Download citation
Download citation
link to html
The title compound, C18H18Cl4N2O2, crystallizes as monoclinic and ortho­rhom­bic polymorphs from CHCl3–CH3OH solution. In both polymorphic forms, the mol­ecule lies on a crystallographic centre of inversion (at the piperazine ring centroid) and exhibits an intra­molecular O—H...N hydrogen bond. In the monoclinic polymorph (space group P21/c), the mol­ecules are linked by inter­molecular C—H...Cl hydrogen bonds into a ribbon sheet built from R88(34) rings. In the ortho­rhom­bic polymorph (space group Pbcn), the mol­ecules are linked by inter­molecular C—H...O hydrogen bonds into a ribbon sheet of R66(34) rings. The sheets in the ortho­rhom­bic polymorph are crosslinked into a three-dimensional framework by π–π stacking inter­actions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270107035408/gg3104sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107035408/gg3104Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270107035408/gg3104IIsup3.hkl
Contains datablock II

CCDC references: 661813; 661814

Comment top

The design and synthesis of piperidine and piperazine derivatives are of interest in pharmacology (Geng et al., 2002; Favor et al., 2007). In addition, derivatives with phenol or pyridine arms can act as complexing reagents with metal ions (Chi et al., 2002; Okamatsu et al., 2007). Recently, we reported the crystal structure of a piperidine compound, 2,4-dichloro-6-(piperidin-1-ylmethyl)phenol (HClbpipe) (Kubono et al., 2005). In the supramolecular structure, intermolecular C···C and Cl···Cl contacts are observed (Kubono et al., 2005); however, in the crystal structure of the CuII complex with HClbpipe, Cu(Clbpipe)2, there are no significant intermolecular interactions, (Kubono et al., 2006). Therefore, we designed and synthesized the new supramolecular tetradentate ligand, 4,4',6,6'-tetrachloro-2,2'-(piperazin-1,4-diyldimethylene)diphenol (H2Cl2bpi), consisting of two dichlorophenol arms and a piperazine ring. This ligand H2Cl2bpi crystallizes in monoclinic, (I), and orthorhombic, (II), polymorphic forms from CHCl3·CH3OH solution. There are numerous recent studies on polymorphism in drugs (Gelbrich et al., 2007; Drebushchak et al., 2007) and supramolecular compounds (Wardell et al., 2007; Li et al., 2006). We report here the molecular and supramolecular structures of polymorphs (I) and (II).

The molecular structures of polymorphs (I) and (II) are shown in Figs. 1 and 2, respectively. In both polymorphic forms, the molecule lies on a centre of inversion at the piperazine ring centroid. The bond lengths and angles in (I) and (II) are similar, and agree with those values in the p-cresol derivative (Kuppayee et al., 1999) and 5-bromosalicylaldehyde system (Thirumurugan et al., 1998). In both (I) and (II), the piperazine rings adopt a chair conformation. The molecular structures of (I) and (II) are very similar, and thus only small differences are observed. The largest differences in bond distances and angles between the two polymorphs are less than 0.02 Å [O1—C11 1.343 (2) Å in (I), 1.358 (3) Å in (II)] and less than 2° [O1—C1—C6 122.56 (19)° in (I), 121.4 (2)° in (II)], respectively. The greatest differences are for the torsion angles involving the C6 and C7 atoms, C4—C5—C6—C7 [-176.1 (3)° (I), -173.7 (2)° in (II)] (Table 1). The differences are reflected in the orientation of the aryl rings with respect to the central piperazine rings. The dihedral angles between the mean planes of the piperazine ring and the aryl rings are slightly different in the two polymorphs, 101.28 (10)° in (I) and 104.00 (9)° in (II). The intramolecular hydrogen bond distances of O1—H1···N1 in polymorphs (I) and (II) are 2.700 (2) and 2.660 (2) Å, respectively (Tables 2 and 3).

In the crystal structure of polymorph (I), there is an intermolecular C—H···Cl hydrogen bond (Table 1). The C7 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the Cl2 atom in the molecule at (x, 1/2 - y, 1/2 + z), forming a C(6) (Bernstein et al., 1995) chain running parallel to the [101] direction and generated by the c-glide plane at y = 0.25. A weak intermolecular C···C contact [C2···C4v 3.581 (5) Å; symmetry code: (v) x, 1/2 - y, -1/2 + z] is also observed. The molecules are linked by the C(6) chains and C···C contacts into a (100) ribbon sheet of R88(34) rings (Fig. 3). In addition, there is a weak intermolecular C—H···Cl contact [H9···Cl1vi 2.962 Å; symmetry code: (vi) 1 + x, y, z] between adjacent sheets.

In the crystal structure of polymorph (II), there is an intermolecular C—H···O hydrogen bond (Table 2). The C3 atom in the molecule at (x, y, z) acts as a hydrogen-bond donor to the O1 atom in the molecule at (3/2 - x, 1/2 + y, z), forming a C(5) chain running parallel to the [010] direction and generated by the b-glide plane at x = 0.75. The molecules are linked by the C(5) chains into a (001) ribbon sheet of R66(34) rings (Fig. 4). The sheets are crosslinked into a three-dimensional framework by π···π interactions [C1···C1vii 3.528 (3), C2···C5vii 3.564 (3) and C3···C4vii 3.427 (3) Å; symmetry code: (vii) 1 + x, y, 3/2 - z].

Each polymorph is characterized by the supramolecular interactions: for (I), C—H···Cl hydrogen bonds and weak C···C contacts, and for (II), C—H···O hydrogen bonds and π···π interactions. There are no short Cl···Cl interactions in either polymorph (I) or (II).

Related literature top

For related literature, see: Bernstein et al. (1995); Chi et al. (2002); Drebushchak et al. (2007); Favor et al. (2007); Gelbrich et al. (2007); Geng et al. (2002); Kubono et al. (2005, 2006); Kuppayee et al. (1999); Li et al. (2006); Okamatsu et al. (2007); Thirumurugan et al. (1998); Wardell et al. (2007).

Experimental top

A mixture of 2,4-dichlorophenol (13.04 g, 80 mmol), piperazine (3.45 g, 40 mmol) and paraformaldehyde (2.40 g, 80 mmol) in methanol (60 ml) was refluxed for 6 h. The mixture was cooled to room temperature, and the solvent evaporated under vacuum. The product was recrystallized from CHCl3·CH3OH to give colourless crystals suitable for X-ray analysis. Visual examination of the crystals under a microscope showed that most of them consisted of (I), with a small amount of (II). By crystallizing H2Cl2bpi under various conditions we attempted to obtain extra amounts of (II); however, no remarkable improvement was observed. Samples of the two polymorphs were isolated manually [yield 10.40 g (59.6%); m.p. 510.0–512.1 K for (I) and 510.4–512.8 K for (II)]. Phase transitions of one polymorph into another were not observed by DSC. Analysis calculated for C18H18Cl4N2O2: C 49.57, H 4.16, N 6.42%; found: C 49.54, H 4.20, N 6.46%. 1H-NMR(CDCl3, p.p.m., 400 MHz): 2.66 (brs, 8H, CH2), 3.72 (s, 4H, CH2), 6.90 (d, J = 2.4 Hz, 2H, ArH), 7.28 (d, J = 2.4 Hz, 2H, ArH), 11.2 (brs, 2H, OH).

Refinement top

The H atoms of the hydroxyl groups were found from a difference Fourier map. The other H atoms were placed at idealized positions with C—H = 0.95 Å. All the H atoms were refined as a riding model with Uiso(H) = 1.2 Ueq(C).

Computing details top

For both compounds, data collection: WinAFC (Rigaku/MSC, 2006); cell refinement: WinAFC; data reduction: CrystalStructure (Rigaku/MSC, 2006); program(s) used to solve structure: SIR92 (Altomare et al., 1993); program(s) used to refine structure: CRYSTALS (Betteridge et al., 2003); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: CrystalStructure.

Figures top
[Figure 1] Fig. 1. A view of polymorph (I) showing the atom-labelling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (i) 1 - x, -y, 1 - z.]
[Figure 2] Fig. 2. A view of polymorph (II) showing the atom-labelling scheme with displacement ellipsoids drawn at the 50% probability level. H atoms are represented by circles of arbitrary size. [Symmetry code: (ii) 2 - x, -y, 1 - z.]
[Figure 3] Fig. 3. A stereoview of part of the crystal structure of polymorph (I), showing the formation of a centrosymmetric R88(34) ring. The O—H···N and C—H···Cl hydrogen bonds are shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen bonds are omitted.
[Figure 4] Fig. 4. A stereoview of part of the crystal structure of polymorph (II), showing the formation of R66(34) rings. The O—H···N and C—H···O hydrogen bonds are shown as dashed lines. For the sake of clarity, the H atoms not involved in the hydrogen bonds are omitted.
(I) 4,4',6,6'-tetrachloro-2,2'-(piperazin-1,4-diyldimethylene)diphenol top
Crystal data top
C18H18Cl4N2O2F(000) = 448
Mr = 436.14Dx = 1.511 Mg m3
Monoclinic, P21/cMelting point: 511 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71069 Å
a = 7.4861 (13) ÅCell parameters from 25 reflections
b = 17.2008 (13) Åθ = 14.6–14.9°
c = 8.0283 (19) ŵ = 0.63 mm1
β = 111.972 (13)°T = 298 K
V = 958.7 (3) Å3Prismatic, colorless
Z = 20.25 × 0.15 × 0.15 mm
Data collection top
Rigaku AFC7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 99
2364 measured reflectionsk = 022
2215 independent reflectionsl = 100
1526 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.017 intensity decay: 0.1%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.040 w = 1/[0.0024Fo2 + 1σ(Fo2)]/(4Fo2)
wR(F2) = 0.125(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.68 e Å3
1528 reflectionsΔρmin = 0.35 e Å3
127 parameters
Crystal data top
C18H18Cl4N2O2V = 958.7 (3) Å3
Mr = 436.14Z = 2
Monoclinic, P21/cMo Kα radiation
a = 7.4861 (13) ŵ = 0.63 mm1
b = 17.2008 (13) ÅT = 298 K
c = 8.0283 (19) Å0.25 × 0.15 × 0.15 mm
β = 111.972 (13)°
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.017
2364 measured reflections3 standard reflections every 150 reflections
2215 independent reflections intensity decay: 0.1%
1526 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.040127 parameters
wR(F2) = 0.125H-atom parameters constrained
S = 1.01Δρmax = 0.68 e Å3
1528 reflectionsΔρmin = 0.35 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.32583 (9)0.14991 (5)0.08772 (10)0.0630 (2)
Cl20.06831 (14)0.40389 (4)0.41664 (14)0.0731 (2)
O10.0072 (2)0.06476 (10)0.3491 (2)0.0507 (5)
N10.3760 (2)0.05530 (11)0.5370 (2)0.0368 (5)
C10.0181 (3)0.14211 (13)0.3645 (3)0.0389 (6)
C20.1247 (3)0.19103 (16)0.2520 (3)0.0433 (6)
C30.1097 (3)0.27050 (16)0.2659 (4)0.0504 (7)
C40.0514 (4)0.30339 (15)0.3944 (4)0.0487 (7)
C50.1980 (3)0.25661 (15)0.5046 (3)0.0447 (6)
C60.1833 (3)0.17638 (14)0.4917 (3)0.0377 (6)
C70.3389 (3)0.12623 (15)0.6210 (3)0.0449 (6)
C80.4707 (3)0.07261 (14)0.4110 (3)0.0408 (6)
C90.5036 (4)0.00153 (15)0.3248 (3)0.0419 (6)
H10.09710.04160.40730.057*
H20.20930.30260.18830.063*
H30.31000.27980.59020.055*
H40.30020.11160.71670.052*
H50.45460.15550.66730.052*
H60.39190.10700.32080.050*
H70.59150.09660.47440.050*
H80.38280.02520.26010.050*
H90.56660.01020.24480.050*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0374 (3)0.0831 (5)0.0567 (4)0.0013 (3)0.0040 (2)0.0068 (3)
Cl20.0903 (6)0.0366 (3)0.1081 (7)0.0110 (3)0.0552 (5)0.0033 (4)
O10.0408 (9)0.0384 (9)0.0633 (12)0.0015 (7)0.0083 (8)0.0002 (9)
N10.0353 (9)0.0354 (9)0.0382 (11)0.0084 (7)0.0119 (8)0.0029 (8)
C10.0341 (10)0.0382 (12)0.0455 (13)0.0037 (9)0.0160 (10)0.0019 (10)
C20.0328 (11)0.0533 (14)0.0444 (14)0.0068 (10)0.0152 (10)0.0068 (11)
C30.0445 (13)0.0533 (16)0.0592 (18)0.0190 (11)0.0261 (13)0.0153 (13)
C40.0528 (14)0.0360 (11)0.0687 (18)0.0085 (10)0.0356 (14)0.0046 (12)
C50.0424 (12)0.0418 (12)0.0535 (15)0.0006 (11)0.0220 (12)0.0086 (12)
C60.0358 (11)0.0361 (11)0.0418 (13)0.0072 (9)0.0154 (10)0.0000 (10)
C70.0417 (12)0.0469 (13)0.0423 (14)0.0095 (11)0.0113 (11)0.0033 (12)
C80.0415 (12)0.0368 (11)0.0460 (14)0.0064 (10)0.0184 (11)0.0080 (10)
C90.0445 (12)0.0448 (12)0.0356 (13)0.0101 (10)0.0139 (10)0.0068 (10)
Geometric parameters (Å, º) top
Cl1—C21.738 (2)C6—C71.508 (3)
Cl2—C41.738 (2)C8—C91.514 (3)
O1—C11.343 (2)O1—H10.845
N1—C71.470 (3)C3—H20.950
N1—C81.467 (4)C5—H30.950
N1—C9i1.466 (3)C7—H40.950
C1—C21.395 (3)C7—H50.950
C1—C61.405 (2)C8—H60.950
C2—C31.373 (3)C8—H70.950
C3—C41.381 (3)C9—H80.950
C4—C51.381 (3)C9—H90.950
C5—C61.385 (3)
Cl2···O1ii3.419 (2)H2···C7vii3.444
O1···Cl2iii3.419 (2)H2···C8vii3.362
O1···O1iv3.263 (2)H2···H5vii2.561
C2···C4v3.581 (5)H2···H7vii2.502
C4···C2vi3.581 (5)H2···H8ii3.321
Cl1···H3vii2.989H3···Cl1xi2.989
Cl1···H4viii3.302H3···C8vi3.494
Cl1···H5viii3.155H3···H4v3.510
Cl1···H6ix3.387H3···H6vi2.598
Cl1···H7ix3.507H4···Cl1xii3.302
Cl1···H8x3.419H4···Cl2vi2.784
Cl1···H9ix2.962H4···C4vi3.103
Cl2···H1ii3.391H4···C5vi3.520
Cl2···H4v2.784H4···H3vi3.510
Cl2···H6vi3.248H5···Cl1xii3.155
Cl2···H8ii3.364H5···C3xi3.309
Cl2···H8vi3.556H5···H2xi2.561
O1···H1iv2.934H6···Cl1xiii3.387
O1···H7ix3.549H6···Cl2v3.248
O1···H9ix3.124H6···C5v3.361
C3···H5vii3.309H6···H3v2.598
C3···H7vii3.433H7···Cl1xiii3.507
C4···H4v3.103H7···O1xiii3.549
C5···H4v3.520H7···C3xi3.433
C5···H6vi3.361H7···H2xi2.502
C7···H2xi3.444H8···Cl1x3.419
C8···H2xi3.362H8···Cl2iii3.364
C8···H3v3.494H8···Cl2v3.556
H1···Cl2iii3.391H8···H2iii3.321
H1···O1iv2.934H9···Cl1xiii2.962
H1···H1iv2.827H9···O1xiii3.124
C7—N1—C8111.78 (19)C1—O1—H1110.3
C7—N1—C9i110.15 (19)C2—C3—H2120.4
C8—N1—C9i109.3 (2)C4—C3—H2120.2
O1—C1—C2119.36 (19)C4—C5—H3119.5
O1—C1—C6122.56 (19)C6—C5—H3119.8
C2—C1—C6118.1 (2)N1—C7—H4108.6
Cl1—C2—C1118.86 (19)N1—C7—H5108.6
Cl1—C2—C3119.24 (18)C6—C7—H4108.5
C1—C2—C3121.9 (2)C6—C7—H5108.8
C2—C3—C4119.4 (2)H4—C7—H5109.5
Cl2—C4—C3119.6 (2)N1—C8—H6109.2
Cl2—C4—C5120.26 (19)N1—C8—H7109.1
C3—C4—C5120.2 (2)C9—C8—H6109.7
C4—C5—C6120.7 (2)C9—C8—H7109.0
C1—C6—C5119.8 (2)H6—C8—H7109.5
C1—C6—C7120.2 (2)N1i—C9—H8109.5
C5—C6—C7119.93 (19)N1i—C9—H9109.0
N1—C7—C6112.88 (19)C8—C9—H8109.1
N1—C8—C9110.3 (2)C8—C9—H9109.7
N1i—C9—C8110.1 (2)H8—C9—H9109.5
C2—C1—C6—C7177.8 (2)O1—C1—C6—C71.5 (4)
C1—C6—C7—N139.8 (3)C2—C1—C6—C51.4 (4)
C5—C6—C7—N1143.7 (2)C6—C1—C2—Cl1177.5 (2)
C4—C5—C6—C10.4 (4)C6—C1—C2—C31.7 (4)
C7—N1—C8—C9179.06 (17)Cl1—C2—C3—C4178.9 (2)
C8—N1—C7—C670.4 (2)C1—C2—C3—C40.2 (5)
C7—N1—C9i—C8i178.2 (2)C2—C3—C4—Cl2178.3 (2)
C9i—N1—C7—C6167.8 (2)C2—C3—C4—C51.6 (5)
C8—N1—C9i—C8i58.6 (2)Cl2—C4—C5—C6178.0 (2)
C9i—N1—C8—C958.7 (2)C3—C4—C5—C61.9 (5)
O1—C1—C2—Cl13.2 (4)C4—C5—C6—C7176.1 (3)
O1—C1—C2—C3177.7 (3)N1—C8—C9—N1i59.2 (2)
O1—C1—C6—C5178.0 (2)
Symmetry codes: (i) x+1, y, z+1; (ii) x, y+1/2, z+1/2; (iii) x, y1/2, z+1/2; (iv) x, y, z+1; (v) x, y+1/2, z1/2; (vi) x, y+1/2, z+1/2; (vii) x1, y+1/2, z1/2; (viii) x1, y, z1; (ix) x1, y, z; (x) x, y, z; (xi) x+1, y+1/2, z+1/2; (xii) x+1, y, z+1; (xiii) x+1, y, z.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.851.972.700 (2)145
C7—H4···Cl2vi0.952.783.688 (3)159
Symmetry code: (vi) x, y+1/2, z+1/2.
(II) 4,4',6,6'-tetrachloro-2,2'-(piperazin-1,4-diyldimethylene)diphenol top
Crystal data top
C18H18Cl4N2O2Dx = 1.496 Mg m3
Mr = 436.14Melting point: 512 K
Orthorhombic, PbcnMo Kα radiation, λ = 0.71069 Å
Hall symbol: -P 2n 2abCell parameters from 25 reflections
a = 10.360 (3) Åθ = 15.2–17.5°
b = 12.1910 (17) ŵ = 0.63 mm1
c = 15.332 (5) ÅT = 298 K
V = 1936.4 (9) Å3Block, colorless
Z = 40.20 × 0.15 × 0.12 mm
F(000) = 896
Data collection top
Rigaku AFC7R
diffractometer
θmax = 27.5°
ω–2θ scansh = 713
3228 measured reflectionsk = 815
2222 independent reflectionsl = 019
1922 reflections with F2 > 2.0σ(F2)3 standard reflections every 150 reflections
Rint = 0.024 intensity decay: 0.3%
Refinement top
Refinement on F2H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.037 w = 1/[0.0016Fo2 + 1σ(Fo2)]/(4Fo2)
wR(F2) = 0.106(Δ/σ)max < 0.001
S = 1.00Δρmax = 0.46 e Å3
1925 reflectionsΔρmin = 0.68 e Å3
127 parameters
Crystal data top
C18H18Cl4N2O2V = 1936.4 (9) Å3
Mr = 436.14Z = 4
Orthorhombic, PbcnMo Kα radiation
a = 10.360 (3) ŵ = 0.63 mm1
b = 12.1910 (17) ÅT = 298 K
c = 15.332 (5) Å0.20 × 0.15 × 0.12 mm
Data collection top
Rigaku AFC7R
diffractometer
Rint = 0.024
3228 measured reflections3 standard reflections every 150 reflections
2222 independent reflections intensity decay: 0.3%
1922 reflections with F2 > 2.0σ(F2)
Refinement top
R[F2 > 2σ(F2)] = 0.037127 parameters
wR(F2) = 0.106H-atom parameters constrained
S = 1.00Δρmax = 0.46 e Å3
1925 reflectionsΔρmin = 0.68 e Å3
Special details top

Geometry. ENTER SPECIAL DETAILS OF THE MOLECULAR GEOMETRY

Refinement. Refinement was performed using reflections with F2 > 2.0 σ(F2). The weighted R-factor (wR) and goodness of fit (S) are based on F2. R-factor (gt) are based on F. The threshold expression of F2 > 2.0 σ(F2) is used only for calculating R-factor (gt).

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.67952 (7)0.32132 (7)0.74258 (5)0.0668 (2)
Cl21.03086 (9)0.60741 (6)0.61907 (6)0.0763 (3)
O10.85718 (16)0.15637 (15)0.67709 (13)0.0581 (6)
N11.02653 (18)0.08975 (15)0.55792 (14)0.0392 (6)
C10.8963 (2)0.2602 (2)0.65875 (17)0.0398 (8)
C20.8225 (2)0.3481 (2)0.68730 (16)0.0427 (8)
C30.8617 (2)0.4545 (2)0.67455 (18)0.0462 (8)
C40.9758 (2)0.4732 (2)0.63139 (17)0.0454 (8)
C51.0483 (2)0.3877 (2)0.59957 (18)0.0439 (8)
C61.0107 (2)0.2803 (2)0.61378 (17)0.0381 (7)
C71.0980 (2)0.1875 (2)0.58674 (19)0.0490 (8)
C80.9626 (2)0.10652 (19)0.47390 (18)0.0457 (8)
C90.8880 (2)0.00578 (18)0.44803 (17)0.0459 (8)
H10.90090.11350.64550.070*
H20.81100.51390.69540.055*
H31.12430.40290.56710.053*
H41.14940.16740.63550.059*
H51.15220.21160.54060.059*
H60.90740.16850.47790.055*
H71.02610.11920.43040.055*
H80.82510.00730.49190.055*
H90.84620.01610.39350.055*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0493 (4)0.0797 (6)0.0714 (6)0.0010 (4)0.0136 (4)0.0130 (4)
Cl20.1141 (7)0.0357 (4)0.0791 (6)0.0149 (4)0.0003 (5)0.0027 (3)
O10.0633 (12)0.0386 (11)0.0725 (13)0.0067 (9)0.0244 (10)0.0064 (10)
N10.0405 (12)0.0308 (12)0.0461 (14)0.0032 (9)0.0051 (10)0.0069 (10)
C10.0423 (16)0.0341 (15)0.0429 (16)0.0047 (13)0.0005 (13)0.0043 (12)
C20.0388 (15)0.0507 (17)0.0384 (16)0.0030 (14)0.0026 (13)0.0038 (14)
C30.0551 (18)0.0381 (16)0.0454 (16)0.0122 (15)0.0098 (14)0.0080 (13)
C40.0603 (19)0.0315 (15)0.0444 (18)0.0012 (13)0.0057 (14)0.0027 (13)
C50.0461 (16)0.0408 (15)0.0449 (17)0.0103 (13)0.0024 (13)0.0046 (13)
C60.0410 (15)0.0311 (13)0.0424 (16)0.0023 (12)0.0006 (13)0.0082 (11)
C70.0446 (16)0.0413 (17)0.0612 (19)0.0044 (14)0.0034 (14)0.0109 (14)
C80.0482 (16)0.0367 (15)0.0522 (18)0.0078 (13)0.0006 (14)0.0003 (13)
C90.0482 (15)0.0395 (16)0.0500 (18)0.0128 (14)0.0095 (15)0.0041 (13)
Geometric parameters (Å, º) top
Cl1—C21.737 (2)C6—C71.507 (3)
Cl2—C41.743 (2)C8—C91.504 (3)
O1—C11.358 (3)O1—H10.844
N1—C71.470 (3)C3—H20.950
N1—C81.463 (3)C5—H30.950
N1—C9i1.466 (2)C7—H40.950
C1—C21.387 (3)C7—H50.950
C1—C61.393 (3)C8—H60.950
C2—C31.373 (3)C8—H70.950
C3—C41.374 (4)C9—H80.950
C4—C51.375 (3)C9—H90.950
C5—C61.383 (3)
Cl2···C5ii3.451 (2)Cl2···H6ii3.180
O1···C3iii3.347 (3)Cl2···H7ii3.470
C1···C1iv3.528 (3)O1···H2iii2.480
C2···C5iv3.564 (3)O1···H4iv2.880
C3···O1v3.347 (3)C1···H4iv3.380
C3···C4iv3.427 (3)C2···H4iv3.510
C4···C3iv3.427 (3)C2···H7vi3.580
C5···Cl2ii3.451 (2)C3···H1v3.370
C5···C2iv3.564 (3)C3···H8v3.435
Cl1···H4iv3.190C4···H2iv3.490
Cl1···H7vi3.180C4···H3ii3.550
Cl1···H9vii3.058C5···H8ix3.510
Cl2···H2iv3.470C5···H9ix3.304
Cl2···H3ii3.280C8···H3vi3.560
Cl2···H4viii3.400C9···H3vi2.960
C7—N1—C8112.29 (18)C1—O1—H1107.3
C7—N1—C9i110.98 (18)C2—C3—H2121.0
C8—N1—C9i109.25 (19)C4—C3—H2121.0
O1—C1—C2119.4 (2)C4—C5—H3119.0
O1—C1—C6121.4 (2)C6—C5—H3120.0
C2—C1—C6119.3 (2)N1—C7—H4108.0
Cl1—C2—C1118.6 (2)N1—C7—H5109.0
Cl1—C2—C3119.9 (2)C6—C7—H4108.0
C1—C2—C3121.5 (2)C6—C7—H5109.0
C2—C3—C4118.7 (2)H4—C7—H5110.0
Cl2—C4—C3119.4 (2)N1—C8—H6109.0
Cl2—C4—C5119.6 (2)N1—C8—H7109.0
C3—C4—C5121.0 (2)C9—C8—H6111.0
C4—C5—C6120.5 (2)C9—C8—H7108.0
C1—C6—C5119.0 (2)H6—C8—H7109.0
C1—C6—C7121.0 (2)N1i—C9—H8108.9
C5—C6—C7119.9 (2)N1i—C9—H9109.0
N1—C7—C6112.90 (19)C8—C9—H8107.7
N1—C8—C9110.53 (19)C8—C9—H9111.0
N1i—C9—C8110.76 (19)H8—C9—H9109.5
C2—C1—C6—C7176.0 (2)C2—C1—C6—C50.6 (3)
C1—C6—C7—N138.0 (3)C6—C1—C2—Cl1179.55 (19)
C5—C6—C7—N1146.7 (2)C6—C1—C2—C32.0 (3)
C4—C5—C6—C11.8 (3)Cl1—C2—C3—C4179.4 (2)
C7—N1—C8—C9178.54 (19)C1—C2—C3—C40.9 (3)
C8—N1—C7—C670.7 (2)C2—C3—C4—Cl2177.0 (2)
C7—N1—C9i—C8i177.6 (2)C2—C3—C4—C51.5 (4)
C9i—N1—C7—C6166.7 (2)Cl2—C4—C5—C6175.6 (2)
C8—N1—C9i—C8i58.0 (2)C3—C4—C5—C62.9 (4)
C9i—N1—C8—C957.9 (2)C4—C5—C6—C7173.7 (2)
O1—C1—C2—Cl12.1 (3)O1—C1—C6—C72.3 (3)
O1—C1—C2—C3176.4 (2)N1—C8—C9—N1i58.8 (2)
O1—C1—C6—C5177.7 (2)
Symmetry codes: (i) x+2, y, z+1; (ii) x+2, y+1, z+1; (iii) x+3/2, y1/2, z; (iv) x+2, y, z+3/2; (v) x+3/2, y+1/2, z; (vi) x1/2, y+1/2, z+1; (vii) x+3/2, y+1/2, z+1/2; (viii) x+5/2, y+1/2, z; (ix) x+1/2, y+1/2, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.841.892.660 (2)151
C3—H2···O1v0.952.483.347 (3)152
Symmetry code: (v) x+3/2, y+1/2, z.

Experimental details

(I)(II)
Crystal data
Chemical formulaC18H18Cl4N2O2C18H18Cl4N2O2
Mr436.14436.14
Crystal system, space groupMonoclinic, P21/cOrthorhombic, Pbcn
Temperature (K)298298
a, b, c (Å)7.4861 (13), 17.2008 (13), 8.0283 (19)10.360 (3), 12.1910 (17), 15.332 (5)
α, β, γ (°)90, 111.972 (13), 9090, 90, 90
V3)958.7 (3)1936.4 (9)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.630.63
Crystal size (mm)0.25 × 0.15 × 0.150.20 × 0.15 × 0.12
Data collection
DiffractometerRigaku AFC7R
diffractometer
Rigaku AFC7R
diffractometer
Absorption correction
No. of measured, independent and
observed [F2 > 2.0σ(F2)] reflections
2364, 2215, 1526 3228, 2222, 1922
Rint0.0170.024
(sin θ/λ)max1)0.6500.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.040, 0.125, 1.01 0.037, 0.106, 1.00
No. of reflections15281925
No. of parameters127127
No. of restraints??
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.68, 0.350.46, 0.68

Computer programs: WinAFC (Rigaku/MSC, 2006), WinAFC, CrystalStructure (Rigaku/MSC, 2006), SIR92 (Altomare et al., 1993), CRYSTALS (Betteridge et al., 2003), PLATON (Spek, 2003), CrystalStructure.

Selected torsion angles (º) for (I) top
C2—C1—C6—C7177.8 (2)C5—C6—C7—N1143.7 (2)
C1—C6—C7—N139.8 (3)C4—C5—C6—C10.4 (4)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8451.9682.700 (2)145
C7—H4···Cl2i0.9502.7843.688 (3)159
Symmetry code: (i) x, y+1/2, z+1/2.
Selected torsion angles (º) for (II) top
C2—C1—C6—C7176.0 (2)C5—C6—C7—N1146.7 (2)
C1—C6—C7—N138.0 (3)C4—C5—C6—C11.8 (3)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···N10.8441.8922.660 (2)151
C3—H2···O1i0.9502.4803.347 (3)152
Symmetry code: (i) x+3/2, y+1/2, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds