119.7C16—C17—H17119.3
C2—C3—H3120.0C18—C17—H17120.1
C3—C4—C5119.5 (4)C19—C18—C17120.2 (3)
C3—C4—H4121.2C19—C18—H18119.4
C5—C4—H4119.3C17—C18—H18120.5
C6—C5—C4119.3 (4)C20—C19—C18119.5 (3)
C6—C5—H5118.5C20—C19—H19119.8
C4—C5—H5122.2C18—C19—H19120.8
C5—C6—C1123.0 (3)C21—C20—C19120.7 (3)
C5—C6—N3117.8 (3)C21—C20—H20119.9
C1—C6—N3119.2 (3)C19—C20—H20119.4
N2—C7—N1112.2 (3)C20—C21—C16120.5 (3)
N2—C7—C1123.1 (3)C20—C21—H21120.1
N1—C7—C1124.7 (3)C16—C21—H21119.4
C9—C8—N1105.2 (3)N1—C22—H22A109.5
C9—C8—C16132.4 (3)N1—C22—H22B109.5
N1—C8—C16122.4 (3)H22A—C22—H22B109.5
C8—C9—N2110.3 (3)N1—C22—H22C109.5
C8—C9—C10129.5 (3)H22A—C22—H22C109.5
N2—C9—C10120.2 (3)H22B—C22—H22C109.5
C15—C10—C11118.2 (3)O33—C23—H23A109.5
C15—C10—C9122.1 (3)O33—C23—H23B109.4
C11—C10—C9119.7 (3)H23A—C23—H23B109.5
C12—C11—C10120.9 (3)O33—C23—H23C109.5
C12—C11—H11120.4H23A—C23—H23C109.5
C10—C11—H11118.7H23B—C23—H23C109.5
C13—C12—C11120.2 (3)
C6—C1—C2—C30.1 (6)C16—C8—C9—N2176.8 (3)
C7—C1—C2—C3174.0 (4)N1—C8—C9—C10175.9 (3)
C1—C2—C3—C40.6 (7)C16—C8—C9—C106.0 (5)
C2—C3—C4—C50.0 (7)C7—N2—C9—C80.8 (3)
C3—C4—C5—C61.0 (6)C7—N2—C9—C10176.7 (3)
C4—C5—C6—C11.5 (6)C8—C9—C10—C1522.7 (5)
C4—C5—C6—N3178.8 (3)N2—C9—C10—C15154.2 (3)
C2—C1—C6—C50.9 (5)C8—C9—C10—C11158.1 (3)
C7—C1—C6—C5172.5 (3)N2—C9—C10—C1125.0 (4)
C2—C1—C6—N3179.4 (3)C15—C10—C11—C121.1 (4)
C7—C1—C6—N37.3 (5)C9—C10—C11—C12179.7 (3)
O2—N3—C6—C524.2 (5)C10—C11—C12—C130.8 (5)
O1—N3—C6—C5154.2 (3)C11—C12—C13—C140.4 (5)
O2—N3—C6—C1155.5 (3)C12—C13—C14—C150.3 (5)
O1—N3—C6—C126.1 (5)C11—C10—C15—C140.9 (5)
C9—N2—C7—N10.0 (3)C9—C10—C15—C14179.9 (3)
C9—N2—C7—C1177.6 (3)C13—C14—C15—C100.5 (5)
C8—N1—C7—N20.7 (4)C9—C8—C16—C1767.2 (5)
C22—N1—C7—N2179.4 (3)N1—C8—C16—C17110.6 (3)
C8—N1—C7—C1178.3 (3)C9—C8—C16—C21110.6 (4)
C22—N1—C7—C13.0 (5)N1—C8—C16—C2171.6 (4)
C6—C1—C7—N282.4 (4)C21—C16—C17—C180.7 (5)
C2—C1—C7—N290.8 (4)C8—C16—C17—C18177.1 (3)
C6—C1—C7—N1100.2 (4)C16—C17—C18—C190.0 (5)
C2—C1—C7—N186.6 (4)C17—C18—C19—C201.1 (5)
C7—N1—C8—C91.2 (3)C18—C19—C20—C211.5 (5)
C22—N1—C8—C9179.8 (3)C19—C20—C21—C160.8 (5)
C7—N1—C8—C16177.1 (3)C17—C16—C21—C200.3 (5)
C22—N1—C8—C161.5 (4)C8—C16—C21—C20177.6 (3)
N1—C8—C9—N21.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18···O2i0.962.563.426 (4)150
Symmetry code: (i) x+1, y+1, z+1.
(V) 1-methyl-2-(3-nitrophenyl)-4,5-diphenyl-1H-imidazole top
Crystal data top
C22H17N3O2F(000) = 744
Mr = 355.39Dx = 1.310 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 10123 reflections
a = 16.242 (3) Åθ = 1.3–25.1°
b = 9.583 (2) ŵ = 0.09 mm1
c = 11.615 (2) ÅT = 293 K
β = 94.36 (2)°Plate, yellow
V = 1802.6 (6) Å30.08 × 0.03 × 0.01 mm
Z = 4
Data collection top
Nonius KappaCCD
diffractometer
1975 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.055
Graphite monochromatorθmax = 25.1°, θmin = 1.3°
ϕ– and ω scansh = 1919
10123 measured reflectionsk = 110
3139 independent reflectionsl = 013
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.154H-atom parameters constrained
S = 1.09 w = 1/[σ2(Fo2) + (0.0845P)2]
where P = (Fo2 + 2Fc2)/3
3139 reflections(Δ/σ)max < 0.001
244 parametersΔρmax = 0.26 e Å3
0 restraintsΔρmin = 0.21 e Å3
Crystal data top
C22H17N3O2V = 1802.6 (6) Å3
Mr = 355.39Z = 4
Monoclinic, P21/cMo Kα radiation
a = 16.242 (3) ŵ = 0.09 mm1
b = 9.583 (2) ÅT = 293 K
c = 11.615 (2) Å0.08 × 0.03 × 0.01 mm
β = 94.36 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1975 reflections with I > 2σ(I)
10123 measured reflectionsRint = 0.055
3139 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.154H-atom parameters constrained
S = 1.09Δρmax = 0.26 e Å3
3139 reflectionsΔρmin = 0.21 e Å3
244 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.29718 (11)0.62150 (18)0.56097 (15)0.0500 (5)
N20.24985 (12)0.77893 (17)0.43241 (16)0.0494 (5)
N30.44693 (14)1.1969 (2)0.4849 (2)0.0663 (6)
O10.43516 (13)1.18055 (19)0.38129 (19)0.0843 (6)
O20.48089 (15)1.2993 (2)0.5286 (2)0.1030 (8)
C10.35062 (14)0.8685 (2)0.58039 (18)0.0464 (6)
C20.36471 (16)0.8822 (2)0.7004 (2)0.0575 (7)
H20.34560.81100.75000.069*
C30.40664 (17)0.9967 (3)0.7481 (2)0.0640 (7)
H30.41571.00670.83040.077*
C40.43443 (16)1.1010 (2)0.6788 (2)0.0612 (7)
H40.46441.18100.70900.073*
C50.41943 (14)1.0863 (2)0.5615 (2)0.0518 (6)
C60.37952 (14)0.9729 (2)0.5113 (2)0.0490 (6)
H60.37120.96390.42890.059*
C70.30113 (14)0.7572 (2)0.52405 (19)0.0471 (6)
C80.23869 (14)0.5544 (2)0.48800 (19)0.0477 (6)
C90.20959 (14)0.6538 (2)0.40956 (18)0.0454 (6)
C100.14388 (14)0.6451 (2)0.31503 (19)0.0474 (6)
C110.08058 (16)0.5466 (2)0.3139 (2)0.0626 (7)
H110.07970.48050.37580.075*
C120.01967 (18)0.5451 (3)0.2239 (3)0.0766 (8)
H120.02390.47750.22370.092*
C130.02078 (18)0.6384 (3)0.1349 (2)0.0736 (8)
H130.02210.63640.07340.088*
C140.08184 (17)0.7361 (3)0.1353 (2)0.0701 (8)
H140.08390.80020.07200.084*
C150.14259 (16)0.7400 (2)0.2247 (2)0.0587 (7)
H150.18460.81050.22560.070*
C160.21831 (15)0.4063 (2)0.5027 (2)0.0514 (6)
C170.18107 (19)0.3616 (3)0.5993 (2)0.0752 (8)
H170.16830.42930.65610.090*
C180.1625 (2)0.2221 (3)0.6144 (3)0.0921 (11)
H180.13680.18930.68100.111*
C190.1812 (2)0.1270 (3)0.5320 (3)0.0830 (10)
H190.16900.03020.54380.100*
C200.21659 (18)0.1693 (3)0.4354 (3)0.0764 (9)
H200.22770.10090.37830.092*
C210.23568 (16)0.3083 (2)0.4202 (2)0.0634 (7)
H210.26170.33850.35300.076*
C220.35172 (17)0.5524 (2)0.6496 (2)0.0691 (8)
H22A0.33540.45710.65930.083*
H22B0.34910.60150.72120.083*
H22C0.40720.55520.62640.083*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0561 (13)0.0501 (11)0.0426 (11)0.0010 (9)0.0033 (9)0.0017 (9)
N20.0557 (12)0.0462 (11)0.0458 (12)0.0036 (9)0.0001 (10)0.0020 (8)
N30.0671 (15)0.0512 (13)0.0816 (18)0.0004 (10)0.0123 (13)0.0005 (12)
O10.1007 (17)0.0839 (13)0.0682 (14)0.0091 (11)0.0065 (12)0.0221 (11)
O20.131 (2)0.0606 (11)0.1202 (19)0.0323 (12)0.0265 (15)0.0146 (12)
C10.0493 (14)0.0505 (13)0.0388 (13)0.0007 (10)0.0006 (11)0.0042 (10)
C20.0649 (17)0.0610 (14)0.0470 (14)0.0037 (12)0.0061 (12)0.0001 (12)
C30.0714 (19)0.0762 (17)0.0437 (14)0.0067 (14)0.0003 (13)0.0116 (13)
C40.0611 (17)0.0588 (15)0.0630 (17)0.0053 (12)0.0008 (13)0.0139 (13)
C50.0537 (16)0.0474 (13)0.0541 (15)0.0001 (11)0.0034 (12)0.0016 (12)
C60.0513 (15)0.0544 (14)0.0411 (13)0.0034 (11)0.0023 (11)0.0023 (11)
C70.0504 (15)0.0487 (13)0.0417 (13)0.0019 (10)0.0006 (11)0.0004 (10)
C80.0518 (15)0.0491 (13)0.0422 (13)0.0004 (10)0.0036 (11)0.0035 (11)
C90.0516 (15)0.0442 (13)0.0411 (13)0.0011 (10)0.0067 (11)0.0023 (10)
C100.0471 (15)0.0491 (13)0.0457 (13)0.0022 (10)0.0028 (11)0.0066 (11)
C110.0621 (18)0.0614 (15)0.0633 (17)0.0084 (13)0.0024 (14)0.0029 (12)
C120.0575 (19)0.0809 (19)0.089 (2)0.0115 (14)0.0101 (17)0.0015 (17)
C130.0602 (18)0.097 (2)0.0610 (18)0.0052 (16)0.0138 (15)0.0042 (16)
C140.0625 (18)0.0881 (18)0.0586 (17)0.0040 (15)0.0016 (14)0.0135 (14)
C150.0580 (17)0.0649 (15)0.0521 (15)0.0020 (12)0.0029 (13)0.0091 (12)
C160.0570 (15)0.0454 (13)0.0506 (15)0.0024 (11)0.0034 (12)0.0048 (12)
C170.108 (2)0.0593 (17)0.0589 (17)0.0147 (15)0.0092 (16)0.0024 (13)
C180.119 (3)0.075 (2)0.079 (2)0.0299 (19)0.009 (2)0.0268 (18)
C190.080 (2)0.0496 (16)0.113 (3)0.0068 (14)0.036 (2)0.0140 (19)
C200.069 (2)0.0544 (17)0.103 (3)0.0041 (13)0.0100 (19)0.0133 (16)
C210.0598 (17)0.0566 (15)0.0736 (18)0.0024 (12)0.0040 (14)0.0080 (14)
C220.0704 (19)0.0623 (15)0.0705 (18)0.0042 (12)0.0221 (15)0.0087 (12)
Geometric parameters (Å, º) top
N1—C71.372 (3)C11—C121.384 (4)
N1—C81.383 (3)C11—H110.9600
N1—C221.464 (3)C12—C131.367 (4)
N2—C71.317 (3)C12—H120.9599
N2—C91.382 (3)C13—C141.364 (4)
N3—O11.214 (3)C13—H130.9601
N3—O21.217 (3)C14—C151.378 (3)
N3—C51.475 (3)C14—H140.9600
C1—C61.387 (3)C15—H150.9600
C1—C21.401 (3)C16—C171.382 (4)
C1—C71.460 (3)C16—C211.386 (3)
C2—C31.385 (3)C17—C181.384 (4)
C2—H20.9600C17—H170.9599
C3—C41.381 (4)C18—C191.372 (4)
C3—H30.9600C18—H180.9599
C4—C51.373 (3)C19—C201.361 (4)
C4—H40.9599C19—H190.9599
C5—C61.372 (3)C20—C211.382 (4)
C6—H60.9599C20—H200.9601
C8—C91.377 (3)C21—H210.9600
C8—C161.470 (3)C22—H22A0.9600
C9—C101.474 (3)C22—H22B0.9599
C10—C151.387 (3)C22—H22C0.9600
C10—C111.395 (3)
C7—N1—C8107.19 (17)C12—C11—H11120.6
C7—N1—C22127.45 (18)C10—C11—H11119.5
C8—N1—C22124.83 (18)C13—C12—C11121.0 (3)
C7—N2—C9106.20 (17)C13—C12—H12119.4
O1—N3—O2123.3 (2)C11—C12—H12119.6
O1—N3—C5118.2 (2)C14—C13—C12119.9 (2)
O2—N3—C5118.4 (2)C14—C13—H13120.2
C6—C1—C2118.1 (2)C12—C13—H13120.0
C6—C1—C7117.8 (2)C13—C14—C15120.0 (3)
C2—C1—C7123.8 (2)C13—C14—H14120.3
C3—C2—C1120.7 (2)C15—C14—H14119.7
C3—C2—H2119.7C14—C15—C10121.4 (2)
C1—C2—H2119.6C14—C15—H15119.6
C4—C3—C2120.8 (2)C10—C15—H15118.9
C4—C3—H3118.4C17—C16—C21118.4 (2)
C2—C3—H3120.7C17—C16—C8120.6 (2)
C5—C4—C3117.6 (2)C21—C16—C8121.0 (2)
C5—C4—H4119.4C16—C17—C18121.0 (3)
C3—C4—H4122.9C16—C17—H17118.7
C6—C5—C4123.1 (2)C18—C17—H17120.3
C6—C5—N3117.9 (2)C19—C18—C17119.4 (3)
C4—C5—N3119.1 (2)C19—C18—H18118.5
C5—C6—C1119.7 (2)C17—C18—H18122.1
C5—C6—H6121.4C20—C19—C18120.4 (3)
C1—C6—H6118.9C20—C19—H19120.7
N2—C7—N1111.14 (18)C18—C19—H19118.9
N2—C7—C1122.63 (19)C19—C20—C21120.4 (3)
N1—C7—C1126.12 (19)C19—C20—H20118.7
C9—C8—N1105.59 (18)C21—C20—H20120.9
C9—C8—C16132.52 (19)C20—C21—C16120.3 (3)
N1—C8—C16121.89 (18)C20—C21—H21120.8
C8—C9—N2109.87 (18)C16—C21—H21118.9
C8—C9—C10130.25 (19)N1—C22—H22A110.8
N2—C9—C10119.84 (18)N1—C22—H22B108.9
C15—C10—C11117.9 (2)H22A—C22—H22B109.5
C15—C10—C9119.6 (2)N1—C22—H22C108.7
C11—C10—C9122.5 (2)H22A—C22—H22C109.5
C12—C11—C10119.9 (2)H22B—C22—H22C109.5
C6—C1—C2—C30.2 (4)C16—C8—C9—N2179.4 (2)
C7—C1—C2—C3174.7 (2)N1—C8—C9—C10176.6 (2)
C1—C2—C3—C41.0 (4)C16—C8—C9—C103.1 (4)
C2—C3—C4—C50.4 (4)C7—N2—C9—C81.2 (3)
C3—C4—C5—C60.9 (4)C7—N2—C9—C10176.5 (2)
C3—C4—C5—N3178.9 (2)C8—C9—C10—C15159.0 (2)
O1—N3—C5—C62.1 (3)N2—C9—C10—C1523.8 (3)
O2—N3—C5—C6178.5 (2)C8—C9—C10—C1122.9 (4)
O1—N3—C5—C4178.1 (2)N2—C9—C10—C11154.3 (2)
O2—N3—C5—C41.3 (3)C15—C10—C11—C120.6 (4)
C4—C5—C6—C11.6 (4)C9—C10—C11—C12178.8 (2)
N3—C5—C6—C1178.2 (2)C10—C11—C12—C130.5 (4)
C2—C1—C6—C51.0 (3)C11—C12—C13—C141.1 (4)
C7—C1—C6—C5173.8 (2)C12—C13—C14—C150.5 (4)
C9—N2—C7—N11.2 (3)C13—C14—C15—C100.7 (4)
C9—N2—C7—C1175.2 (2)C11—C10—C15—C141.2 (4)
C8—N1—C7—N20.7 (3)C9—C10—C15—C14179.4 (2)
C22—N1—C7—N2171.2 (2)C9—C8—C16—C17114.0 (3)
C8—N1—C7—C1175.6 (2)N1—C8—C16—C1765.8 (3)
C22—N1—C7—C112.6 (4)C9—C8—C16—C2165.8 (4)
C6—C1—C7—N234.7 (3)N1—C8—C16—C21114.4 (3)
C2—C1—C7—N2139.8 (2)C21—C16—C17—C180.9 (4)
C6—C1—C7—N1149.5 (2)C8—C16—C17—C18179.3 (2)
C2—C1—C7—N136.1 (4)C16—C17—C18—C190.2 (4)
C7—N1—C8—C90.1 (2)C17—C18—C19—C200.9 (5)
C22—N1—C8—C9172.2 (2)C18—C19—C20—C211.3 (4)
C7—N1—C8—C16179.9 (2)C19—C20—C21—C160.5 (4)
C22—N1—C8—C168.0 (4)C17—C16—C21—C200.5 (4)
N1—C8—C9—N20.8 (3)C8—C16—C21—C20179.6 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C4—H4···O1i0.962.483.148 (3)127
Symmetry code: (i) x, y+5/2, z+1/2.
(VI) 1-methyl-2-(4-nitrophenyl)-4,5-diphenyl-1H-imidazole top
Crystal data top
C22H17N3O2Z = 4
Mr = 355.39F(000) = 744
Triclinic, P1Dx = 1.320 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.855 (2) ÅCell parameters from 14497 reflections
b = 12.384 (2) Åθ = 2.1–26.7°
c = 14.791 (3) ŵ = 0.09 mm1
α = 111.95 (3)°T = 293 K
β = 99.56 (3)°Prism, yellow
γ = 109.63 (3)°0.50 × 0.05 × 0.05 mm
V = 1788.2 (10) Å3
Data collection top
Nonius KappaCCD
diffractometer
4081 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tubeRint = 0.091
Graphite monochromatorθmax = 25.0°, θmin = 2.1°
ϕ and ω scansh = 014
14497 measured reflectionsk = 1413
6250 independent reflectionsl = 1717
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.044Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.130H-atom parameters constrained
S = 0.89 w = 1/[σ2(Fo2) + (0.0865P)2]
where P = (Fo2 + 2Fc2)/3
6248 reflections(Δ/σ)max < 0.001
489 parametersΔρmax = 0.16 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C22H17N3O2γ = 109.63 (3)°
Mr = 355.39V = 1788.2 (10) Å3
Triclinic, P1Z = 4
a = 11.855 (2) ÅMo Kα radiation
b = 12.384 (2) ŵ = 0.09 mm1
c = 14.791 (3) ÅT = 293 K
α = 111.95 (3)°0.50 × 0.05 × 0.05 mm
β = 99.56 (3)°
Data collection top
Nonius KappaCCD
diffractometer
4081 reflections with I > 2σ(I)
14497 measured reflectionsRint = 0.091
6250 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0440 restraints
wR(F2) = 0.130H-atom parameters constrained
S = 0.89Δρmax = 0.16 e Å3
6248 reflectionsΔρmin = 0.19 e Å3
489 parameters
Special details top

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O1A0.62167 (16)0.94566 (16)0.69731 (11)0.0669 (4)
O2A0.59949 (15)1.03422 (16)0.59954 (11)0.0643 (4)
N1A0.85884 (13)0.57836 (15)0.34194 (11)0.0410 (4)
N2A0.70651 (14)0.57110 (15)0.22603 (11)0.0429 (4)
N3A0.62593 (14)0.95609 (15)0.61876 (11)0.0445 (4)
C1A0.73778 (16)0.70946 (17)0.40577 (13)0.0386 (4)
C2A0.68118 (17)0.78033 (18)0.37790 (13)0.0423 (4)
H2A0.66710.77270.30950.051*
C3A0.64459 (17)0.86116 (18)0.44639 (13)0.0421 (4)
H3A0.60620.91050.42820.051*
C4A0.66476 (16)0.87126 (17)0.54479 (12)0.0387 (4)
C5A0.72008 (18)0.80324 (19)0.57544 (13)0.0455 (5)
H5A0.73370.81300.64440.055*
C6A0.75653 (19)0.72307 (19)0.50591 (14)0.0472 (5)
H6A0.79550.67550.52640.057*
C7A0.76783 (16)0.62080 (17)0.32623 (13)0.0398 (4)
C8A0.85512 (16)0.49840 (18)0.24490 (13)0.0409 (4)
C9A0.76005 (16)0.49490 (18)0.17504 (13)0.0408 (4)
C10A0.71068 (17)0.42251 (18)0.06087 (13)0.0426 (4)
C11A0.71765 (19)0.3076 (2)0.00647 (15)0.0539 (5)
H11A0.75710.27340.04370.065*
C12A0.6692 (2)0.2419 (2)0.10071 (16)0.0643 (6)
H12A0.67610.16320.13700.077*
C13A0.6102 (2)0.2886 (3)0.15481 (16)0.0691 (7)
H13A0.57660.24310.22900.083*
C14A0.6006 (2)0.4011 (2)0.10233 (15)0.0654 (6)
H14A0.55950.43440.13930.078*
C15A0.65086 (19)0.4683 (2)0.00475 (14)0.0532 (5)
H15A0.64300.54650.04080.064*
C16A0.94456 (17)0.43948 (19)0.22948 (14)0.0467 (5)
C17A0.95771 (19)0.3611 (2)0.27347 (17)0.0603 (6)
H17A0.91000.34790.31800.072*
C18A1.0370 (3)0.3016 (3)0.2537 (2)0.0867 (9)
H18A1.04540.24930.28630.104*
C19A1.1043 (3)0.3195 (3)0.1898 (3)0.0984 (11)
H19A1.15540.27350.17550.118*
C20A1.0947 (2)0.3985 (3)0.1463 (2)0.0892 (9)
H20A1.14460.41200.10330.107*
C21A1.0151 (2)0.4588 (2)0.16582 (17)0.0644 (6)
H21A1.00700.51330.13550.077*
C22A0.95606 (18)0.6224 (2)0.43956 (14)0.0566 (6)
H22A0.97860.71140.48430.068*
H22B1.02990.61400.42600.068*
H22C0.92340.57080.47230.068*
O1B0.60201 (18)0.55568 (17)0.60989 (12)0.0793 (5)
O2B0.59878 (16)0.44631 (16)0.69425 (12)0.0727 (5)
N1B0.68974 (13)0.07110 (14)0.21385 (10)0.0388 (4)
N2B0.82065 (14)0.08117 (15)0.34619 (10)0.0418 (4)
N3B0.61307 (15)0.46610 (17)0.62150 (12)0.0508 (4)
C1B0.70423 (16)0.21269 (17)0.39443 (13)0.0379 (4)
C2B0.67065 (18)0.30358 (18)0.37796 (14)0.0451 (5)
H2B0.66830.30850.31450.054*
C3B0.64123 (18)0.38684 (19)0.45237 (14)0.0465 (5)
H3B0.61690.44760.43930.056*
C4B0.64727 (16)0.37980 (18)0.54354 (13)0.0402 (4)
C5B0.68125 (17)0.29272 (19)0.56329 (13)0.0443 (5)
H5B0.68560.28940.62760.053*
C6B0.70952 (17)0.21002 (18)0.48863 (13)0.0422 (4)
H6B0.73440.14980.50210.051*
C7B0.73725 (16)0.12227 (18)0.31916 (12)0.0381 (4)
C8B0.74718 (16)0.00671 (17)0.17279 (12)0.0381 (4)
C9B0.82804 (16)0.00061 (18)0.25551 (12)0.0393 (4)
C10B0.91252 (17)0.06312 (18)0.25763 (13)0.0426 (5)
C11B0.9414 (2)0.1261 (2)0.17135 (16)0.0677 (7)
H11B0.90720.12620.10770.081*
C12B1.0199 (2)0.1873 (3)0.1764 (2)0.0817 (8)
H12B1.03900.22940.11590.098*
C13B1.0707 (2)0.1862 (2)0.2673 (2)0.0686 (7)
H13B1.12280.23040.27060.082*
C14B1.04414 (19)0.1236 (2)0.35344 (18)0.0600 (6)
H14B1.08060.12090.41770.072*
C15B0.96599 (17)0.0632 (2)0.34841 (15)0.0498 (5)
H15B0.94900.01940.40960.060*
C16B0.71506 (17)0.07747 (18)0.05848 (13)0.0389 (4)
C17B0.76997 (19)0.0133 (2)0.00666 (14)0.0510 (5)
H17B0.83050.07600.04480.061*
C18B0.7374 (2)0.0775 (2)0.09958 (15)0.0586 (6)
H18B0.77580.03270.13520.070*
C19B0.6497 (2)0.2045 (2)0.15436 (15)0.0573 (6)
H19B0.62650.24830.22830.069*
C20B0.5952 (2)0.2689 (2)0.10402 (15)0.0574 (6)
H20B0.53480.35820.14260.069*
C21B0.62762 (19)0.20544 (19)0.00266 (14)0.0511 (5)
H21B0.58900.25030.03820.061*
C22B0.58548 (19)0.0805 (2)0.15301 (14)0.0544 (6)
H22D0.53980.00240.08880.065*
H22E0.61960.15260.13920.065*
H22F0.52890.09290.19120.065*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O1A0.1028 (12)0.0759 (11)0.0456 (8)0.0535 (10)0.0431 (8)0.0306 (8)
O2A0.0919 (11)0.0681 (11)0.0575 (9)0.0581 (9)0.0335 (8)0.0290 (8)
N1A0.0386 (8)0.0424 (9)0.0353 (8)0.0204 (7)0.0090 (6)0.0105 (7)
N2A0.0450 (8)0.0437 (9)0.0366 (8)0.0247 (7)0.0138 (7)0.0103 (7)
N3A0.0500 (9)0.0410 (10)0.0378 (9)0.0209 (8)0.0164 (7)0.0120 (7)
C1A0.0376 (9)0.0334 (10)0.0360 (9)0.0142 (8)0.0116 (8)0.0089 (8)
C2A0.0455 (10)0.0467 (12)0.0314 (9)0.0224 (9)0.0115 (8)0.0133 (8)
C3A0.0435 (10)0.0429 (11)0.0373 (10)0.0222 (9)0.0113 (8)0.0140 (8)
C4A0.0410 (10)0.0348 (10)0.0351 (9)0.0166 (8)0.0157 (8)0.0097 (8)
C5A0.0602 (12)0.0464 (12)0.0350 (9)0.0275 (10)0.0196 (9)0.0185 (9)
C6A0.0609 (12)0.0461 (12)0.0434 (10)0.0310 (10)0.0205 (9)0.0213 (9)
C7A0.0405 (10)0.0379 (11)0.0369 (10)0.0189 (8)0.0124 (8)0.0117 (8)
C8A0.0396 (10)0.0387 (11)0.0391 (10)0.0182 (8)0.0147 (8)0.0109 (8)
C9A0.0440 (10)0.0403 (11)0.0365 (10)0.0224 (9)0.0164 (8)0.0116 (8)
C10A0.0465 (10)0.0436 (11)0.0360 (9)0.0241 (9)0.0161 (8)0.0117 (8)
C11A0.0584 (12)0.0558 (13)0.0442 (11)0.0329 (11)0.0151 (9)0.0136 (10)
C12A0.0752 (15)0.0594 (15)0.0456 (12)0.0356 (12)0.0217 (11)0.0057 (10)
C13A0.0820 (16)0.0823 (18)0.0347 (11)0.0402 (14)0.0199 (11)0.0148 (11)
C14A0.0860 (16)0.0796 (17)0.0441 (12)0.0460 (14)0.0245 (11)0.0318 (12)
C15A0.0697 (14)0.0551 (13)0.0419 (11)0.0363 (11)0.0242 (10)0.0190 (9)
C16A0.0366 (10)0.0417 (12)0.0479 (11)0.0188 (9)0.0101 (8)0.0073 (9)
C17A0.0515 (12)0.0492 (13)0.0705 (14)0.0252 (10)0.0086 (11)0.0201 (11)
C18A0.0654 (16)0.0665 (18)0.102 (2)0.0422 (14)0.0022 (15)0.0146 (15)
C19A0.0583 (16)0.086 (2)0.108 (2)0.0489 (16)0.0061 (16)0.0042 (18)
C20A0.0548 (14)0.100 (2)0.0815 (19)0.0355 (15)0.0307 (13)0.0060 (16)
C21A0.0536 (12)0.0654 (16)0.0625 (13)0.0291 (11)0.0242 (11)0.0133 (11)
C22A0.0441 (11)0.0612 (14)0.0438 (11)0.0241 (10)0.0020 (9)0.0082 (10)
O1B0.1224 (14)0.0700 (12)0.0632 (10)0.0676 (11)0.0371 (10)0.0228 (9)
O2B0.0970 (12)0.0692 (11)0.0602 (9)0.0393 (9)0.0497 (9)0.0255 (8)
N1B0.0437 (8)0.0441 (9)0.0313 (8)0.0268 (7)0.0106 (6)0.0141 (7)
N2B0.0487 (9)0.0467 (10)0.0325 (8)0.0280 (8)0.0119 (7)0.0152 (7)
N3B0.0521 (10)0.0440 (10)0.0439 (9)0.0202 (8)0.0162 (8)0.0088 (8)
C1B0.0371 (9)0.0379 (11)0.0354 (9)0.0179 (8)0.0104 (7)0.0132 (8)
C2B0.0579 (12)0.0442 (12)0.0375 (10)0.0279 (10)0.0174 (9)0.0175 (9)
C3B0.0544 (11)0.0423 (12)0.0440 (11)0.0270 (9)0.0141 (9)0.0169 (9)
C4B0.0387 (9)0.0386 (11)0.0378 (10)0.0186 (8)0.0148 (8)0.0098 (8)
C5B0.0496 (11)0.0473 (12)0.0363 (10)0.0227 (9)0.0168 (8)0.0172 (9)
C6B0.0466 (10)0.0447 (12)0.0377 (10)0.0246 (9)0.0134 (8)0.0177 (8)
C7B0.0420 (10)0.0422 (11)0.0317 (9)0.0225 (8)0.0122 (8)0.0152 (8)
C8B0.0430 (10)0.0408 (11)0.0328 (9)0.0239 (8)0.0148 (8)0.0132 (8)
C9B0.0441 (10)0.0421 (11)0.0350 (9)0.0244 (9)0.0131 (8)0.0162 (8)
C10B0.0418 (10)0.0415 (11)0.0436 (10)0.0229 (9)0.0117 (8)0.0157 (9)
C11B0.0759 (15)0.0872 (18)0.0492 (12)0.0599 (14)0.0179 (11)0.0200 (12)
C12B0.0808 (17)0.092 (2)0.0747 (16)0.0646 (16)0.0245 (14)0.0173 (14)
C13B0.0533 (13)0.0540 (14)0.0909 (17)0.0341 (11)0.0084 (12)0.0231 (13)
C14B0.0498 (12)0.0577 (14)0.0749 (15)0.0274 (11)0.0093 (11)0.0345 (12)
C15B0.0459 (11)0.0520 (13)0.0542 (12)0.0249 (10)0.0125 (9)0.0258 (10)
C16B0.0433 (10)0.0432 (11)0.0327 (9)0.0268 (9)0.0118 (8)0.0133 (8)
C17B0.0602 (12)0.0483 (13)0.0409 (10)0.0222 (10)0.0160 (9)0.0185 (9)
C18B0.0757 (15)0.0690 (16)0.0437 (11)0.0392 (13)0.0259 (11)0.0289 (11)
C19B0.0653 (13)0.0725 (16)0.0360 (10)0.0463 (13)0.0161 (10)0.0129 (11)
C20B0.0564 (12)0.0475 (13)0.0465 (11)0.0250 (10)0.0097 (10)0.0016 (10)
C21B0.0558 (12)0.0445 (12)0.0462 (11)0.0215 (10)0.0189 (9)0.0139 (9)
C22B0.0592 (12)0.0727 (15)0.0358 (10)0.0450 (11)0.0085 (9)0.0181 (10)
Geometric parameters (Å, º) top
O1A—N3A1.2234 (19)O1B—N3B1.229 (2)
O2A—N3A1.223 (2)O2B—N3B1.215 (2)
N1A—C7A1.372 (2)N1B—C7B1.370 (2)
N1A—C8A1.389 (2)N1B—C8B1.379 (2)
N1A—C22A1.465 (2)N1B—C22B1.469 (2)
N2A—C7A1.328 (2)N2B—C7B1.325 (2)
N2A—C9A1.375 (2)N2B—C9B1.378 (2)
N3A—C4A1.465 (2)N3B—C4B1.470 (2)
C1A—C6A1.397 (2)C1B—C6B1.398 (2)
C1A—C2A1.402 (2)C1B—C2B1.399 (2)
C1A—C7A1.467 (2)C1B—C7B1.468 (2)
C2A—C3A1.377 (3)C2B—C3B1.384 (3)
C2A—H2A0.9600C2B—H2B0.9600
C3A—C4A1.385 (2)C3B—C4B1.375 (2)
C3A—H3A0.9600C3B—H3B0.9600
C4A—C5A1.380 (2)C4B—C5B1.378 (3)
C5A—C6A1.379 (3)C5B—C6B1.374 (3)
C5A—H5A0.9599C5B—H5B0.9600
C6A—H6A0.9599C6B—H6B0.9600
C8A—C9A1.374 (2)C8B—C9B1.376 (2)
C8A—C16A1.478 (3)C8B—C16B1.492 (2)
C9A—C10A1.478 (2)C9B—C10B1.472 (2)
C10A—C11A1.388 (3)C10B—C15B1.387 (2)
C10A—C15A1.393 (3)C10B—C11B1.391 (3)
C11A—C12A1.387 (3)C11B—C12B1.392 (3)
C11A—H11A0.9601C11B—H11B0.9601
C12A—C13A1.376 (3)C12B—C13B1.372 (3)
C12A—H12A0.9600C12B—H12B0.9599
C13A—C14A1.373 (3)C13B—C14B1.372 (3)
C13A—H13A0.9600C13B—H13B0.9600
C14A—C15A1.387 (3)C14B—C15B1.381 (3)
C14A—H14A0.9599C14B—H14B0.9601
C15A—H15A0.9601C15B—H15B0.9601
C16A—C17A1.389 (3)C16B—C21B1.379 (3)
C16A—C21A1.392 (3)C16B—C17B1.384 (3)
C17A—C18A1.381 (3)C17B—C18B1.382 (3)
C17A—H17A0.9600C17B—H17B0.9601
C18A—C19A1.367 (4)C18B—C19B1.371 (3)
C18A—H18A0.9600C18B—H18B0.9598
C19A—C20A1.380 (4)C19B—C20B1.365 (3)
C19A—H19A0.9601C19B—H19B0.9600
C20A—C21A1.391 (3)C20B—C21B1.387 (3)
C20A—H20A0.9599C20B—H20B0.9602
C21A—H21A0.9598C21B—H21B0.9600
C22A—H22A0.9600C22B—H22D0.9600
C22A—H22B0.9600C22B—H22E0.9600
C22A—H22C0.9600C22B—H22F0.9600
C7A—N1A—C8A106.88 (14)C7B—N1B—C8B106.94 (13)
C7A—N1A—C22A127.75 (15)C7B—N1B—C22B127.83 (15)
C8A—N1A—C22A124.73 (15)C8B—N1B—C22B124.76 (14)
C7A—N2A—C9A106.11 (14)C7B—N2B—C9B106.31 (13)
O2A—N3A—O1A122.90 (16)O2B—N3B—O1B123.56 (18)
O2A—N3A—C4A118.73 (15)O2B—N3B—C4B118.61 (18)
O1A—N3A—C4A118.36 (16)O1B—N3B—C4B117.81 (17)
C6A—C1A—C2A117.99 (16)C6B—C1B—C2B118.21 (17)
C6A—C1A—C7A124.10 (17)C6B—C1B—C7B118.27 (16)
C2A—C1A—C7A117.83 (15)C2B—C1B—C7B123.51 (15)
C3A—C2A—C1A121.57 (16)C3B—C2B—C1B120.74 (17)
C3A—C2A—H2A118.7C3B—C2B—H2B119.6
C1A—C2A—H2A119.7C1B—C2B—H2B119.6
C2A—C3A—C4A118.37 (17)C4B—C3B—C2B118.74 (18)
C2A—C3A—H3A122.2C4B—C3B—H3B121.6
C4A—C3A—H3A119.4C2B—C3B—H3B119.7
C5A—C4A—C3A121.98 (16)C3B—C4B—C5B122.35 (17)
C5A—C4A—N3A118.70 (15)C3B—C4B—N3B118.71 (17)
C3A—C4A—N3A119.33 (16)C5B—C4B—N3B118.93 (16)
C6A—C5A—C4A118.85 (16)C6B—C5B—C4B118.41 (16)
C6A—C5A—H5A121.1C6B—C5B—H5B120.3
C4A—C5A—H5A120.1C4B—C5B—H5B121.3
C5A—C6A—C1A121.24 (17)C5B—C6B—C1B121.54 (18)
C5A—C6A—H6A119.6C5B—C6B—H6B119.0
C1A—C6A—H6A119.1C1B—C6B—H6B119.4
N2A—C7A—N1A111.05 (15)N2B—C7B—N1B111.03 (15)
N2A—C7A—C1A122.00 (16)N2B—C7B—C1B123.14 (14)
N1A—C7A—C1A126.94 (15)N1B—C7B—C1B125.82 (15)
C9A—C8A—N1A105.76 (15)C9B—C8B—N1B106.27 (14)
C9A—C8A—C16A131.11 (16)C9B—C8B—C16B133.56 (16)
N1A—C8A—C16A123.07 (16)N1B—C8B—C16B120.17 (14)
C8A—C9A—N2A110.19 (15)C8B—C9B—N2B109.45 (15)
C8A—C9A—C10A130.01 (17)C8B—C9B—C10B130.01 (16)
N2A—C9A—C10A119.79 (15)N2B—C9B—C10B120.54 (15)
C11A—C10A—C15A117.99 (16)C15B—C10B—C11B117.15 (18)
C11A—C10A—C9A122.71 (17)C15B—C10B—C9B119.84 (17)
C15A—C10A—C9A119.27 (17)C11B—C10B—C9B123.00 (17)
C12A—C11A—C10A120.96 (19)C10B—C11B—C12B121.1 (2)
C12A—C11A—H11A119.7C10B—C11B—H11B119.1
C10A—C11A—H11A119.4C12B—C11B—H11B119.8
C13A—C12A—C11A120.2 (2)C13B—C12B—C11B120.3 (2)
C13A—C12A—H12A120.1C13B—C12B—H12B120.2
C11A—C12A—H12A119.7C11B—C12B—H12B119.5
C14A—C13A—C12A119.73 (19)C12B—C13B—C14B119.5 (2)
C14A—C13A—H13A120.0C12B—C13B—H13B120.7
C12A—C13A—H13A120.2C14B—C13B—H13B119.9
C13A—C14A—C15A120.3 (2)C13B—C14B—C15B120.2 (2)
C13A—C14A—H14A120.4C13B—C14B—H14B120.1
C15A—C14A—H14A119.3C15B—C14B—H14B119.7
C14A—C15A—C10A120.8 (2)C14B—C15B—C10B121.8 (2)
C14A—C15A—H15A119.7C14B—C15B—H15B119.0
C10A—C15A—H15A119.5C10B—C15B—H15B119.2
C17A—C16A—C21A118.40 (19)C21B—C16B—C17B119.14 (17)
C17A—C16A—C8A122.23 (19)C21B—C16B—C8B120.90 (17)
C21A—C16A—C8A119.33 (19)C17B—C16B—C8B119.92 (17)
C18A—C17A—C16A121.3 (3)C18B—C17B—C16B120.05 (19)
C18A—C17A—H17A119.7C18B—C17B—H17B120.3
C16A—C17A—H17A119.0C16B—C17B—H17B119.7
C19A—C18A—C17A119.8 (3)C19B—C18B—C17B120.3 (2)
C19A—C18A—H18A120.7C19B—C18B—H18B119.9
C17A—C18A—H18A119.4C17B—C18B—H18B119.8
C18A—C19A—C20A120.2 (3)C20B—C19B—C18B120.14 (19)
C18A—C19A—H19A117.4C20B—C19B—H19B119.9
C20A—C19A—H19A122.4C18B—C19B—H19B119.9
C19A—C20A—C21A120.3 (3)C19B—C20B—C21B120.0 (2)
C19A—C20A—H20A119.0C19B—C20B—H20B119.8
C21A—C20A—H20A120.7C21B—C20B—H20B120.2
C20A—C21A—C16A120.0 (3)C16B—C21B—C20B120.36 (19)
C20A—C21A—H21A121.1C16B—C21B—H21B119.5
C16A—C21A—H21A118.9C20B—C21B—H21B120.2
N1A—C22A—H22A109.5N1B—C22B—H22D109.5
N1A—C22A—H22B109.5N1B—C22B—H22E109.5
H22A—C22A—H22B109.5H22D—C22B—H22E109.5
N1A—C22A—H22C109.5N1B—C22B—H22F109.5
H22A—C22A—H22C109.5H22D—C22B—H22F109.5
H22B—C22A—H22C109.5H22E—C22B—H22F109.5
C6A—C1A—C2A—C3A0.1 (3)C6B—C1B—C2B—C3B1.2 (3)
C7A—C1A—C2A—C3A176.97 (17)C7B—C1B—C2B—C3B179.60 (17)
C1A—C2A—C3A—C4A0.1 (3)C1B—C2B—C3B—C4B0.9 (3)
C2A—C3A—C4A—C5A0.1 (3)C2B—C3B—C4B—C5B0.2 (3)
C2A—C3A—C4A—N3A179.65 (16)C2B—C3B—C4B—N3B178.56 (17)
O2A—N3A—C4A—C5A166.38 (17)O2B—N3B—C4B—C3B168.45 (18)
O1A—N3A—C4A—C5A13.5 (2)O1B—N3B—C4B—C3B12.4 (3)
O2A—N3A—C4A—C3A13.9 (2)O2B—N3B—C4B—C5B10.0 (3)
O1A—N3A—C4A—C3A166.25 (17)O1B—N3B—C4B—C5B169.13 (18)
C3A—C4A—C5A—C6A0.1 (3)C3B—C4B—C5B—C6B0.2 (3)
N3A—C4A—C5A—C6A179.87 (17)N3B—C4B—C5B—C6B178.17 (16)
C4A—C5A—C6A—C1A0.3 (3)C4B—C5B—C6B—C1B0.1 (3)
C2A—C1A—C6A—C5A0.3 (3)C2B—C1B—C6B—C5B0.8 (3)
C7A—C1A—C6A—C5A176.55 (18)C7B—C1B—C6B—C5B179.29 (16)
C9A—N2A—C7A—N1A0.5 (2)C9B—N2B—C7B—N1B0.1 (2)
C9A—N2A—C7A—C1A179.23 (16)C9B—N2B—C7B—C1B178.86 (16)
C8A—N1A—C7A—N2A0.9 (2)C8B—N1B—C7B—N2B0.0 (2)
C22A—N1A—C7A—N2A172.01 (17)C22B—N1B—C7B—N2B172.35 (18)
C8A—N1A—C7A—C1A178.80 (17)C8B—N1B—C7B—C1B178.92 (17)
C22A—N1A—C7A—C1A7.7 (3)C22B—N1B—C7B—C1B8.7 (3)
C6A—C1A—C7A—N2A152.45 (18)C6B—C1B—C7B—N2B30.7 (3)
C2A—C1A—C7A—N2A24.4 (3)C2B—C1B—C7B—N2B147.70 (19)
C6A—C1A—C7A—N1A27.8 (3)C6B—C1B—C7B—N1B150.49 (18)
C2A—C1A—C7A—N1A155.31 (18)C2B—C1B—C7B—N1B31.1 (3)
C7A—N1A—C8A—C9A0.9 (2)C7B—N1B—C8B—C9B0.09 (19)
C22A—N1A—C8A—C9A172.36 (17)C22B—N1B—C8B—C9B172.74 (17)
C7A—N1A—C8A—C16A176.44 (17)C7B—N1B—C8B—C16B179.86 (16)
C22A—N1A—C8A—C16A5.0 (3)C22B—N1B—C8B—C16B7.2 (3)
N1A—C8A—C9A—N2A0.7 (2)N1B—C8B—C9B—N2B0.2 (2)
C16A—C8A—C9A—N2A176.43 (19)C16B—C8B—C9B—N2B179.79 (19)
N1A—C8A—C9A—C10A177.95 (18)N1B—C8B—C9B—C10B179.49 (18)
C16A—C8A—C9A—C10A5.0 (4)C16B—C8B—C9B—C10B0.4 (4)
C7A—N2A—C9A—C8A0.1 (2)C7B—N2B—C9B—C8B0.2 (2)
C7A—N2A—C9A—C10A178.66 (16)C7B—N2B—C9B—C10B179.57 (16)
C8A—C9A—C10A—C11A26.5 (3)C8B—C9B—C10B—C15B166.60 (19)
N2A—C9A—C10A—C11A151.96 (19)N2B—C9B—C10B—C15B12.7 (3)
C8A—C9A—C10A—C15A155.6 (2)C8B—C9B—C10B—C11B12.6 (3)
N2A—C9A—C10A—C15A25.9 (3)N2B—C9B—C10B—C11B168.1 (2)
C15A—C10A—C11A—C12A1.5 (3)C15B—C10B—C11B—C12B0.5 (3)
C9A—C10A—C11A—C12A179.43 (19)C9B—C10B—C11B—C12B178.8 (2)
C10A—C11A—C12A—C13A1.6 (3)C10B—C11B—C12B—C13B0.1 (4)
C11A—C12A—C13A—C14A0.6 (4)C11B—C12B—C13B—C14B0.5 (4)
C12A—C13A—C14A—C15A0.5 (4)C12B—C13B—C14B—C15B0.6 (4)
C13A—C14A—C15A—C10A0.6 (3)C13B—C14B—C15B—C10B0.2 (3)
C11A—C10A—C15A—C14A0.4 (3)C11B—C10B—C15B—C14B0.3 (3)
C9A—C10A—C15A—C14A178.37 (19)C9B—C10B—C15B—C14B178.95 (18)
C9A—C8A—C16A—C17A126.2 (2)C9B—C8B—C16B—C21B82.2 (3)
N1A—C8A—C16A—C17A57.2 (3)N1B—C8B—C16B—C21B97.8 (2)
C9A—C8A—C16A—C21A51.4 (3)C9B—C8B—C16B—C17B100.1 (3)
N1A—C8A—C16A—C21A125.2 (2)N1B—C8B—C16B—C17B79.9 (2)
C21A—C16A—C17A—C18A1.0 (3)C21B—C16B—C17B—C18B0.2 (3)
C8A—C16A—C17A—C18A176.61 (19)C8B—C16B—C17B—C18B177.97 (17)
C16A—C17A—C18A—C19A0.0 (4)C16B—C17B—C18B—C19B0.7 (3)
C17A—C18A—C19A—C20A1.0 (4)C17B—C18B—C19B—C20B0.9 (3)
C18A—C19A—C20A—C21A1.0 (4)C18B—C19B—C20B—C21B0.6 (3)
C19A—C20A—C21A—C16A0.1 (4)C17B—C16B—C21B—C20B0.0 (3)
C17A—C16A—C21A—C20A1.1 (3)C8B—C16B—C21B—C20B177.69 (16)
C8A—C16A—C21A—C20A176.65 (19)C19B—C20B—C21B—C16B0.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C12a—H12a···O1ai0.962.663.544 (3)154
C14a—H14a···O2bii0.962.633.258 (3)124
C18b—H18b···O1ai0.962.693.245 (3)118
C19b—H19b···O1bi0.962.583.431 (3)148
Symmetry codes: (i) x, y1, z1; (ii) x, y, z1.

Experimental details

(I)(II)(III)(IV)
Crystal data
Chemical formulaC21H15N3O2C21H15N3O2·C2H3NC21H15N3O2·CH4OC22H17N3O2·CH4O
Mr341.36382.41373.40387.43
Crystal system, space groupMonoclinic, CcOrthorhombic, PbcaMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)293293293293
a, b, c (Å)10.521 (2), 19.769 (4), 9.056 (2)9.111 (2), 18.830 (4), 23.754 (5)11.728 (2), 11.365 (2), 29.241 (6)5.813 (1), 15.003 (3), 23.243 (5)
α, β, γ (°)90, 111.49 (3), 9090, 90, 9090, 94.62 (2), 9090, 95.480 (3), 90
V3)1752.6 (7)4075.2 (15)3884.8 (12)2017.8 (7)
Z4884
Radiation typeMo KαMo KαMo KαMo Kα
µ (mm1)0.090.080.090.09
Crystal size (mm)0.59 × 0.37 × 0.080.50 × 0.09 × 0.050.20 × 0.20 × 0.050.09 × 0.02 × 0.02
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Nonius Kappa CCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
6192, 1533, 943 6703, 3584, 1506 22154, 6747, 2718 11012, 3292, 1604
Rint0.0830.0800.1050.084
(sin θ/λ)max1)0.5960.5950.5950.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.090, 0.88 0.047, 0.106, 0.81 0.067, 0.156, 0.88 0.059, 0.150, 0.91
No. of reflections1533358467473292
No. of parameters236263505263
No. of restraints2000
H-atom treatmentH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.12, 0.130.15, 0.160.17, 0.180.15, 0.24
Absolute structureFlack H D (1983), Acta Cryst. A39, 876-881???
Absolute structure parameter0 (10)???


(V)(VI)
Crystal data
Chemical formulaC22H17N3O2C22H17N3O2
Mr355.39355.39
Crystal system, space groupMonoclinic, P21/cTriclinic, P1
Temperature (K)293293
a, b, c (Å)16.242 (3), 9.583 (2), 11.615 (2)11.855 (2), 12.384 (2), 14.791 (3)
α, β, γ (°)90, 94.36 (2), 90111.95 (3), 99.56 (3), 109.63 (3)
V3)1802.6 (6)1788.2 (10)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.090.09
Crystal size (mm)0.08 × 0.03 × 0.010.50 × 0.05 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correction
No. of measured, independent and
observed [I > 2σ(I)] reflections
10123, 3139, 1975 14497, 6250, 4081
Rint0.0550.091
(sin θ/λ)max1)0.5970.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.056, 0.154, 1.09 0.044, 0.130, 0.89
No. of reflections31396248
No. of parameters244489
No. of restraints00
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.26, 0.210.16, 0.19
Absolute structure??
Absolute structure parameter??

Computer programs: COLLECT (Nonius, 2000), DENZO HKL-2000 (Otwinowski & Minor ,1997), DENZO HKL-2000 (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), ORTEP-3 for Windows (Farrugia, 1999).

Comparison of phenyl ring rotation with respect to the imidazole ring (°). top
Ph rotation at position 2Ph rotation at position 4Ph rotation at position 5
(I)44.8 (2)45.0 (2)34.3 (2)
(II)45.5 (1)41.0 (2)33.1 (1)
(IIIa)15.7 (2)37.4 (2)46.5 (2)
(IIIb)31.5 (1)30.9 (2)35.3 (2)
(IV)85.2 (1)69.5 (1)24.3 (2)
(V)30.5 (1)65.5 (1)24.2 (1)
(VIa)26.0 (1)54.5 (1)25.8 (2)
(VIb)30.8 (1)81.1 (1)12.5 (2)
Strong and weak hydrogen-bond geometry. top
CompoundD—H···AD—HH···AD···AD—H···A
(I)
N1—H1···N2i0.862.102.942 (5)165
(II)
N1—H1···N2ii0.991.972.920 (3)161
(III)
N1a—H1a···O3a0.861.962.819 (4)175
N1b—H1b···O3biii0.861.952.788 (4)166
O3a—H3Oa···N2biii0.821.982.791 (4)171
O3b—H3Ob···N2a0.821.982.792 (4)169
(IV)
C18—H18···O2iv0.962.563.426 (4)150
(V)
C4—H4···O1v0.962.483.148 (3)127
(VI)
C12a—H12a···O1avi0.962.663.544 (3)154
C14b—H14b···O2bvii0.962.633.258 (3)124
C18b—H18b···O1avi0.962.693.241 (3)118
C19b—H19b···O1bvi0.962.583.431 (3)148
Symmetry codes: (i) x, -y, 1/2+z; (ii) 1/2-x, y, 3/2-z; (iii) 1-x, -1/2+y, 1/2-z; (iv) 1-x, 1-y, 1-z; (v) x, 5/2-y, 1/2+z; (vi) x, -1+y, -1+z; (vi) x, y, -1+z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds