Download citation
Download citation
link to html
The title compound, [Pt(NO3)2(C2H6S)2], crystallizes in the P21/n space group (Z′ = 2), with pseudo-square-planar coordination geometry. The complex forms dimers with pseudosymmetry Ci arranged in columns along the b-axis direction, with Pt...Pt distances of 6.3056 (3) and 4.2382 (2) Å (at 150 K). Each column is surrounded by six other columns in a honeycomb rod-like packing. The coordination mode of the nitrate ligands is monodentate, with Pt—O—N angles ranging from ∼117 to ∼118° and a tilt between the nitrate ligands and the coordination planes in the range ∼63–70° (at 150 K). The coordination mode of the nitrate ligands is compared with that observed in reported Pt(NO3)2L2 complexes (where L is a ligand with a donor atom from group 15 or 16), all of which are monodentate, with an average Pt—O—N angle of 118 (2)° and a tilt in the range 90 ± 30° (with two exceptions, in which the nitrates are approximately in the coordination plane).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107040504/gg3113sup1.cif
Contains datablocks I_295, I_150, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107040504/gg3113I_295sup2.hkl
Contains datablock I_295

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107040504/gg3113I_150sup3.hkl
Contains datablock I_150

CCDC references: 665493; 665494

Comment top

The cis/trans-PtL2X2 complexes, where X is a halogen and L a ligand with a donor atom from groups 14, 15 or 16, have been extensively studied in the solid state (Cambridge Structural Database; Allen, 2002). However, data for cis/trans-PtL2X2 where X = NO3 are relatively scarce. We report here the structure of the title compound, (I), with emphasis on (a) the coordination mode of the nitrate ion in relation to other cis/trans-PtL2(NO3)2 structures and (b) the packing arrangement of the complex. As the crystal structure analysis showed some abnormal displacement ellipsoid parameters at 295 K, data were recollected at 150 K.

cis-Pt(Me2S)2(NO3)2 (Fig. 1) crystallizes in P21/n with two independent complexes that both have angles around the PtII centre ranging from 86.24 (13) to 92.82 (4)° at 150 K. The Pt—S bond lengths range from 2.2390 (11) to 2.2499 (12) Å, and the Pt—O bond lengths are 2.053 (3)–2.063 (3) Å. These values illustrate the different trans influences of the O and S atoms. The Pt—O distances are elongated (~0.05 Å) compared with those in [Pt(NO3)4]2− (Elding & Oskarsson, 1985), and the Pt—S distances are shortened by a similar value when compared with [Pt(Me2S)4]2+ (Bugarcic et al., 1991). The parameters describing the coordination mode are defined in Fig. 2. The nitrate ions clearly coordinate in an monodentate fashion, with the second closest O atom located about 3.0 Å from PtII (Table 1). This is further supported by the N—O distances, which for the coordinated O atoms are about 0.1 Å longer than for uncoordinated ones, which are both similar. Both nitrate ions are located on the same side of the coordination plane, with Pt—OA—N angles in a narrow range (~117–118°; Table 3). The Pt—OA—N—OB torsion angle is a measure of the deviation of the Pt atom from the nitrate plane; these angles are less than 5°, with the exception of the Pt1—O1—N1—O3 angle [18.7 (5)°]. The tilts between the nitrate plane and the coordination plane are ~63–70° (from the S—Pt—OA—N torsion angles; see deposited material). The Me2S molecules coordinate to PtII in a staggered or nearly-staggered fashion with respect to the coordination plane. The two sulfide ligands are oriented in the same direction, and the Me2S molecule with the largest deviation from the staggered mode is the S2 ligand, which has C3—S2—Pt1—O1 and C4—S2—Pt1—O1 torsion angles of ~66 and ~-41°, respectively, at both temperatures.

Neither of the complexes show pseudo-symmetry, although (I) may adopt molecular point group symmetries C2, Cs or C2v. Density functional theory (DFT) calculations for the complex in the gas phase using the observed geometry as starting parameters result in only 6 kJ mol−1 higher energy compared with a Cs geometry with the Me2S ligands pointing away from each other.

Intramolecular S···O interactions are present, with distances of 3.046 (3) Å for S1···O6 and 3.091 (5) Å for S4···O9 (at 150 K), as well as an intramolecular C—H···O interaction [H4C···O1 = 2.61 Å, in the Pt1 complex, and H6C···O10 = 2.58 Å in the Pt2 complex (at 150 K)].

The difference in geometry (excluding H atoms) between the two complexes was analysed by an r.m.s. overlay (Fig. 3), yielding 0.177 Å at 150 K and 0.153 Å at 295 K. The difference between the complexes at the two temperatures has been analysed by a half-normal probability plot. The 28 bonds involving non-H atoms in each asymmetric unit were used in the analysis. Plotting observed values of δmi versus the values αi expected for a half-normal distribution of errors (International Tables for Crystallography, 1974, Vol IV) gives a straight line δmi = 3.08αi + 0.102 with R =, indicating negligible systematic differences but overly optimistic s.u. values in one or both structure analyses (deposited material), with no outliers.

In space group P21/n with Z' = 2 there are more than 14 possible choices for the pair of complexes in the asymmetric unit. Some result in a close contact of the two complexes and may be called a dimer, and some are more remote. Fig. 1 shows two reasonable choices for the asymmetric unit. The Pt1 and Pt2 complexes form a sandwiched dimer with pseudo-symmetry Ci across (0.51 0.51 0.76) [~(1/2 1/2 3/4)] stabilized by C—H···O interactions (Table 2) and have a Pt1···Pt2 distance of 6.3056 (3) Å. A second choice is the complexes Pt1 and Pt2i, which also form a sandwiched dimer with pseudo-symmetry Ci but now across (0.51 0.00 0.76) [~(1/2 0 3/4)], stabilized by Pt1···O10i and Pt2i···O4 interactions and with a Pt1···Pt2i distance of 4.2382 (2) Å (symmetry code as in Table 1). DFT calculations on this second dimer show a stabilizing energy of ~70 kJ (mole monomer)−1 in the gas phase, which seems too high. The dimers are stacked in columns along the b axis. The centres of pseudo-symmetry, (1/2 1/2 3/4) and (1/2 0 3/4), are as far away as possible from the space group operators, 21, n and −1, in accordance with the findings of Collins (2006) for molecular pairs in Z' =2 structures. Each column is surrounded by six other columns in a pseudo-honeycomb rod-like packing (O'Keeffe & Andersson, 1977) stabilized by C—H···O (H···O = 2.47–2.69 Å and C—H···O = 117–161°) and C—H···S (H···S = 2.96 Å and C—H···S = 149°) interactions and S···O contacts [3.228 (5) and 3.255 (4) Å] (Fig. 4). The H···O distances are long (Steiner & Desiraju, 1998) but still shorter than the average CH2—H···O distance [2.761 (6) Å] retrieved from 767 structures in the Cambridge Structural Database (CSD; Version 5.28 of November 2006; Allen, 2002).

The symmetry centers create voids of different sizes. Rings of four molecules are formed around the inversion centres at (0 1/2 1/2) with H8Biv···S1v and H8Aiv···O5iii interactions; at (1/2 1/2 1/2) with H5A···O3 and H4Cii···O11 interactions; at (0 1/2 0) with H4Aiii···O11iv and H4Ciii···O11vi interactions; and at (1/2 1/2 0) with H1Aii···O9ii and H8Bvii···S1ii interactions [symmetry codes (ii) −x + 1, −y + 1, −z + 1; (iii) x − 1/2, −y + 1/2, z − 1/2; (iv) x − 1/2, −y + 3/2, z − 1/2; (v) −x + 1/2, y + 1/2, −z + 3/2; (vi) −x + 1/2, y − 1/2, −z + 1/2; (vii) x, y, z − 1].[match with Table 2]

A search of the CSD for cis/trans-PtIIL2(NO3)2 complexes, where L is a ligand with a donor atom from groups 14, 15 or 16, using the CONQUEST software (Bruno et al., 2002) resulted in 11 cis and two trans compounds (Table 3). The dominance of the cis complexes may indicate a preference for cis complexes in the solid state, in contrast to the result of DFT calculations in the gas phase. The energies of two complexes reported as both cis and trans in the CSD are 30–40 kJ mol−1 lower for the corresponding trans complexes. All complexes listed in Table 3 have l2l1 > 0.75 Å, thus fullfilling the criterion for monodentate coordination for nitrate ligands, l2l1 > 0.6, suggested by Kleywegt et al. (1985; see Fig. 2 for definition of parameters describing the coordination mode). This is further supported by the l3 distances, which have an average of 1.31 (2) Å, where the error is calculated from [Σ(L - Lavr)2]/(n − 1)1/2, compared with l4 and l5 which are similar and placed together give an average of 1.22 (2) Å. The angle A1 is slightly below 120°, as expected for a simple bonding model with OA sp2-hybridized, with an average of 118 (3)°. The angle A4 is consistently greater than 120°, with an average of 123.8 (12)°, correlating well with the elongated l3 distance. The torsion angle t1 gives the orientation of the nitrate ions with respect to the coordination plane; nitrate ions located on opposite sides of the coordination plane have the same sign on t1. Out of 14 cis complexes, seven have nitrate ions on opposite sides, five on the same side and two in the plane. With the exception of the ions roughly in the coordination plane, the nitrate ions form an angle of (90 ± 30)° with the coordination plane. The Pt atom is normally close to the nitrate plane, as shown by t2, but exceptions with t2 as large as −33.3° have been observed.

The cis complexes also give information about the trans-influence of the donor atom trans to the nitrate ligand. The Pt—O distances are 2.02–2.05 Å in the N-donor complexes, 2.04–2.06 Å in the S-donor complexes and 2.08–2.14 Å in the P-donor complexes, suggesting the following trans-influence series between the donor atoms: N < S < P. Although the number of complexes is small, the series is in agreement with previous findings (Otto & Johansson, 2002).

The Kitaigordosky packing index, KPI, calculated as described by Hansson (2007), is 0.72 and 0.74 at 295 and 150 K, respectively, compared with 0.65 and 0.68 for cis-PtCl2(Et2S)2 (Hansson, 2007). Compound (I) is thus more close packed, which is further supported by the different thermal expansion coefficients [1/V dV/dT; 1.5 × 10 −4 K−1 for (I) and 2.3 × 10 −4 K−1 for cis-PtCl2(Et2S)2].

Related literature top

For related literature, see: Allen (2002); Alrichs et al. (1989); Bruno et al. (2002); Bugarcic et al. (1991); Collins (2006); Elding & Oskarsson (1985); Hansson (2007); Kleywegt et al. (1985); Otto & Johansson (2002); Souchard et al. (1990); Steiner & Desiraju (1998).

Experimental top

PtI2(Me2S)2 (0.301 g, 0.526 mmol) was dissolved in acetone (15 ml). AgNO3 (0.179 g, 1.052 mmol) was added and the reaction mixture was stirred for 90 min. A yellow precipitate of AgI was then removed by filtration. The pale-yellow acetone solution was left to evaporate slowly, which resulted in pale-yellow crystals suitable for X-ray diffraction experiments.

The reaction with Pt(Me2S)2I2 and AgNO3 is believed to be faster than the corresponding reaction with PtCl2(Me2S)2 (Souchard et al., 1990). The solubility of AgNO3 in acetone is very limited, but still the reaction is rather fast. A change in colour, from light red to pale yellow, indicates when the reaction is finished.

DFT calculations were performed at the s-VWN level with the basis sets def-TZVPP for Pt, TZVPP for O and N, and 6–31 G* for C and H atoms, using the software TURBOMOLE 5.5 (Alrichs et al., 1989).

Refinement top

All non-H atoms were refined anisotropically. Hydrogen atom positions were calculated as riding on the adjacent C atom constrained to parent sites (methyl group C—H distance 0.96 Å) with Uiso(H) = 1.5*Ueq(C).

A residual electron density of 3.8 e Å−3 at 295 K located in the coordination plane and 1.6 Å from two carbon atoms, reduces to 1.4 e Å−3 at 150 K.

Computing details top

For both compounds, data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006). Data reduction: CrysAlis RED (Oxford Diffraction, 2006) for I_295; CrysAlis RED Oxford Diffraction, 2006) for I_150. For both compounds, program(s) used to solve structure: SHELXTL (Sheldrick, 1998); program(s) used to refine structure: SHELXTL (Sheldrick, 1998); molecular graphics: DIAMOND (Brandenburg, 2000) and Mercury (Macrae et al., 2006); software used to prepare material for publication: CRYSTALS (Betteridge et al., 2003) and enCIFer (Allen et al., 2004).

Figures top
[Figure 1] Fig. 1. The atomic numbering scheme and the two pseudo-centrosymmetric dimers, Pt1···Pt2 and Pt1···Pt2i, for (I) at 150 K. Dashed lines denote either H···O or Pt···O interactions. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry code: (i) x, y − 1, z.]
[Figure 2] Fig. 2. A schematic representation of the parameters defining the coordination mode of the nitrate ligands; l are distances, A angles and t the torsion angles L(cis)—Pt—OA—N and Pt—OA—N—OB.
[Figure 3] Fig. 3. An r.m.s. overlay plot of the two molecules of (I) in the asymmetric unit.
[Figure 4] Fig. 4. The pseudo-honeycomb rod-like packing of (I) when viewed along the b-axis direction. Dashed lines denote C—H···O interactions.
(I_295) cis-Bis(dimethyl sulfide)dinitratoplatinum(II) top
Crystal data top
[Pt(NO3)2(C2H6S)2]F(000) = 1664
Mr = 443.37Dx = 2.464 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 23666 reflections
a = 16.0762 (11) Åθ = 2.1–33.0°
b = 9.5937 (5) ŵ = 12.10 mm1
c = 16.1552 (11) ÅT = 295 K
β = 106.402 (4)°Prism, pale yellow
V = 2390.2 (3) Å30.25 × 0.08 × 0.05 mm
Z = 8
Data collection top
Oxford Diffraction XCALIBUR3
diffractometer
8172 independent reflections
Radiation source: Sealed tube4952 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 32.9°, θmin = 2.5°
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2006)
h = 2424
Tmin = 0.405, Tmax = 0.771k = 149
23666 measured reflectionsl = 2323
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.120H-atom parameters constrained
S = 0.95 w = 1/[σ2(Fo2) + (0.0603P)2]
where P = (Fo2 + 2Fc2)/3
8172 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 3.82 e Å3
0 restraintsΔρmin = 2.66 e Å3
Crystal data top
[Pt(NO3)2(C2H6S)2]V = 2390.2 (3) Å3
Mr = 443.37Z = 8
Monoclinic, P21/nMo Kα radiation
a = 16.0762 (11) ŵ = 12.10 mm1
b = 9.5937 (5) ÅT = 295 K
c = 16.1552 (11) Å0.25 × 0.08 × 0.05 mm
β = 106.402 (4)°
Data collection top
Oxford Diffraction XCALIBUR3
diffractometer
8172 independent reflections
Absorption correction: numerical
(CrysAlis RED; Oxford Diffraction, 2006)
4952 reflections with I > 2σ(I)
Tmin = 0.405, Tmax = 0.771Rint = 0.062
23666 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.120H-atom parameters constrained
S = 0.95Δρmax = 3.82 e Å3
8172 reflectionsΔρmin = 2.66 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.530260 (15)0.19879 (2)0.703893 (17)0.03630 (8)
Pt20.479054 (16)0.81396 (2)0.817802 (18)0.03862 (8)
S10.63233 (11)0.22669 (17)0.82966 (11)0.0432 (4)
S20.62488 (11)0.23766 (18)0.62786 (12)0.0451 (4)
S30.34117 (13)0.77331 (2)0.74531 (14)0.0545 (5)
S40.44828 (14)0.79986 (19)0.94622 (14)0.0555 (5)
O10.4330 (3)0.1503 (5)0.5962 (3)0.0511 (12)
O20.3024 (4)0.1894 (6)0.5220 (4)0.0747 (19)
O30.3763 (5)0.3513 (7)0.6005 (5)0.108 (3)
O40.4451 (4)0.1553 (6)0.7729 (4)0.0627 (15)
O50.3690 (4)0.2298 (7)0.8562 (5)0.084 (2)
O60.4595 (4)0.3696 (6)0.8231 (4)0.0679 (16)
O70.6027 (3)0.8646 (5)0.8870 (4)0.0613 (15)
O80.7241 (4)0.8080 (6)0.9720 (5)0.080 (2)
O90.6225 (4)0.6565 (7)0.9391 (5)0.0772 (19)
O100.5134 (4)0.8470 (6)0.7078 (4)0.0631 (15)
O110.5835 (5)0.7754 (8)0.6180 (5)0.090 (2)
O120.5775 (7)0.6506 (8)0.7226 (6)0.133 (4)
N10.3675 (4)0.2352 (7)0.5721 (4)0.0526 (16)
N20.4229 (4)0.2579 (8)0.8192 (4)0.0540 (16)
N30.6510 (4)0.7709 (7)0.9349 (4)0.0483 (14)
N40.5619 (5)0.7555 (8)0.6814 (4)0.0604 (18)
C10.6837 (5)0.3915 (7)0.8294 (5)0.060 (2)
H1A0.64290.46480.82890.090*
H1B0.70380.39880.77900.090*
H1C0.73200.39970.88010.090*
C20.7210 (4)0.1124 (7)0.8308 (5)0.0529 (19)
H2A0.70230.01730.83060.079*
H2B0.76780.12940.88180.079*
H2C0.74030.12930.78060.079*
C30.5843 (6)0.3866 (8)0.5626 (6)0.067 (2)
H3A0.58970.46750.59860.100*
H3B0.52440.37210.53210.100*
H3C0.61710.40010.52190.100*
C40.6083 (6)0.1054 (8)0.5471 (5)0.062 (2)
H4A0.62810.01750.57390.093*
H4B0.64030.12830.50700.093*
H4C0.54770.09920.51710.093*
C50.3409 (6)0.6328 (8)0.6760 (6)0.077 (3)
H5A0.35760.54920.70920.115*
H5B0.38110.65090.64320.115*
H5C0.28370.62130.63740.115*
C60.3078 (5)0.9117 (7)0.6719 (5)0.063 (2)
H6A0.30490.99590.70300.095*
H6B0.25170.89140.63340.095*
H6C0.34880.92340.63910.095*
C70.4072 (6)0.6304 (8)0.9534 (6)0.067 (2)
H7A0.45190.56280.95600.100*
H7B0.35910.61280.90360.100*
H7C0.38820.62361.00450.100*
C80.3604 (6)0.9110 (8)0.9430 (6)0.079 (3)
H8A0.37761.00600.93920.118*
H8B0.34270.89880.99460.118*
H8C0.31290.88880.89360.118*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.03216 (13)0.03823 (13)0.03674 (15)0.00125 (9)0.00681 (10)0.00276 (9)
Pt20.03241 (13)0.03691 (13)0.04320 (17)0.00029 (9)0.00523 (10)0.00013 (10)
S10.0412 (9)0.0472 (8)0.0372 (9)0.0000 (7)0.0044 (7)0.0023 (7)
S20.0400 (9)0.0552 (9)0.0384 (10)0.0011 (7)0.0082 (7)0.0021 (8)
S30.0484 (10)0.0618 (10)0.0476 (12)0.0065 (9)0.0044 (9)0.0007 (9)
S40.0547 (12)0.0644 (12)0.0453 (12)0.0019 (9)0.0107 (9)0.0021 (8)
O10.047 (3)0.054 (3)0.042 (3)0.002 (2)0.005 (2)0.007 (2)
O20.039 (3)0.105 (5)0.065 (4)0.002 (3)0.010 (3)0.013 (3)
O30.092 (5)0.065 (4)0.131 (7)0.029 (4)0.025 (5)0.034 (4)
O40.063 (3)0.055 (3)0.084 (4)0.010 (3)0.041 (3)0.005 (3)
O50.064 (4)0.123 (5)0.082 (5)0.012 (4)0.046 (4)0.008 (4)
O60.082 (4)0.054 (3)0.070 (4)0.006 (3)0.025 (3)0.009 (3)
O70.048 (3)0.047 (3)0.072 (4)0.003 (2)0.011 (3)0.003 (3)
O80.036 (3)0.121 (6)0.068 (5)0.006 (3)0.006 (3)0.006 (3)
O90.071 (4)0.064 (4)0.083 (5)0.010 (3)0.001 (4)0.010 (3)
O100.060 (3)0.063 (3)0.069 (4)0.016 (3)0.022 (3)0.017 (3)
O110.088 (5)0.116 (5)0.075 (5)0.022 (4)0.037 (4)0.006 (4)
O120.209 (10)0.097 (5)0.137 (8)0.090 (6)0.123 (8)0.061 (5)
N10.034 (3)0.062 (4)0.057 (4)0.004 (3)0.005 (3)0.006 (3)
N20.046 (4)0.073 (4)0.044 (4)0.011 (3)0.016 (3)0.002 (3)
N30.039 (3)0.060 (4)0.044 (4)0.009 (3)0.008 (3)0.006 (3)
N40.076 (5)0.072 (4)0.038 (4)0.015 (4)0.025 (4)0.010 (3)
C10.075 (5)0.045 (4)0.049 (5)0.013 (4)0.001 (4)0.003 (3)
C20.042 (4)0.052 (4)0.059 (5)0.008 (3)0.005 (3)0.008 (3)
C30.082 (6)0.055 (5)0.065 (6)0.002 (4)0.023 (5)0.008 (4)
C40.071 (5)0.061 (5)0.055 (5)0.003 (4)0.019 (4)0.012 (4)
C50.080 (6)0.063 (5)0.069 (6)0.003 (5)0.009 (5)0.025 (5)
C60.059 (5)0.051 (4)0.062 (5)0.003 (4)0.010 (4)0.010 (4)
C70.102 (7)0.053 (4)0.049 (5)0.000 (5)0.028 (5)0.009 (4)
C80.118 (8)0.056 (5)0.084 (7)0.019 (5)0.065 (6)0.009 (4)
Geometric parameters (Å, º) top
Pt1—O12.037 (5)N1—O31.198 (9)
Pt1—O42.038 (5)N1—O21.211 (8)
Pt1—S12.2382 (17)C1—H1A0.9600
Pt1—S22.2398 (18)C1—H1B0.9600
Pt2—O102.029 (6)C1—H1C0.9600
Pt2—O72.045 (5)C2—H2A0.9600
Pt2—S32.2304 (19)C2—H2B0.9600
Pt2—S42.269 (2)C2—H2C0.9600
S1—C11.785 (7)C3—H3A0.9600
S1—C21.794 (7)C3—H3B0.9600
S2—C41.785 (7)C3—H3C0.9600
S2—C31.786 (8)C4—H4A0.9600
S3—C51.749 (8)C4—H4B0.9600
S3—C61.764 (7)C4—H4C0.9600
S4—C81.759 (8)C6—H6A0.9600
S4—C71.771 (8)C6—H6B0.9600
O4—N21.344 (8)C6—H6C0.9600
O1—N11.301 (7)C8—H8A0.9600
O10—N41.322 (9)C8—H8B0.9600
O6—N21.216 (9)C8—H8C0.9600
O7—N31.293 (8)C7—H7A0.9600
N2—O51.215 (8)C7—H7B0.9600
O9—N31.199 (9)C7—H7C0.9600
N4—O111.187 (9)C5—H5A0.9600
N4—O121.193 (9)C5—H5B0.9600
N3—O81.213 (8)C5—H5C0.9600
Pt1···Pt26.3048 (4)S2···O8iii3.341 (8)
Pt1···Pt2i4.3070 (4)Pt1···O32.953 (7)
Pt1···O10i3.388 (6)Pt1···O62.988 (7)
Pt2i···O43.365 (6)Pt2···O92.981 (6)
O5···S3ii3.339 (6)Pt2···O122.950 (11)
O1—Pt1—O487.0 (2)H1A—C1—H1C109.5
O1—Pt1—S1172.51 (15)H1B—C1—H1C109.5
O4—Pt1—S187.80 (19)S1—C2—H2A109.5
O1—Pt1—S292.65 (15)S1—C2—H2B109.5
O4—Pt1—S2177.75 (16)H2A—C2—H2B109.5
S1—Pt1—S292.33 (6)S1—C2—H2C109.5
O10—Pt2—O788.8 (2)H2A—C2—H2C109.5
O10—Pt2—S392.48 (17)H2B—C2—H2C109.5
O7—Pt2—S3175.96 (16)S2—C3—H3A109.5
O10—Pt2—S4173.59 (19)S2—C3—H3B109.5
O7—Pt2—S486.74 (18)H3A—C3—H3B109.5
S3—Pt2—S491.64 (8)S2—C3—H3C109.5
C1—S1—C2100.1 (4)H3A—C3—H3C109.5
C1—S1—Pt1108.9 (3)H3B—C3—H3C109.5
C2—S1—Pt1108.2 (3)S2—C4—H4A109.5
C4—S2—C3100.5 (4)S2—C4—H4B109.5
C4—S2—Pt1107.4 (3)H4A—C4—H4B109.5
C3—S2—Pt1105.4 (3)S2—C4—H4C109.5
C5—S3—C6101.8 (4)H4A—C4—H4C109.5
C5—S3—Pt2107.1 (3)H4B—C4—H4C109.5
C6—S3—Pt2106.7 (3)S3—C6—H6A109.5
C8—S4—C7104.3 (4)S3—C6—H6B109.5
C8—S4—Pt2108.5 (3)H6A—C6—H6B109.5
C7—S4—Pt2107.2 (3)S3—C6—H6C109.5
N2—O4—Pt1118.6 (5)H6A—C6—H6C109.5
N1—O1—Pt1118.3 (4)H6B—C6—H6C109.5
N4—O10—Pt2120.6 (5)S4—C8—H8A109.5
N3—O7—Pt2119.3 (4)S4—C8—H8B109.5
O5—N2—O6124.9 (7)H8A—C8—H8B109.5
O5—N2—O4116.8 (7)S4—C8—H8C109.5
O6—N2—O4118.3 (6)H8A—C8—H8C109.5
O11—N4—O12123.4 (8)H8B—C8—H8C109.5
O11—N4—O10121.0 (7)S4—C7—H7A109.5
O12—N4—O10115.5 (7)S4—C7—H7B109.5
O9—N3—O8125.0 (7)H7A—C7—H7B109.5
O9—N3—O7119.7 (6)S4—C7—H7C109.5
O8—N3—O7115.3 (7)H7A—C7—H7C109.5
O3—N1—O2125.5 (7)H7B—C7—H7C109.5
O3—N1—O1118.0 (6)S3—C5—H5A109.5
O2—N1—O1116.6 (6)S3—C5—H5B109.5
S1—C1—H1A109.5H5A—C5—H5B109.5
S1—C1—H1B109.5S3—C5—H5C109.5
H1A—C1—H1B109.5H5A—C5—H5C109.5
S1—C1—H1C109.5H5B—C5—H5C109.5
O4—Pt1—S1—C1127.7 (3)O1—Pt1—O4—N2117.7 (5)
S2—Pt1—S1—C154.5 (3)S1—Pt1—O4—N267.7 (5)
O4—Pt1—S1—C2124.3 (3)O4—Pt1—O1—N170.4 (5)
S2—Pt1—S1—C253.4 (3)S2—Pt1—O1—N1111.8 (5)
O1—Pt1—S2—C441.0 (3)O7—Pt2—O10—N474.7 (6)
S1—Pt1—S2—C4133.5 (3)S3—Pt2—O10—N4109.1 (6)
O1—Pt1—S2—C365.6 (3)O10—Pt2—O7—N3115.5 (5)
S1—Pt1—S2—C3120.0 (3)S4—Pt2—O7—N369.1 (5)
O10—Pt2—S3—C558.3 (4)Pt1—O4—N2—O5176.7 (6)
S4—Pt2—S3—C5126.6 (4)Pt1—O4—N2—O65.5 (9)
O10—Pt2—S3—C650.1 (3)Pt2—O10—N4—O11178.6 (7)
S4—Pt2—S3—C6125.0 (3)Pt2—O10—N4—O125.5 (12)
O7—Pt2—S4—C8124.7 (4)Pt2—O7—N3—O91.1 (9)
S3—Pt2—S4—C851.6 (3)Pt2—O7—N3—O8178.1 (5)
O7—Pt2—S4—C7123.2 (4)Pt1—O1—N1—O317.5 (10)
S3—Pt2—S4—C760.5 (3)Pt1—O1—N1—O2162.7 (6)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O120.962.493.226 (11)133
(I_150) cis-Bis(dimethyl sulfide)dinitratoplatinum(II) top
Crystal data top
[Pt(NO3)2(C2H6S)2]F(000) = 1664
Mr = 443.37Dx = 2.517 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 12110 reflections
a = 15.9689 (7) Åθ = 2.5–32.8°
b = 9.5020 (3) ŵ = 12.36 mm1
c = 16.0399 (7) ÅT = 150 K
β = 105.940 (3)°Prism, pale yellow
V = 2340.26 (16) Å30.25 × 0.08 × 0.05 mm
Z = 8
Data collection top
Oxford Diffraction XCALIBUR3
diffractometer
8007 independent reflections
Radiation source: Sealed tube6244 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.062
ω scansθmax = 32.8°, θmin = 2.5°
Absorption correction: numerical
CrysAlis RED (Oxford Diffraction, 2006)
h = 2324
Tmin = 0.374, Tmax = 0.771k = 149
23004 measured reflectionsl = 2324
Refinement top
Refinement on F2Primary atom site location: heavy-atom method
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.032Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.077H-atom parameters constrained
S = 0.97 w = 1/[σ2(Fo2) + (0.0355P)2]
where P = (Fo2 + 2Fc2)/3
8007 reflections(Δ/σ)max = 0.002
271 parametersΔρmax = 2.62 e Å3
0 restraintsΔρmin = 2.34 e Å3
Crystal data top
[Pt(NO3)2(C2H6S)2]V = 2340.26 (16) Å3
Mr = 443.37Z = 8
Monoclinic, P21/nMo Kα radiation
a = 15.9689 (7) ŵ = 12.36 mm1
b = 9.5020 (3) ÅT = 150 K
c = 16.0399 (7) Å0.25 × 0.08 × 0.05 mm
β = 105.940 (3)°
Data collection top
Oxford Diffraction XCALIBUR3
diffractometer
8007 independent reflections
Absorption correction: numerical
CrysAlis RED (Oxford Diffraction, 2006)
6244 reflections with I > 2σ(I)
Tmin = 0.374, Tmax = 0.771Rint = 0.062
23004 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0320 restraints
wR(F2) = 0.077H-atom parameters constrained
S = 0.97Δρmax = 2.62 e Å3
8007 reflectionsΔρmin = 2.34 e Å3
271 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Pt10.532562 (11)0.198653 (15)0.704705 (11)0.01629 (5)
Pt20.478116 (11)0.819369 (15)0.818719 (11)0.01656 (5)
S10.63436 (7)0.22584 (10)0.83136 (7)0.0183 (2)
S20.62792 (7)0.23680 (10)0.62734 (7)0.0192 (2)
S30.33898 (7)0.77936 (10)0.74629 (7)0.0199 (2)
S40.44911 (8)0.80584 (10)0.94804 (7)0.0202 (2)
O10.4353 (2)0.1506 (3)0.5950 (2)0.0229 (7)
O20.3023 (2)0.1934 (3)0.5227 (2)0.0325 (8)
O30.3780 (3)0.3569 (4)0.6026 (3)0.0523 (13)
O40.4421 (2)0.1594 (3)0.7719 (2)0.0252 (7)
O50.3662 (3)0.2367 (4)0.8541 (3)0.0380 (9)
O60.4635 (2)0.3733 (3)0.8257 (2)0.0324 (8)
O70.6051 (2)0.8663 (3)0.8820 (2)0.0241 (7)
O80.7266 (2)0.8045 (4)0.9725 (3)0.0364 (9)
O90.6195 (3)0.6563 (3)0.9428 (2)0.0346 (9)
O100.5098 (2)0.8508 (3)0.7038 (2)0.0243 (7)
O110.5775 (2)0.7744 (4)0.6120 (2)0.0337 (8)
O120.5783 (3)0.6501 (4)0.7253 (3)0.0493 (12)
N10.3692 (3)0.2376 (4)0.5727 (2)0.0238 (8)
N20.4232 (3)0.2624 (4)0.8190 (3)0.0239 (8)
N30.6518 (3)0.7702 (4)0.9348 (2)0.0225 (8)
N40.5580 (3)0.7540 (4)0.6805 (3)0.0253 (8)
C10.6827 (3)0.3970 (4)0.8313 (3)0.0271 (10)
H1A0.63930.46830.82810.041*
H1B0.70570.40510.78210.041*
H1C0.72900.40900.88360.041*
C20.7259 (3)0.1159 (4)0.8327 (3)0.0254 (10)
H2A0.70730.01950.82510.038*
H2B0.76920.12620.88730.038*
H2C0.75010.14300.78660.038*
C30.5864 (3)0.3897 (4)0.5626 (3)0.0274 (10)
H3A0.58740.46900.60000.041*
H3B0.52770.37230.52890.041*
H3C0.62210.40930.52460.041*
C40.6089 (3)0.1039 (4)0.5440 (3)0.0258 (10)
H4A0.61920.01250.57030.039*
H4B0.64770.11860.50840.039*
H4C0.54980.10980.50870.039*
C50.3438 (4)0.6358 (5)0.6741 (3)0.0337 (12)
H5A0.36640.55350.70750.051*
H5B0.38120.66100.63880.051*
H5C0.28640.61650.63770.051*
C60.3070 (3)0.9214 (4)0.6698 (3)0.0281 (10)
H6A0.29911.00550.69990.042*
H6B0.25330.89760.62780.042*
H6C0.35150.93670.64090.042*
C70.4042 (4)0.6339 (4)0.9547 (3)0.0303 (11)
H7A0.44330.56350.94440.045*
H7B0.34900.62580.91190.045*
H7C0.39630.62071.01140.045*
C80.3568 (3)0.9159 (4)0.9440 (3)0.0260 (10)
H8A0.36991.01100.93150.039*
H8B0.34370.91290.99890.039*
H8C0.30750.88280.89930.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Pt10.01557 (8)0.01708 (7)0.01558 (8)0.00081 (5)0.00320 (6)0.00159 (5)
Pt20.01622 (8)0.01621 (7)0.01617 (8)0.00033 (5)0.00265 (6)0.00013 (5)
S10.0195 (5)0.0187 (4)0.0158 (5)0.0001 (4)0.0032 (4)0.0010 (4)
S20.0197 (5)0.0227 (4)0.0148 (5)0.0005 (4)0.0040 (4)0.0008 (4)
S30.0194 (5)0.0220 (4)0.0167 (5)0.0023 (4)0.0021 (4)0.0002 (4)
S40.0206 (5)0.0222 (5)0.0164 (5)0.0007 (4)0.0029 (4)0.0018 (4)
O10.0216 (17)0.0245 (13)0.0196 (16)0.0026 (12)0.0005 (13)0.0038 (12)
O20.0180 (18)0.047 (2)0.0265 (19)0.0012 (14)0.0041 (15)0.0069 (15)
O30.048 (3)0.0269 (17)0.066 (3)0.0123 (17)0.011 (2)0.0198 (19)
O40.0250 (18)0.0262 (14)0.0252 (17)0.0072 (13)0.0084 (14)0.0039 (13)
O50.032 (2)0.051 (2)0.038 (2)0.0042 (17)0.0226 (18)0.0034 (18)
O60.040 (2)0.0242 (15)0.037 (2)0.0013 (14)0.0167 (17)0.0058 (14)
O70.0203 (17)0.0237 (14)0.0244 (17)0.0001 (12)0.0002 (13)0.0041 (12)
O80.0190 (19)0.053 (2)0.032 (2)0.0037 (15)0.0011 (16)0.0032 (16)
O90.040 (2)0.0223 (15)0.037 (2)0.0037 (14)0.0039 (17)0.0023 (14)
O100.0295 (18)0.0235 (14)0.0230 (16)0.0070 (13)0.0122 (14)0.0039 (12)
O110.030 (2)0.0435 (18)0.0285 (19)0.0119 (16)0.0092 (16)0.0042 (16)
O120.081 (3)0.0393 (19)0.039 (2)0.036 (2)0.037 (2)0.0237 (18)
N10.020 (2)0.0299 (18)0.0194 (19)0.0023 (15)0.0013 (15)0.0014 (15)
N20.019 (2)0.0303 (18)0.023 (2)0.0040 (15)0.0078 (16)0.0037 (15)
N30.0177 (19)0.0282 (17)0.0205 (19)0.0059 (15)0.0036 (15)0.0045 (15)
N40.027 (2)0.0278 (18)0.024 (2)0.0020 (16)0.0109 (17)0.0045 (15)
C10.036 (3)0.0172 (18)0.023 (2)0.0028 (17)0.000 (2)0.0017 (16)
C20.022 (2)0.0232 (19)0.028 (2)0.0039 (16)0.0017 (19)0.0035 (17)
C30.035 (3)0.0221 (19)0.027 (2)0.0008 (18)0.011 (2)0.0028 (17)
C40.029 (3)0.025 (2)0.023 (2)0.0010 (17)0.0069 (19)0.0068 (17)
C50.039 (3)0.025 (2)0.030 (3)0.005 (2)0.001 (2)0.0115 (19)
C60.024 (2)0.0232 (19)0.030 (2)0.0009 (17)0.0044 (19)0.0050 (18)
C70.042 (3)0.024 (2)0.030 (3)0.002 (2)0.018 (2)0.0063 (18)
C80.033 (3)0.0218 (19)0.025 (2)0.0027 (17)0.012 (2)0.0005 (17)
Geometric parameters (Å, º) top
Pt1—O12.053 (3)N1—O21.220 (5)
Pt1—O42.061 (3)N1—O31.224 (5)
Pt1—S12.2411 (11)C1—H1A0.9600
Pt1—S22.2424 (11)C1—H1B0.9600
Pt2—O72.053 (3)C1—H1C0.9600
Pt2—O102.063 (3)C2—H2A0.9600
Pt2—S32.2390 (11)C2—H2B0.9600
Pt2—S42.2499 (12)C2—H2C0.9600
S1—C21.791 (4)C3—H3A0.9600
S1—C11.801 (4)C3—H3B0.9600
S2—C31.803 (4)C3—H3C0.9600
S2—C41.804 (4)C4—H4A0.9600
S3—C61.801 (4)C4—H4B0.9600
S3—C51.804 (5)C4—H4C0.9600
S4—C81.794 (4)C6—H6A0.9600
S4—C71.799 (4)C6—H6B0.9600
O4—N21.320 (5)C6—H6C0.9600
O1—N11.312 (5)C8—H8A0.9600
O10—N41.317 (5)C8—H8B0.9600
O6—N21.223 (5)C8—H8C0.9600
O7—N31.326 (5)C7—H7A0.9600
N2—O51.219 (5)C7—H7B0.9600
O9—N31.221 (5)C7—H7C0.9600
N4—O121.211 (5)C5—H5A0.9600
N4—O111.236 (5)C5—H5B0.9600
N3—O81.225 (5)C5—H5C0.9600
Pt1···Pt26.3056 (3)S2···O8iii3.228 (5)
Pt1···Pt2i4.2382 (2)Pt1···O32.969 (4)
Pt1···O10i3.325 (3)Pt1···O62.985 (3)
Pt2i···O43.331 (3)Pt2···O92.999 (3)
O5···S3ii3.255 (4)Pt2···O122.951 (5)
O1—Pt1—O486.24 (13)H1A—C1—H1C109.5
O1—Pt1—S1172.81 (9)H1B—C1—H1C109.5
O4—Pt1—S189.12 (10)S1—C2—H2A109.5
O1—Pt1—S291.74 (9)S1—C2—H2B109.5
O4—Pt1—S2177.86 (9)H2A—C2—H2B109.5
S1—Pt1—S292.82 (4)S1—C2—H2C109.5
O7—Pt2—O1087.63 (13)H2A—C2—H2C109.5
O7—Pt2—S3176.96 (8)H2B—C2—H2C109.5
O10—Pt2—S390.75 (10)S2—C3—H3A109.5
O7—Pt2—S488.98 (10)S2—C3—H3B109.5
O10—Pt2—S4174.44 (9)H3A—C3—H3B109.5
S3—Pt2—S492.44 (4)S2—C3—H3C109.5
C2—S1—C1100.3 (2)H3A—C3—H3C109.5
C2—S1—Pt1109.28 (16)H3B—C3—H3C109.5
C1—S1—Pt1107.94 (15)S2—C4—H4A109.5
C3—S2—C4100.2 (2)S2—C4—H4B109.5
C3—S2—Pt1104.51 (17)H4A—C4—H4B109.5
C4—S2—Pt1107.20 (16)S2—C4—H4C109.5
C6—S3—C5100.6 (2)H4A—C4—H4C109.5
C6—S3—Pt2106.36 (15)H4B—C4—H4C109.5
C5—S3—Pt2104.48 (18)S3—C6—H6A109.5
C8—S4—C7101.2 (2)S3—C6—H6B109.5
C8—S4—Pt2107.94 (16)H6A—C6—H6B109.5
C7—S4—Pt2107.06 (17)S3—C6—H6C109.5
N2—O4—Pt1117.9 (3)H6A—C6—H6C109.5
N1—O1—Pt1117.2 (2)H6B—C6—H6C109.5
N4—O10—Pt2117.3 (3)S4—C8—H8A109.5
N3—O7—Pt2118.1 (3)S4—C8—H8B109.5
O5—N2—O6124.9 (4)H8A—C8—H8B109.5
O5—N2—O4115.6 (4)S4—C8—H8C109.5
O6—N2—O4119.5 (4)H8A—C8—H8C109.5
O12—N4—O11124.2 (4)H8B—C8—H8C109.5
O12—N4—O10118.8 (4)S4—C7—H7A109.5
O11—N4—O10116.9 (4)S4—C7—H7B109.5
O9—N3—O8124.4 (4)H7A—C7—H7B109.5
O9—N3—O7119.9 (4)S4—C7—H7C109.5
O8—N3—O7115.6 (4)H7A—C7—H7C109.5
O2—N1—O3124.2 (4)H7B—C7—H7C109.5
O2—N1—O1117.1 (4)S3—C5—H5A109.5
O3—N1—O1118.6 (4)S3—C5—H5B109.5
S1—C1—H1A109.5H5A—C5—H5B109.5
S1—C1—H1B109.5S3—C5—H5C109.5
H1A—C1—H1B109.5H5A—C5—H5C109.5
S1—C1—H1C109.5H5B—C5—H5C109.5
O4—Pt1—S1—C2127.90 (18)O1—Pt1—O4—N2120.5 (3)
S2—Pt1—S1—C251.21 (16)S1—Pt1—O4—N265.0 (3)
O4—Pt1—S1—C1123.9 (2)O4—Pt1—O1—N167.4 (3)
S2—Pt1—S1—C156.95 (18)S2—Pt1—O1—N1113.3 (3)
O1—Pt1—S2—C365.99 (19)O7—Pt2—O10—N472.7 (3)
S1—Pt1—S2—C3119.56 (17)S3—Pt2—O10—N4109.9 (3)
O1—Pt1—S2—C439.78 (18)O10—Pt2—O7—N3121.2 (3)
S1—Pt1—S2—C4134.67 (16)S4—Pt2—O7—N363.2 (3)
O10—Pt2—S3—C649.16 (19)Pt1—O4—N2—O5176.4 (3)
S4—Pt2—S3—C6126.29 (18)Pt1—O4—N2—O64.7 (5)
O10—Pt2—S3—C556.7 (2)Pt2—O10—N4—O122.8 (6)
S4—Pt2—S3—C5127.84 (18)Pt2—O10—N4—O11179.3 (3)
O7—Pt2—S4—C8128.12 (18)Pt2—O7—N3—O91.8 (5)
S3—Pt2—S4—C849.18 (16)Pt2—O7—N3—O8178.4 (3)
O7—Pt2—S4—C7123.6 (2)Pt1—O1—N1—O2161.5 (3)
S3—Pt2—S4—C759.08 (19)Pt1—O1—N1—O318.7 (5)
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y1/2, z+3/2; (iii) x+3/2, y1/2, z+3/2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O120.962.403.146 (6)134
C1—H1A···O90.962.653.358 (6)131
C2—H2A···O7i0.962.543.288 (6)135
C3—H3A···O120.962.683.624 (6)168
C4—H4A···O11i0.962.503.398 (6)156
C5—H5A···O30.962.562.997 (7)108
C6—H6B···O5iv0.962.523.209 (6)128
C8v—H8Av···O5vi0.962.473.393 (6)161
Symmetry codes: (i) x, y1, z; (iv) x+1/2, y+1/2, z+3/2; (v) x1/2, y+3/2, z1/2; (vi) x1/2, y+1/2, z1/2.

Experimental details

(I_295)(I_150)
Crystal data
Chemical formula[Pt(NO3)2(C2H6S)2][Pt(NO3)2(C2H6S)2]
Mr443.37443.37
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/n
Temperature (K)295150
a, b, c (Å)16.0762 (11), 9.5937 (5), 16.1552 (11)15.9689 (7), 9.5020 (3), 16.0399 (7)
β (°) 106.402 (4) 105.940 (3)
V3)2390.2 (3)2340.26 (16)
Z88
Radiation typeMo KαMo Kα
µ (mm1)12.1012.36
Crystal size (mm)0.25 × 0.08 × 0.050.25 × 0.08 × 0.05
Data collection
DiffractometerOxford Diffraction XCALIBUR3
diffractometer
Oxford Diffraction XCALIBUR3
diffractometer
Absorption correctionNumerical
(CrysAlis RED; Oxford Diffraction, 2006)
Numerical
CrysAlis RED (Oxford Diffraction, 2006)
Tmin, Tmax0.405, 0.7710.374, 0.771
No. of measured, independent and
observed [I > 2σ(I)] reflections
23666, 8172, 4952 23004, 8007, 6244
Rint0.0620.062
(sin θ/λ)max1)0.7650.762
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.120, 0.95 0.032, 0.077, 0.97
No. of reflections81728007
No. of parameters271271
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)3.82, 2.662.62, 2.34

Computer programs: CrysAlis CCD (Oxford Diffraction, 2006), CrysAlis RED (Oxford Diffraction, 2006), CrysAlis RED Oxford Diffraction, 2006), SHELXTL (Sheldrick, 1998), DIAMOND (Brandenburg, 2000) and Mercury (Macrae et al., 2006), CRYSTALS (Betteridge et al., 2003) and enCIFer (Allen et al., 2004).

Selected interatomic distances (Å) for (I_150) top
Pt1—O12.053 (3)Pt2—O72.053 (3)
Pt1—O42.061 (3)Pt2—O102.063 (3)
Pt1—S12.2411 (11)Pt2—S32.2390 (11)
Pt1—S22.2424 (11)Pt2—S42.2499 (12)
Pt1···Pt26.3056 (3)Pt1···O32.969 (4)
Pt1···Pt2i4.2382 (2)Pt1···O62.985 (3)
Pt1···O10i3.325 (3)Pt2···O92.999 (3)
Pt2i···O43.331 (3)Pt2···O122.951 (5)
Symmetry code: (i) x, y1, z.
Hydrogen-bond geometry (Å, º) for (I_150) top
D—H···AD—HH···AD···AD—H···A
C1—H1A···O120.962.403.146 (6)134
C1—H1A···O90.962.653.358 (6)131
C2—H2A···O7i0.962.543.288 (6)135
C3—H3A···O120.962.683.624 (6)168
C4—H4A···O11i0.962.503.398 (6)156
C5—H5A···O30.962.562.997 (7)108
C6—H6B···O5ii0.962.523.209 (6)128
C8iii—H8Aiii···O5iv0.962.473.393 (6)161
Symmetry codes: (i) x, y1, z; (ii) x+1/2, y+1/2, z+3/2; (iii) x1/2, y+3/2, z1/2; (iv) x1/2, y+1/2, z1/2.
Table 3a. The coordination mode of the nitrate ion for cis-Pt(NO3)2L2 compounds found in the CSD. A complete Table with all parameters defined in Fig. 2 is deposited. top
RefcodeDonorl1l2l3A1A4
(I)aS2.053 (3)2.969 (4)1.312 (5)117.2 (2)124.2 (4)
S2.061 (3)2.985 (3)1.320 (5)117.9 (3)124.9 (4)
S2.053 (3)2.99 (3)1.326 (5)118.1 (3)124.4 (4)
S2.063 (3)2.951 (5)1.317 (5)117.3 (3)124.2 (4)
APUMONbP/P2.10/2.132.90/2.911.33/1.30113.5/114.7126.8/124.7
ICUVEHcN/N2.02/2.032.96/2.981.34/1.27117.0/121.1123.5/122.7
ICUVORcN/N2.02/2.032.94/2.921.32/1.30117.1/117.4125.3/123.9
ICUVUXcN/N2.03/2.042.98/2.991.31/1.32119.0/119.5125.3/125.1
LALNIVdP/P2.11/2.142.99/3.021.31/1.29118.2/118.0124.1/123.3
NARQAZeN/N2.04/2.052.98/2.981.32/1.32117.7/117.6124.9/124.4
QIHTOQfP/P2.11/2.122.91/2.951.28/1.26113.6/116.2121.6/122.2
TAZZOJgS/S2.04/2.063.07/2.951.36/1.31115.8/115.7123.1/124.3
WIJWERhP/P2.09/2.102.98/2.911.26/1.29119.5/115.9122.7/123.0
XABZACiP/P2.08/2.103.09/3.151.33/1.32121.6/121.9124.6/122.5
P/P2.09/2.103.13/3.141.32/1.31122.4/122.3121.1/122.5
XIKJACjP/P2.13/2.132.88/2.881.31/1.31111.8/111.8123.6/123.6
Notes: (a) this paper; (b) Longato et al. (2003); (c) Tessier & Rochon (2001); (d) Suzuki et al. (1993); (e) Grabner et al. (2005); (f) Arendse et al. (2001); (g) Boström et al. (1991); (h) Redwine et al. (2000); (i) Anandhi et al. (2003); (j) Kuehl et al. (2001).
Table 3 b. trans-Pt(NO3)2L2 compound found in the CSD. top
RefcodeDonorl1l2l3A1A4
ICUVADaN2.012.961.31118.7123.5
ICUVILaN2.022.931.32117.9125.0
Notes: (a) Tessier & Rochon (2001).
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds