Download citation
Download citation
link to html
In the title compound, C9H11ITe·C27H33ITe2 or (Mes)TeI·(Mes2Te)TeI(Mes) (Mes is mesityl or 2,4,6-trimethyl­phen­yl), a strong Te...I inter­action of 3.3157 (9) Å links the Te atom of an iodidomesityltellurium(II) moiety, (Mes)TeI, and an I atom of the iodidotrimesitylditellurium(II) unit, (Mes2Te)TeI(Mes). Further weak Te...I contacts of 4.0818 (9) Å give rise to one-dimensional chains along the b axis in the crystal structure. An intra­molecular C—H...π(arene) inter­action is present in the (TeMes2)TeI(Mes) moiety, with a C...Cg distance of 3.497 (9) Å and a C—H...Cg angle of 142° (where Cg is the centroid of a mesityl ring of the Mes2Te moiety).

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107035123/gg3108sup1.cif
Contains datablocks I, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107035123/gg3108Isup2.hkl
Contains datablock I

CCDC reference: 661810

Comment top

Organyltellurenyl halides (RTeHal, where Hal is Cl, Br or I) are recognized as very unstable compounds which can easily undergo dismutation and disproportionation reactions. Stabilization of these species can be achieved by introducing either bulky substituents at the R moiety or additional coordinating donor groups in the system. In this way, several 2,4,6-R'3C6H2TeHal systems have been synthesized and structurally characterized, as well as donor-stabilized organyltellurenyl halides (Lang et al., 2006; de Oliveira et al., 2006; Du Mont et al., 1988; Klapötke et al., 2005; Beckmann & Hesse, 2007; Beckmann et al., 2007). On reacting bis(2,4,6-trimethylphenyl)ditellane (MesTe)2 with one equivalent of I2 in CH2Cl2, followed by removal of the solvent in vacuo and recrystallization from n-hexane, we obtained single crystals of the title compound, (Mes)TeI[(Mes2Te)TeI(Mes)], (I) (where Mes is 2,4,6-trimethylphenyl) (Fig. 1).

The asymmetric unit of (I) features a pseudo-halide mesityltellurenyl monoiodide (MesTeI) and a (dimesityltelluride)(iodo)(mesityl)tellurium(II) [(Mes)ITe(TeMes2)] moiety linked by a `soft–soft' Te3···I1i charge-transfer interaction of 3.3157 (9) Å [symmetry code: (i) -x, -1/2 + y, 1/2 - z] (Table 1). In the (Mes)TeI fragment, the I atom is almost perpendicular to the plane containing the aromatic ring and the Te atom [C28—Te2—I2 = 94.5 (2)°], as also observed in 2,4,6-tBu3C6H2TeBr [93.61 (5)°; Beckmann & Hesse, 2007], 2,4,6-tBu3C6H2TeCl [93.40 (9)°; Beckmann et al., 2007] and 2,4,6-tBu3C6H2TeI [95.75 (8)°; Klapötke et al., 2005]. According to Ledesma et al. (2004), the (Mes)ITe(TeMes2) moiety can be considered as formed by an (Mes)TeI unit stabilized by a dimesityltelluride ligand (Mes2Te) via a Te1—Te2 secondary soft–soft interaction of 3.0609 (8) Å. The three-centre Te1—Te2—I1 system is approximately linear [171.90 (3)°], thus suggesting the occurrence of a charge transfer from Mes2Te to (Mes)TeI, which could explain the longer Te2—I1 distance [2.9621 (9) Å] compared with Te3—I2 [2.7840 (10) Å]. The geometry about atom Te2 can be considered as a distorted T shape, whereas the coordination geometry around atom Te2 [Same atom as in previous clause - please check] can be described as a distorted tetrahedron with a vacant coordination site (Ledesma et al., 2004).

An intramolecular C—H···π(arene) interaction is present in the [(Mes2Te)TeI(Mes)] moiety, with a C7···Cg1 distance of 3.497 (9) Å and a C7—H7A···Cg1 angle of 142° (where Cg1 is the centroid of the C10–C15 mesityl ring) (Table 2), together with a reciprocal C18···Cg2 interaction, with an interplanar Cg1···Cg2 separation of 3.39 Å (Cg2 is the centroid of the C1–C6 ring).

A further soft–soft weak Te1···I2ii interaction of 4.0818 (9) Å [symmetry code: (ii) -1 + x, y, z] gives rise to zigzag polymers which run along the b axis in the crystal structure (Fig. 2). Overall, compound (I) can be described as mesityltellurenyl monoiodide (MesTeI) units bridging the (dimesityltelluride)(iodo)(mesityl)tellurium(II) [(Mes)ITe(TeMes2)] units in a head-to-tail fashion via Te···I soft–soft interactions.

Related literature top

For related literature, see: Beckmann & Hesse (2007); Beckmann, Heitz & Hesse (2007); Du Mont, Lange, Karsch, Peters, Peters & von Schnering (1988); Klapötke et al. (2005); Lang et al. (2006); Ledesma et al. (2004); Oliveira et al. (2006).

Experimental top

Bis(2,4,6-trimethylphenyl)ditellane (MesTe)2 (0.184 mmol) and iodine (0.184 mmol) were dissolved in dichloromethane (15 ml) (Du Mont et al., 1988). After stirring for 30 min, the green solution was evaporated in vacuo. Recrystallization from n-hexane yielded dark-red needles of the title compound, (I).

Refinement top

All H atoms were placed in calculated positions using a riding model, with C—H = 0.93–0.97 Å and with Uiso(H) = 1.5Ueq(C) for methyl H or 1.2Ueq(C) for aryl H. The methyl groups were allowed to rotate but not to tip.

Computing details top

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT-Plus (Bruker, 2000); program(s) used to solve structure: SHELXTL (Bruker, 2001); program(s) used to refine structure: SHELXTL (Bruker, 2001); molecular graphics: ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and PLATON (Spek, 2003); software used to prepare material for publication: publCIF (Westrip, 2007).

Figures top
[Figure 1] Fig. 1. A view of compound (I), showing the atom-numbering scheme, with atoms represented by 30% probability displacement ellipsoids. H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the one-dimensional supramolecular motif, showing the Te···I interactions (indicated as dotted lines). H atoms have been omitted for clarity.
Iodidomesityltellurium(II) iodidotrimesitylditellurium(II)(Te—Te) top
Crystal data top
C9H11ITe·C27H33ITe2F(000) = 2088
Mr = 1113.31Dx = 1.935 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 4388 reflections
a = 8.1491 (5) Åθ = 2.4–21.3°
b = 15.9071 (10) ŵ = 3.91 mm1
c = 29.495 (2) ÅT = 297 K
β = 91.379 (1)°Block, red
V = 3822.3 (4) Å30.28 × 0.22 × 0.19 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6720 independent reflections
Radiation source: fine-focus sealed tube5651 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.056
ϕ and ω scansθmax = 25.0°, θmin = 1.9°
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
h = 99
Tmin = 0.37, Tmax = 0.476k = 1818
27296 measured reflectionsl = 3535
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.060Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.127H-atom parameters constrained
S = 1.23 w = 1/[σ2(Fo2) + (0.0453P)2 + 3.8886P]
where P = (Fo2 + 2Fc2)/3
6720 reflections(Δ/σ)max = 0.001
382 parametersΔρmax = 1.24 e Å3
0 restraintsΔρmin = 0.57 e Å3
Crystal data top
C9H11ITe·C27H33ITe2V = 3822.3 (4) Å3
Mr = 1113.31Z = 4
Monoclinic, P21/cMo Kα radiation
a = 8.1491 (5) ŵ = 3.91 mm1
b = 15.9071 (10) ÅT = 297 K
c = 29.495 (2) Å0.28 × 0.22 × 0.19 mm
β = 91.379 (1)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6720 independent reflections
Absorption correction: multi-scan
(SHELXTL; Bruker, 2001)
5651 reflections with I > 2σ(I)
Tmin = 0.37, Tmax = 0.476Rint = 0.056
27296 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0600 restraints
wR(F2) = 0.127H-atom parameters constrained
S = 1.23Δρmax = 1.24 e Å3
6720 reflectionsΔρmin = 0.57 e Å3
382 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.0850 (9)0.6454 (5)0.2624 (3)0.0349 (17)
C20.0300 (9)0.7280 (5)0.2602 (2)0.0334 (17)
C30.1479 (9)0.7911 (5)0.2573 (3)0.0409 (19)
H30.11250.84650.25500.049*
C40.3141 (10)0.7759 (5)0.2575 (3)0.0408 (19)
C50.3624 (9)0.6930 (5)0.2606 (3)0.042 (2)
H50.47380.68090.26170.050*
C60.2503 (10)0.6266 (5)0.2621 (3)0.0415 (19)
C70.1483 (9)0.7545 (5)0.2592 (3)0.047 (2)
H7A0.20580.73260.28540.071*
H7B0.15510.81480.25930.071*
H7C0.19710.73310.23230.071*
C80.4375 (11)0.8453 (6)0.2543 (3)0.066 (3)
H8A0.38560.89760.26220.099*
H8B0.52480.83430.27470.099*
H8C0.48120.84850.22380.099*
C90.3177 (11)0.5385 (5)0.2627 (3)0.060 (3)
H9A0.27110.50640.23870.091*
H9B0.43490.54030.25860.091*
H9C0.29020.51260.29130.091*
C100.1641 (10)0.6859 (5)0.3739 (3)0.0398 (19)
C110.3338 (10)0.6817 (5)0.3700 (3)0.0414 (19)
C120.4182 (11)0.7580 (6)0.3712 (3)0.054 (2)
H120.53180.75670.36870.065*
C130.3441 (12)0.8350 (6)0.3758 (3)0.052 (2)
C140.1746 (11)0.8352 (5)0.3794 (3)0.051 (2)
H140.12150.88660.38220.061*
C150.0807 (11)0.7628 (5)0.3788 (3)0.048 (2)
C160.4285 (10)0.6015 (6)0.3643 (3)0.055 (2)
H16A0.41760.56720.39090.083*
H16B0.54220.61430.36020.083*
H16C0.38610.57170.33830.083*
C170.4385 (14)0.9156 (6)0.3744 (4)0.081 (3)
H17A0.55390.90390.37710.121*
H17B0.40680.95110.39910.121*
H17C0.41540.94370.34620.121*
C180.1031 (10)0.7702 (6)0.3821 (3)0.063 (3)
H18A0.13300.82840.38420.094*
H18B0.13850.74100.40870.094*
H18C0.15480.74580.35560.094*
C190.1428 (10)0.4984 (5)0.4170 (3)0.044 (2)
C200.1902 (10)0.4168 (5)0.4053 (3)0.045 (2)
C210.2679 (11)0.3681 (5)0.4379 (3)0.056 (2)
H210.29710.31330.43060.067*
C220.3041 (11)0.3971 (6)0.4810 (3)0.056 (2)
C230.2550 (12)0.4780 (6)0.4910 (3)0.061 (3)
H230.27950.49910.51980.073*
C240.1711 (10)0.5291 (5)0.4604 (3)0.045 (2)
C250.1649 (13)0.3806 (6)0.3579 (3)0.066 (3)
H25A0.16580.32030.35950.099*
H25B0.25160.39930.33890.099*
H25C0.06120.39920.34550.099*
C260.3927 (14)0.3445 (7)0.5160 (4)0.086 (4)
H26A0.41660.37800.54240.130*
H26B0.49330.32400.50380.130*
H26C0.32480.29780.52410.130*
C270.1153 (12)0.6153 (5)0.4758 (3)0.061 (3)
H27A0.18420.65760.46300.092*
H27B0.12270.61840.50830.092*
H27C0.00370.62440.46580.092*
C280.6069 (13)0.1674 (5)0.4137 (3)0.056 (3)
C290.6593 (13)0.1556 (6)0.4584 (3)0.060 (3)
C300.5445 (17)0.1264 (7)0.4899 (4)0.078 (3)
H300.57740.11780.51990.094*
C310.3851 (16)0.1107 (7)0.4766 (4)0.079 (3)
C320.3402 (15)0.1204 (6)0.4321 (4)0.078 (3)
H320.23320.10700.42310.094*
C330.4453 (13)0.1491 (6)0.4001 (3)0.059 (2)
C340.8311 (15)0.1711 (8)0.4752 (4)0.097 (4)
H34A0.89960.12480.46660.145*
H34B0.83270.17630.50760.145*
H34C0.87150.22200.46200.145*
C350.2617 (18)0.0795 (9)0.5112 (5)0.132 (6)
H35A0.20270.12650.52310.198*
H35B0.31910.05100.53550.198*
H35C0.18580.04140.49660.198*
C360.3834 (14)0.1583 (7)0.3522 (4)0.087 (4)
H36A0.43620.11770.33340.131*
H36B0.40740.21390.34150.131*
H36C0.26690.14940.35090.131*
I10.11870 (9)0.53115 (4)0.16920 (2)0.0665 (2)
I20.68432 (9)0.38572 (4)0.38483 (3)0.0718 (2)
Te10.01478 (6)0.57559 (3)0.368736 (19)0.04250 (17)
Te20.08927 (7)0.54597 (3)0.26878 (2)0.04545 (17)
Te30.77076 (9)0.22009 (4)0.36642 (2)0.0687 (2)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.035 (4)0.030 (4)0.039 (5)0.004 (3)0.002 (3)0.004 (3)
C20.033 (4)0.035 (4)0.032 (4)0.004 (3)0.004 (3)0.004 (3)
C30.048 (5)0.032 (4)0.043 (5)0.003 (4)0.006 (4)0.000 (4)
C40.044 (5)0.033 (5)0.046 (5)0.004 (4)0.001 (4)0.004 (4)
C50.028 (4)0.046 (5)0.052 (5)0.006 (4)0.003 (4)0.007 (4)
C60.043 (5)0.038 (5)0.043 (5)0.005 (4)0.001 (4)0.003 (4)
C70.043 (5)0.042 (5)0.058 (6)0.004 (4)0.005 (4)0.008 (4)
C80.061 (6)0.060 (7)0.077 (7)0.018 (5)0.010 (5)0.008 (5)
C90.062 (6)0.041 (5)0.079 (7)0.018 (4)0.006 (5)0.001 (5)
C100.049 (5)0.029 (4)0.042 (5)0.004 (4)0.000 (4)0.003 (4)
C110.043 (5)0.038 (5)0.043 (5)0.004 (4)0.004 (4)0.003 (4)
C120.048 (5)0.059 (6)0.055 (6)0.004 (5)0.002 (4)0.002 (5)
C130.063 (6)0.043 (5)0.051 (6)0.007 (5)0.006 (4)0.001 (4)
C140.071 (6)0.033 (5)0.050 (6)0.012 (4)0.005 (5)0.001 (4)
C150.055 (5)0.042 (5)0.047 (5)0.004 (4)0.005 (4)0.004 (4)
C160.041 (5)0.061 (6)0.064 (6)0.014 (4)0.008 (4)0.001 (5)
C170.108 (9)0.046 (6)0.088 (8)0.027 (6)0.005 (7)0.007 (6)
C180.052 (6)0.045 (6)0.092 (8)0.016 (4)0.017 (5)0.003 (5)
C190.048 (5)0.035 (5)0.048 (5)0.000 (4)0.002 (4)0.010 (4)
C200.055 (5)0.031 (5)0.051 (5)0.006 (4)0.011 (4)0.007 (4)
C210.069 (6)0.031 (5)0.069 (7)0.010 (4)0.023 (5)0.007 (5)
C220.060 (6)0.046 (6)0.063 (7)0.006 (5)0.007 (5)0.011 (5)
C230.076 (7)0.062 (7)0.044 (6)0.003 (5)0.002 (5)0.014 (5)
C240.052 (5)0.034 (5)0.049 (6)0.000 (4)0.011 (4)0.003 (4)
C250.090 (8)0.041 (6)0.068 (7)0.011 (5)0.010 (6)0.005 (5)
C260.108 (9)0.075 (8)0.076 (8)0.021 (7)0.001 (7)0.023 (6)
C270.090 (7)0.047 (6)0.046 (6)0.011 (5)0.006 (5)0.005 (4)
C280.098 (8)0.023 (4)0.048 (6)0.011 (5)0.002 (5)0.008 (4)
C290.080 (7)0.039 (5)0.063 (7)0.015 (5)0.000 (6)0.004 (5)
C300.116 (10)0.073 (8)0.045 (6)0.022 (7)0.004 (7)0.002 (5)
C310.095 (9)0.059 (7)0.085 (9)0.022 (6)0.028 (7)0.010 (6)
C320.092 (9)0.054 (7)0.090 (9)0.007 (6)0.014 (7)0.000 (6)
C330.075 (7)0.041 (5)0.059 (7)0.010 (5)0.008 (5)0.002 (5)
C340.122 (11)0.088 (9)0.078 (9)0.005 (8)0.018 (8)0.006 (7)
C350.139 (13)0.130 (13)0.130 (13)0.038 (10)0.077 (10)0.028 (10)
C360.097 (9)0.080 (8)0.084 (9)0.003 (7)0.033 (7)0.001 (7)
I10.0963 (5)0.0458 (4)0.0579 (4)0.0008 (3)0.0156 (4)0.0035 (3)
I20.0853 (5)0.0415 (4)0.0891 (6)0.0003 (3)0.0109 (4)0.0017 (3)
Te10.0410 (3)0.0344 (3)0.0521 (4)0.0043 (2)0.0029 (2)0.0013 (2)
Te20.0495 (3)0.0318 (3)0.0551 (4)0.0074 (2)0.0011 (3)0.0000 (2)
Te30.0952 (5)0.0451 (4)0.0663 (5)0.0003 (3)0.0141 (4)0.0017 (3)
Geometric parameters (Å, º) top
C1—C61.380 (10)C19—Te12.134 (8)
C1—C21.390 (10)C20—C211.378 (11)
C1—Te22.131 (7)C20—C251.520 (12)
C2—C31.390 (10)C21—C221.376 (13)
C2—C71.514 (10)C21—H210.9300
C3—C41.376 (10)C22—C231.382 (12)
C3—H30.9300C22—C261.500 (13)
C4—C51.380 (10)C23—C241.385 (12)
C4—C81.494 (11)C23—H230.9300
C5—C61.397 (11)C24—C271.517 (11)
C5—H50.9300C25—H25A0.9600
C6—C91.506 (11)C25—H25B0.9600
C7—H7A0.9600C25—H25C0.9600
C7—H7B0.9600C26—H26A0.9600
C7—H7C0.9600C26—H26B0.9600
C8—H8A0.9600C26—H26C0.9600
C8—H8B0.9600C27—H27A0.9600
C8—H8C0.9600C27—H27B0.9600
C9—H9A0.9600C27—H27C0.9600
C9—H9B0.9600C28—C291.391 (12)
C9—H9C0.9600C28—C331.398 (13)
C10—C111.392 (10)C28—Te32.125 (9)
C10—C151.409 (11)C29—C301.412 (14)
C10—Te12.139 (8)C29—C341.494 (14)
C11—C121.395 (12)C30—C311.370 (16)
C11—C161.503 (11)C30—H300.9300
C12—C131.374 (12)C31—C321.363 (15)
C12—H120.9300C31—C351.533 (16)
C13—C141.388 (12)C32—C331.368 (14)
C13—C171.497 (12)C32—H320.9300
C14—C151.382 (12)C33—C361.496 (13)
C14—H140.9300C34—H34A0.9600
C15—C181.508 (11)C34—H34B0.9600
C16—H16A0.9600C34—H34C0.9600
C16—H16B0.9600C35—H35A0.9600
C16—H16C0.9600C35—H35B0.9600
C17—H17A0.9600C35—H35C0.9600
C17—H17B0.9600C36—H36A0.9600
C17—H17C0.9600C36—H36B0.9600
C18—H18A0.9600C36—H36C0.9600
C18—H18B0.9600I1—Te22.9621 (9)
C18—H18C0.9600I2—Te32.7840 (10)
C19—C241.384 (11)Te1—Te23.0609 (8)
C19—C201.400 (11)
C6—C1—C2121.4 (7)C21—C20—C25118.7 (8)
C6—C1—Te2119.2 (5)C19—C20—C25123.1 (8)
C2—C1—Te2119.4 (5)C22—C21—C20122.8 (8)
C3—C2—C1117.5 (7)C22—C21—H21118.6
C3—C2—C7117.4 (7)C20—C21—H21118.6
C1—C2—C7125.1 (7)C21—C22—C23117.0 (8)
C4—C3—C2123.5 (7)C21—C22—C26122.5 (9)
C4—C3—H3118.2C23—C22—C26120.6 (9)
C2—C3—H3118.2C22—C23—C24123.2 (9)
C3—C4—C5116.7 (7)C22—C23—H23118.4
C3—C4—C8122.1 (8)C24—C23—H23118.4
C5—C4—C8121.2 (8)C19—C24—C23117.7 (8)
C4—C5—C6122.6 (7)C19—C24—C27123.5 (8)
C4—C5—H5118.7C23—C24—C27118.8 (8)
C6—C5—H5118.7C20—C25—H25A109.5
C1—C6—C5118.2 (7)C20—C25—H25B109.5
C1—C6—C9124.0 (7)H25A—C25—H25B109.5
C5—C6—C9117.8 (7)C20—C25—H25C109.5
C2—C7—H7A109.5H25A—C25—H25C109.5
C2—C7—H7B109.5H25B—C25—H25C109.5
H7A—C7—H7B109.5C22—C26—H26A109.5
C2—C7—H7C109.5C22—C26—H26B109.5
H7A—C7—H7C109.5H26A—C26—H26B109.5
H7B—C7—H7C109.5C22—C26—H26C109.5
C4—C8—H8A109.5H26A—C26—H26C109.5
C4—C8—H8B109.5H26B—C26—H26C109.5
H8A—C8—H8B109.5C24—C27—H27A109.5
C4—C8—H8C109.5C24—C27—H27B109.5
H8A—C8—H8C109.5H27A—C27—H27B109.5
H8B—C8—H8C109.5C24—C27—H27C109.5
C6—C9—H9A109.5H27A—C27—H27C109.5
C6—C9—H9B109.5H27B—C27—H27C109.5
H9A—C9—H9B109.5C29—C28—C33120.6 (9)
C6—C9—H9C109.5C29—C28—Te3119.5 (8)
H9A—C9—H9C109.5C33—C28—Te3119.8 (7)
H9B—C9—H9C109.5C28—C29—C30118.4 (10)
C11—C10—C15122.2 (7)C28—C29—C34123.7 (10)
C11—C10—Te1121.3 (6)C30—C29—C34117.9 (10)
C15—C10—Te1116.4 (6)C31—C30—C29120.7 (10)
C10—C11—C12116.6 (7)C31—C30—H30119.6
C10—C11—C16124.3 (7)C29—C30—H30119.6
C12—C11—C16119.2 (7)C32—C31—C30119.0 (11)
C13—C12—C11124.1 (8)C32—C31—C35120.8 (13)
C13—C12—H12118.0C30—C31—C35120.1 (13)
C11—C12—H12118.0C31—C32—C33123.0 (12)
C12—C13—C14116.7 (8)C31—C32—H32118.5
C12—C13—C17122.3 (9)C33—C32—H32118.5
C14—C13—C17120.9 (9)C32—C33—C28118.2 (10)
C15—C14—C13123.4 (8)C32—C33—C36118.8 (11)
C15—C14—H14118.3C28—C33—C36122.9 (10)
C13—C14—H14118.3C29—C34—H34A109.5
C14—C15—C10117.1 (8)C29—C34—H34B109.5
C14—C15—C18119.0 (8)H34A—C34—H34B109.5
C10—C15—C18123.8 (8)C29—C34—H34C109.5
C11—C16—H16A109.5H34A—C34—H34C109.5
C11—C16—H16B109.5H34B—C34—H34C109.5
H16A—C16—H16B109.5C31—C35—H35A109.5
C11—C16—H16C109.5C31—C35—H35B109.5
H16A—C16—H16C109.5H35A—C35—H35B109.5
H16B—C16—H16C109.5C31—C35—H35C109.5
C13—C17—H17A109.5H35A—C35—H35C109.5
C13—C17—H17B109.5H35B—C35—H35C109.5
H17A—C17—H17B109.5C33—C36—H36A109.5
C13—C17—H17C109.5C33—C36—H36B109.5
H17A—C17—H17C109.5H36A—C36—H36B109.5
H17B—C17—H17C109.5C33—C36—H36C109.5
C15—C18—H18A109.5H36A—C36—H36C109.5
C15—C18—H18B109.5H36B—C36—H36C109.5
H18A—C18—H18B109.5C19—Te1—C1099.0 (3)
C15—C18—H18C109.5C19—Te1—Te2116.7 (2)
H18A—C18—H18C109.5C10—Te1—Te294.0 (2)
H18B—C18—H18C109.5C1—Te2—I192.3 (2)
C24—C19—C20121.0 (7)C1—Te2—Te179.9 (2)
C24—C19—Te1118.8 (6)I1—Te2—Te1171.90 (3)
C20—C19—Te1120.1 (6)C28—Te3—I294.5 (2)
C21—C20—C19118.2 (8)
C6—C1—C2—C30.6 (11)C21—C22—C23—C240.9 (14)
Te2—C1—C2—C3178.3 (5)C26—C22—C23—C24179.2 (9)
C6—C1—C2—C7178.4 (7)C20—C19—C24—C233.1 (12)
Te2—C1—C2—C73.8 (10)Te1—C19—C24—C23179.8 (6)
C1—C2—C3—C41.6 (12)C20—C19—C24—C27176.9 (8)
C7—C2—C3—C4179.6 (7)Te1—C19—C24—C270.2 (11)
C2—C3—C4—C50.4 (12)C22—C23—C24—C193.2 (13)
C2—C3—C4—C8179.9 (8)C22—C23—C24—C27176.8 (9)
C3—C4—C5—C61.8 (12)C33—C28—C29—C301.4 (13)
C8—C4—C5—C6177.7 (8)Te3—C28—C29—C30175.3 (7)
C2—C1—C6—C51.5 (12)C33—C28—C29—C34177.9 (9)
Te2—C1—C6—C5176.2 (6)Te3—C28—C29—C345.4 (12)
C2—C1—C6—C9177.8 (8)C28—C29—C30—C310.4 (15)
Te2—C1—C6—C94.4 (11)C34—C29—C30—C31179.7 (10)
C4—C5—C6—C12.8 (12)C29—C30—C31—C322.6 (16)
C4—C5—C6—C9176.6 (8)C29—C30—C31—C35179.7 (10)
C15—C10—C11—C120.0 (12)C30—C31—C32—C333.1 (16)
Te1—C10—C11—C12176.3 (6)C35—C31—C32—C33179.2 (10)
C15—C10—C11—C16179.5 (8)C31—C32—C33—C281.3 (15)
Te1—C10—C11—C163.2 (11)C31—C32—C33—C36179.4 (10)
C10—C11—C12—C130.1 (13)C29—C28—C33—C321.0 (13)
C16—C11—C12—C13179.4 (8)Te3—C28—C33—C32175.7 (7)
C11—C12—C13—C140.2 (13)C29—C28—C33—C36178.3 (9)
C11—C12—C13—C17176.5 (9)Te3—C28—C33—C365.0 (12)
C12—C13—C14—C150.7 (13)C24—C19—Te1—C1053.7 (7)
C17—C13—C14—C15177.1 (8)C20—C19—Te1—C10129.2 (6)
C13—C14—C15—C100.8 (13)C24—C19—Te1—Te2152.8 (5)
C13—C14—C15—C18179.0 (8)C20—C19—Te1—Te230.1 (7)
C11—C10—C15—C140.5 (12)C11—C10—Te1—C1951.6 (7)
Te1—C10—C15—C14176.0 (6)C15—C10—Te1—C19131.9 (6)
C11—C10—C15—C18178.6 (8)C11—C10—Te1—Te266.2 (6)
Te1—C10—C15—C182.1 (11)C15—C10—Te1—Te2110.3 (6)
C24—C19—C20—C210.9 (12)C6—C1—Te2—I193.8 (6)
Te1—C19—C20—C21177.9 (6)C2—C1—Te2—I188.4 (6)
C24—C19—C20—C25178.8 (8)C6—C1—Te2—Te184.0 (6)
Te1—C19—C20—C254.1 (11)C2—C1—Te2—Te193.8 (6)
C19—C20—C21—C221.6 (13)C19—Te1—Te2—C1179.6 (3)
C25—C20—C21—C22176.4 (9)C10—Te1—Te2—C177.4 (3)
C20—C21—C22—C231.6 (14)C29—C28—Te3—I288.5 (7)
C20—C21—C22—C26178.3 (9)C33—C28—Te3—I288.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg10.962.693.497 (9)142
C18—H18C···Cg20.962.893.788 (10)156

Experimental details

Crystal data
Chemical formulaC9H11ITe·C27H33ITe2
Mr1113.31
Crystal system, space groupMonoclinic, P21/c
Temperature (K)297
a, b, c (Å)8.1491 (5), 15.9071 (10), 29.495 (2)
β (°) 91.379 (1)
V3)3822.3 (4)
Z4
Radiation typeMo Kα
µ (mm1)3.91
Crystal size (mm)0.28 × 0.22 × 0.19
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SHELXTL; Bruker, 2001)
Tmin, Tmax0.37, 0.476
No. of measured, independent and
observed [I > 2σ(I)] reflections
27296, 6720, 5651
Rint0.056
(sin θ/λ)max1)0.595
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.060, 0.127, 1.23
No. of reflections6720
No. of parameters382
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)1.24, 0.57

Computer programs: SMART (Bruker, 2000), SMART, SAINT-Plus (Bruker, 2000), SHELXTL (Bruker, 2001), ORTEP-3 (Farrugia, 1997), DIAMOND (Brandenburg, 2006) and PLATON (Spek, 2003), publCIF (Westrip, 2007).

Selected geometric parameters (Å, º) top
I1—Te22.9621 (9)Te1—Te23.0609 (8)
I2—Te32.7840 (10)
C19—Te1—Te2116.7 (2)C1—Te2—Te179.9 (2)
C10—Te1—Te294.0 (2)I1—Te2—Te1171.90 (3)
C1—Te2—I192.3 (2)C28—Te3—I294.5 (2)
C19—Te1—Te2—C1179.6 (3)C33—C28—Te3—I288.2 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C7—H7A···Cg10.962.693.497 (9)142
C18—H18C···Cg20.962.893.788 (10)156
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds