Download citation
Download citation
link to html
The title compound, [Cu(ClO4)2(C4H9N3O2)2][Cu(C4H9N3O2)2(CH4O)2](ClO4)2·2CH3OH, comprises two independent CuII species lying on different inversion sites. In the Cu complexes, a distorted octa­hedral geometry arises (from basic square-planar N4 coordination) from the weak coordination of two perchlorate ions (as Cu—O) in one species and two methanol mol­ecules in the other (also as Cu—O). Inter­actions between the O atoms of the perchlorate anions or methanol groups and the imide or amine NH groups afford an extensive inter­molecular hydrogen-bonding network.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270106043265/gg3051sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270106043265/gg3051Isup2.hkl
Contains datablock I

CCDC reference: 634870

Comment top

Copper(II) complexes of the bis(methoxycarbimido)amine ligand HN[C(NH)OCH3]2, (L), though relatively uncommon, are interesting because (L) is usually formed in situ from reactions of CuII salts with sodium dicyanamide (dca) in methanol or mixed solvents (Kozisek et al., 1990; Boca et al., 1996; Bishop et al., 2000; Atkinson et al., 2002; Tong et al., 2003). The formation of (L) involves a nucleophilic addition of the methanol molecule on the dca anion. This reaction is promoted by a coordinative activation of the C β-site of the nonlinear dca anion. Under activation, it is susceptible to bending of the linear pseudohalide (sp-hybridized C) via N-coordination, which alters the Cβ site to sp2-hybridized, with an unsaturated valency and susceptibility to a nucleophilic attack. Ligand (L) when coordinated to CuII exists in its anionic and/or neutral form. For example, the neutral complex [Cu{N[C(NH)OCH3]2}2], (II), contains two anionic N[C(NH)OCH3]2 species (Kozisek et al., 1990; Boca et al., 1996; Tong et al., 2003), whereas in [Cu{HN[C(NH)OCH3]2}2(C2H5N3O2)2]Br2·2C2H5N3O2·2CH3OH·0.8CH3CN (C2H5N3O2 is biuret), (III), the central CuII atom is coordinated by two neutral HN[C(NH)OCH3]2 ligands to form [Cu{HN[C(NH)OCH3]2}2]2+ dications (Bishop et al., 2000). However, a monocationic complex, [Cu{HN[C(NH)OCH3]2}{N[C(NH)OCH3]2}](PF6), has also been isolated by heating (II) with excess NH4PF6 in a CH3OH and CH3CN mixture (Atkinson et al., 2002). This consists of a neutral HN[C(NH)OCH3]2 ligand (L) and an anionic N[C(NH)OCH3]2 ligand bonded to CuII. Recently, we have reacted Cu(ClO4)2 with Na(dca) in methanol and isolated a dicationic complex with methanol solvent molecules, [Cu{HN[C(NH)OCH3]2}2](ClO4)2·2CH3OH, (I); we report here the crystal structure of (I).

The asymmetric unit of (I) consists of two halves of the [Cu{HN[C(NH)OCH3]2}2]2+ species, two ClO4 anions and two methanol molecules. The existence of two distinct CuII systems in the asymmetric unit is uncommon and only two examples (Curtis & Puschmann, 2004; Suksangpanya et al. 2003) were found on the Cambridge Structural Database (Allen, 2002). In (I), the CuII complexes lie with the Cu centre on different inversion centers and with each CuII atom coordinated by four N atoms in a basic square-planar geometry, forming two six-membered metallorings (Figs. 1 and 2). The (H)NC bonds are typical double bonds [the average bond length is 1.276 (2) Å], while the average bond length for the (H)N—C bonds is 1.365 (2) Å, indicating a weak delocalized π-bonding system. The average Cu—N bond length of 1.970 (2) Å (Table 1) is slightly longer than in (II) [1.948 (1) Å] but close to the corresponding length in (III) [1.965 (3) Å].

In one complex, two ClO4 ions weakly bind to Cu forming a distorted octahedral [Cu{HN[C(NH)OCH3]2}2(ClO4)2] species. The Cu—O bond length [2.701 (2) Å] is longer than in [Cu(L')(ClO4)2]·H2O [2.543 (3) Å] and [Cu(HL)(ClO4)2](ClO4)·H2O [2.590 (4) Å; L' is 3-(4,6-diamino-1,3,5-triazin-2-yl)-1,3,5,8,12-pentaazacyclotetradecane; Comba et al., 2002]. In the other complex, two methanol molecules are coordinated to atom Cu2 to form the [Cu{(HN[C(NH)OCH3]2}2(CH3OH)2]2+ octahedral species. The Cu2—O distance [2.719 (2) Å] is much longer than those found in [CuL2(CH3OH)2](NO3)2 [2.298 (4) Å; L is 1-(2-pyridyl)benzotriazole; Richardson & Steel, 2003] and [CuL2(CH3OH)2](SiF6)2 [2.481 (5) Å; L is 2,2'-dipyridylamine; Casellas et al., 2005].

The crystal structure of (I) is stabilized by extensive N—H···O, O—H···N and O—H···O hydrogen-bonding interactions (Table 2). The O atoms of the coordinated ClO4 anions in the [Cu{HN[C(NH)OCH3]2}2(ClO4)2] species interact with the imide groups of neighbouring species to afford intermolecular N—H···O hydrogen bonding interactions, thereby forming one-dimensional chains along the a-axis direction. The [Cu{HN[C(NH)OCH3]2}2(CH3OH)2]2+ complexes are also linked via intermolecular interactions between O atoms of the coordinated CH3OH molecules and amine groups to form another one-dimensional chain. Between the two chains are sandwiched free ClO4 anions and CH3OH molecules. In addition, the O atoms from the free ClO4 ions and methanol solvent molecules interact with the imide and amine groups of the adjacent species of the two chains to afford a two-dimensional network along the (012) plane (Fig. 3). Furthermore, the O atoms of the coordinated ClO4 anions interact with the coordinated methanol molecules of adjacent layers to afford hydrogen bonds [O14···O11i and O14···O12i; symmetry code: (i) −x, −y + 1, −z + 1], affording a three-dimensional structure.

Experimental top

To a solution of Cu(ClO4)2·6H2O (370 mg, 1.0 mmol) in 15 ml of methanol was added a solution containing sodium dicyanamide (100 mg, 1.12 mmol) in 10 ml of methanol. The mixture was stirred for 2 h at 323 K to form a green solution. Slow diffusion of diethyl ether into the filtrate gave rise to purple crystals of (I) (yield 48%). Analysis, found: C 20.23, H 4.38, N 14.15%; calculated for C20H52C14Cu2N12O28: C 20.40, H 4.45, N 14.27%. IR (KBr, ν, cm−1): 3008 (w), 2942 (w), 2920 (w), 1633 (m), 1558 (m), 1465 (m), 1427 (m).

Refinement top

The methyl H atoms were included in the refinement in the riding model approximation [C—H = 0.98 Å, with Uiso(H) = 1.5Ueq(C)]; the groups were rotated to fit the electron density. The N– and O-bound H atoms were located in difference Fourier maps and were refined with distance restraints [N—H = O—H = 0.85 (1) Å]; their displacement parameters were freely refined.

Computing details top

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalStructure (Rigaku/MSC, 2004); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. A view of the ClO4-coordinated species in (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. The dashed lines represent the Cu···O bonds. [Symmetry code (i) −x + 1, −y + 1, −z + 1.]
[Figure 2] Fig. 2. A view of the CH3OH-coordinated species in (I). Displacement ellipsoids are drawn at the 50% probability level, and H atoms are shown as spheres of arbitrary radii. The dashed lines represent the Cu···O bonds. [Symmetry code: (ii) −x, −y + 1, −z + 2.]
[Figure 3] Fig. 3. The layer structure of (I) parallel to (012). The dashed lines indicate N—H···O and O—H···O interactions.
Bis[bis(methoxycarbimido)amine-κ2N,N']bis(perchlorato-κO)copper(II) bis[bis(methoxycarbimido)amine-κ2N,N']bis(methanol-κO)copper(II) bis(perchlorate) methanol disolvate top
Crystal data top
[Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4OZ = 1
Mr = 1177.64F(000) = 606
Triclinic, P1Dx = 1.734 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 7.444 (2) ÅCell parameters from 4658 reflections
b = 10.067 (2) Åθ = 3.1–25.3°
c = 15.330 (3) ŵ = 1.28 mm1
α = 85.06 (3)°T = 153 K
β = 89.91 (3)°Block, purple
γ = 80.20 (3)°0.32 × 0.30 × 0.26 mm
V = 1127.7 (5) Å3
Data collection top
Rigaku Mercury
diffractometer
4082 independent reflections
Radiation source: fine-focus sealed tube3857 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.017
ω scansθmax = 25.3°, θmin = 3.1°
Absorption correction: multi-scan
(Jacobson, 1998)
h = 88
Tmin = 0.684, Tmax = 0.731k = 1012
10868 measured reflectionsl = 1818
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.027Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.6301P]
where P = (Fo2 + 2Fc2)/3
4082 reflections(Δ/σ)max = 0.001
339 parametersΔρmax = 0.72 e Å3
8 restraintsΔρmin = 0.37 e Å3
Crystal data top
[Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4Oγ = 80.20 (3)°
Mr = 1177.64V = 1127.7 (5) Å3
Triclinic, P1Z = 1
a = 7.444 (2) ÅMo Kα radiation
b = 10.067 (2) ŵ = 1.28 mm1
c = 15.330 (3) ÅT = 153 K
α = 85.06 (3)°0.32 × 0.30 × 0.26 mm
β = 89.91 (3)°
Data collection top
Rigaku Mercury
diffractometer
4082 independent reflections
Absorption correction: multi-scan
(Jacobson, 1998)
3857 reflections with I > 2σ(I)
Tmin = 0.684, Tmax = 0.731Rint = 0.017
10868 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0278 restraints
wR(F2) = 0.076H atoms treated by a mixture of independent and constrained refinement
S = 1.01Δρmax = 0.72 e Å3
4082 reflectionsΔρmin = 0.37 e Å3
339 parameters
Special details top

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cu10.50000.50000.50000.01507 (10)
Cu20.00000.50001.00000.01631 (10)
Cl10.18124 (6)1.04408 (4)0.83609 (3)0.01955 (12)
Cl20.14635 (6)0.52414 (5)0.32136 (3)0.01933 (12)
O10.7581 (2)0.8397 (1)0.5062 (1)0.0224 (3)
O20.2572 (2)0.8186 (1)0.6446 (1)0.0267 (3)
O30.3757 (2)0.7624 (1)1.0162 (1)0.0212 (3)
O40.4330 (2)0.4668 (1)0.8236 (1)0.0221 (3)
O50.1613 (2)1.1485 (2)0.8957 (1)0.0321 (4)
O60.3712 (2)1.0089 (2)0.8156 (1)0.0407 (4)
O70.0787 (3)1.0912 (2)0.7580 (1)0.0460 (4)
O80.1167 (2)0.9285 (2)0.8764 (1)0.0389 (4)
O90.2577 (2)0.5968 (1)0.3693 (1)0.0241 (3)
O100.0193 (2)0.5153 (2)0.3695 (1)0.0358 (4)
O110.2410 (2)0.3899 (2)0.3112 (1)0.0315 (4)
O120.1025 (2)0.5933 (2)0.2365 (1)0.0431 (4)
O130.5092 (2)1.0392 (2)0.6440 (1)0.0278 (3)
O140.2687 (2)0.6330 (1)0.8890 (1)0.0233 (3)
N10.4975 (2)0.8058 (2)0.5618 (1)0.0204 (3)
N20.3445 (2)0.6211 (2)0.5745 (1)0.0179 (3)
N30.6511 (2)0.6426 (2)0.4763 (1)0.0177 (3)
N40.1191 (2)0.6565 (2)1.0166 (1)0.0182 (3)
N50.1679 (2)0.4566 (2)0.9038 (1)0.0191 (3)
N60.3733 (2)0.5994 (2)0.9302 (1)0.0193 (3)
C10.9120 (3)0.8108 (2)0.4500 (2)0.0308 (5)
C20.6389 (3)0.7547 (2)0.5111 (1)0.0174 (4)
C30.3627 (3)0.7392 (2)0.5932 (1)0.0181 (4)
C40.1113 (3)0.7657 (2)0.6899 (1)0.0282 (5)
C50.2908 (3)0.8584 (2)1.0751 (1)0.0258 (4)
C60.2768 (2)0.6740 (2)0.9906 (1)0.0164 (4)
C70.3145 (2)0.5022 (2)0.8863 (1)0.0168 (4)
C80.3994 (3)0.3589 (2)0.7725 (1)0.0251 (4)
C90.6860 (3)1.0633 (2)0.6661 (2)0.0357 (5)
C100.2537 (3)0.7728 (2)0.8764 (2)0.0359 (5)
H130.451 (4)1.033 (3)0.690 (1)0.050 (8)*
H140.250 (4)0.601 (3)0.841 (1)0.057 (9)*
H10.507 (3)0.8812 (13)0.580 (1)0.018 (5)*
H20.254 (2)0.593 (2)0.598 (1)0.024 (6)*
H30.747 (2)0.625 (2)0.447 (1)0.020 (6)*
H40.070 (3)0.710 (2)1.053 (1)0.023 (6)*
H50.150 (3)0.398 (2)0.870 (1)0.028 (6)*
H60.475 (2)0.620 (2)0.919 (1)0.022 (6)*
H1A0.98570.88260.45070.046*
H1B0.86910.80610.39020.046*
H1C0.98620.72390.47100.046*
H4A0.04870.83300.72710.042*
H4B0.16150.68290.72630.042*
H4C0.02460.74520.64710.042*
H5A0.37860.91461.09150.039*
H5B0.25160.80951.12790.039*
H5C0.18470.91611.04600.039*
H8A0.49270.34470.72760.038*
H8B0.27880.38350.74450.038*
H8C0.40400.27550.81110.038*
H9A0.68931.16040.65650.053*
H9b0.77681.01370.62910.053*
H9c0.71361.03250.72770.053*
H10a0.28070.81490.93130.054*
H10B0.34060.81810.83080.054*
H10C0.12960.78140.85840.054*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cu10.01667 (17)0.01458 (17)0.01526 (17)0.00464 (12)0.00425 (12)0.00484 (12)
Cu20.01504 (17)0.01686 (17)0.01950 (18)0.00718 (12)0.00692 (12)0.00686 (12)
Cl10.0215 (2)0.0186 (2)0.0198 (2)0.00558 (18)0.00294 (18)0.00484 (17)
Cl20.0160 (2)0.0250 (2)0.0185 (2)0.00595 (18)0.00243 (17)0.00583 (18)
O10.0218 (7)0.0219 (7)0.0267 (7)0.0101 (6)0.0089 (6)0.0086 (6)
O20.0243 (7)0.0226 (7)0.0373 (8)0.0094 (6)0.0159 (6)0.0157 (6)
O30.0179 (7)0.0225 (7)0.0263 (7)0.0091 (5)0.0027 (5)0.0087 (6)
O40.0195 (7)0.0250 (7)0.0251 (7)0.0094 (6)0.0111 (6)0.0100 (6)
O50.0358 (9)0.0296 (8)0.0359 (9)0.0117 (7)0.0120 (7)0.0191 (7)
O60.0248 (8)0.0505 (10)0.0500 (10)0.0063 (7)0.0108 (7)0.0227 (8)
O70.0581 (12)0.0448 (10)0.0311 (9)0.0005 (9)0.0151 (8)0.0011 (8)
O80.0567 (11)0.0296 (8)0.0358 (9)0.0236 (8)0.0053 (8)0.0016 (7)
O90.0247 (7)0.0275 (8)0.0229 (7)0.0109 (6)0.0012 (6)0.0043 (6)
O100.0260 (8)0.0358 (9)0.0529 (10)0.0163 (7)0.0222 (7)0.0234 (8)
O110.0266 (8)0.0291 (8)0.0405 (9)0.0028 (6)0.0063 (7)0.0168 (7)
O120.0482 (10)0.0557 (11)0.0254 (8)0.0138 (8)0.0146 (7)0.0070 (7)
O130.0282 (8)0.0288 (8)0.0298 (8)0.0114 (6)0.0071 (7)0.0087 (6)
O140.0224 (7)0.0261 (7)0.0244 (8)0.0085 (6)0.0066 (6)0.0098 (6)
N10.0214 (8)0.0156 (8)0.0265 (9)0.0066 (6)0.0065 (7)0.0080 (7)
N20.0160 (8)0.0202 (8)0.0196 (8)0.0069 (6)0.0042 (6)0.0054 (6)
N30.0165 (8)0.0198 (8)0.0182 (8)0.0050 (6)0.0058 (6)0.0049 (6)
N40.0176 (8)0.0172 (8)0.0217 (8)0.0059 (6)0.0062 (6)0.0068 (6)
N50.0180 (8)0.0209 (8)0.0217 (8)0.0087 (7)0.0059 (6)0.0095 (7)
N60.0135 (8)0.0212 (8)0.0255 (9)0.0079 (6)0.0053 (6)0.0060 (7)
C10.0293 (11)0.0324 (11)0.0360 (12)0.0159 (9)0.0176 (9)0.0126 (9)
C20.0187 (9)0.0177 (9)0.0167 (9)0.0055 (7)0.0016 (7)0.0011 (7)
C30.0169 (9)0.0189 (9)0.0189 (9)0.0028 (7)0.0019 (7)0.0050 (7)
C40.0262 (11)0.0299 (11)0.0323 (11)0.0096 (9)0.0150 (9)0.0146 (9)
C50.0265 (11)0.0258 (10)0.0285 (11)0.0095 (8)0.0020 (8)0.0123 (8)
C60.0186 (9)0.0137 (8)0.0172 (9)0.0040 (7)0.0006 (7)0.0007 (7)
C70.0166 (9)0.0168 (9)0.0162 (9)0.0013 (7)0.0019 (7)0.0012 (7)
C80.0242 (10)0.0280 (11)0.0261 (11)0.0079 (8)0.0103 (8)0.0119 (8)
C90.0307 (12)0.0339 (12)0.0469 (14)0.0120 (10)0.0079 (10)0.0164 (10)
C100.0339 (12)0.0286 (12)0.0467 (14)0.0132 (10)0.0000 (10)0.0039 (10)
Geometric parameters (Å, º) top
Cu1—N21.971 (2)N3—C21.279 (2)
Cu1—N2i1.971 (2)N4—C61.275 (2)
Cu1—N31.979 (2)N5—C71.274 (2)
Cu1—N3i1.979 (2)N6—C71.364 (2)
Cu1—O92.701 (2)N6—C61.367 (2)
Cu2—N41.969 (2)O13—H130.83 (1)
Cu2—N4ii1.969 (2)O14—H140.83 (1)
Cu2—N51.961 (2)N1—H10.84 (1)
Cu2—N5ii1.961 (2)N2—H20.84 (1)
Cu2—O142.719 (2)N3—H30.84 (1)
Cl1—O71.423 (2)N4—H40.84 (1)
Cl1—O81.426 (2)N5—H50.84 (1)
Cl1—O61.439 (2)N6—H60.84 (1)
Cl1—O51.441 (2)C1—H1A0.98
Cl2—O121.432 (2)C1—H1B0.98
Cl2—O111.435 (2)C1—H1C0.98
Cl2—O91.436 (1)C4—H4A0.98
Cl2—O101.448 (2)C4—H4B0.98
O1—C21.331 (2)C4—H4C0.98
O1—C11.437 (2)C5—H5A0.98
O2—C31.330 (2)C5—H5B0.98
O2—C41.441 (2)C5—H5C0.98
O3—C61.332 (2)C8—H8A0.98
O3—C51.446 (2)C8—H8B0.98
O4—C71.335 (2)C8—H8C0.98
O4—C81.446 (2)C9—H9A0.98
O13—C91.425 (3)C9—H9B0.98
O14—C101.427 (3)C9—H9C0.98
N1—C31.364 (2)C10—H10A0.98
N1—C21.364 (3)C10—H10B0.98
N2—C31.276 (2)C10—H10C0.98
N2—Cu1—N2i180N5—C7—N6123.8 (2)
N2—Cu1—N388.70 (7)O4—C7—N6108.9 (2)
N2—Cu1—N3i91.30 (7)C9—O13—H13108 (2)
N2i—Cu1—N3i88.70 (7)C10—O14—H14107 (2)
N2i—Cu1—N391.30 (7)Cu2—O14—H14107 (2)
N3—Cu1—N3i180C3—N1—H1120 (2)
N2—Cu1—O986.69 (6)C2—N1—H1114 (2)
N2i—Cu1—O993.31 (6)C3—N2—H2114 (2)
N3i—Cu1—O985.32 (6)Cu1—N2—H2118 (2)
N3—Cu1—O994.68 (6)C2—N3—H3112 (2)
N4—Cu2—N4ii180Cu1—N3—H3119 (2)
N4—Cu2—N588.51 (7)C6—N4—H4116 (2)
N4—Cu2—N5ii91.49 (7)Cu2—N4—H4116 (2)
N4ii—Cu2—N591.49 (7)C7—N5—H5112 (2)
N4ii—Cu2—N5ii88.51 (7)Cu2—N5—H5120 (2)
N5—Cu2—N5ii180C7—N6—H6119 (2)
N5—Cu2—O1492.66 (6)C6—N6—H6114 (2)
N5ii—Cu2—O1487.34 (6)O1—C1—H1A109.5
N4ii—Cu2—O1483.17 (6)O1—C1—H1B109.5
N4—Cu2—O1496.83 (6)H1A—C1—H1B109.5
O7—Cl1—O8109.2 (1)O1—C1—H1C109.5
O7—Cl1—O6109.7 (1)H1A—C1—H1C109.5
O8—Cl1—O6109.9 (1)H1B—C1—H1C109.5
O7—Cl1—O5110.1 (1)O2—C4—H4A109.5
O8—Cl1—O5109.3 (1)O2—C4—H4B109.5
O6—Cl1—O5108.6 (1)H4A—C4—H4B109.5
O12—Cl2—O11109.0 (1)O2—C4—H4C109.5
O12—Cl2—O9109.9 (1)H4A—C4—H4C109.5
O11—Cl2—O9110.4 (1)H4B—C4—H4C109.5
O12—Cl2—O10109.8 (1)O3—C5—H5A109.5
O11—Cl2—O10109.0 (1)O3—C5—H5B109.5
O9—Cl2—O10108.9 (1)H5A—C5—H5B109.5
C2—O1—C1117.8 (2)O3—C5—H5C109.5
C3—O2—C4118.2 (2)H5A—C5—H5C109.5
C6—O3—C5117.1 (2)H5B—C5—H5C109.5
C7—O4—C8117.3 (1)O4—C8—H8A109.5
Cl2—O9—Cu1128.4 (1)O4—C8—H8B109.5
C10—O14—Cu2109.7 (1)H8A—C8—H8B109.5
C3—N1—C2125.9 (2)O4—C8—H8C109.5
C3—N2—Cu1128.4 (1)H8A—C8—H8C109.5
C2—N3—Cu1127.8 (1)H8B—C8—H8C109.5
C7—N5—Cu2127.6 (1)O13—C9—H9A109.5
C6—N4—Cu2126.9 (1)O13—C9—H9B109.5
C7—N6—C6126.2 (2)H9A—C9—H9B109.5
N3—C2—O1127.5 (2)O13—C9—H9C109.5
N3—C2—N1124.2 (2)H9A—C9—H9C109.5
O1—C2—N1108.4 (2)H9B—C9—H9C109.5
N2—C3—O2127.4 (2)O14—C10—H10A109.5
N2—C3—N1124.3 (2)O14—C10—H10B109.5
O2—C3—N1108.3 (2)H10A—C10—H10B109.5
N4—C6—O3127.8 (2)O14—C10—H10C109.5
N4—C6—N6123.5 (2)H10A—C10—H10C109.5
O3—C6—N6108.8 (2)H10B—C10—H10C109.5
N5—C7—O4127.2 (2)
Symmetry codes: (i) x+1, y+1, z+1; (ii) x, y+1, z+2.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O130.84 (1)1.95 (1)2.774 (2)168 (2)
N2—H2···O10iii0.84 (1)2.25 (1)3.067 (2)165 (2)
N3—H3···O10iv0.84 (1)2.29 (1)3.102 (2)163 (2)
N4—H4···O5v0.84 (1)2.23 (1)3.011 (2)154 (2)
N5—H5···O5vi0.84 (1)2.50 (2)3.123 (2)132 (2)
N5—H5···O12iii0.84 (1)2.48 (2)3.078 (2)129 (2)
N6—H6···O14iv0.84 (1)1.98 (1)2.808 (2)169 (2)
O13—H13···O60.83 (1)2.02 (1)2.833 (2)166 (3)
O14—H14···O11iii0.83 (1)2.33 (2)3.101 (2)155 (3)
O14—H14···O12iii0.83 (1)2.47 (2)3.196 (3)146 (3)
Symmetry codes: (iii) x, y+1, z+1; (iv) x+1, y, z; (v) x, y+2, z+2; (vi) x, y1, z.

Experimental details

Crystal data
Chemical formula[Cu(C4H9N3O2)2(CH4O)2][Cu(ClO4)2(C4H9N3O2)2](ClO4)2·2CH4O
Mr1177.64
Crystal system, space groupTriclinic, P1
Temperature (K)153
a, b, c (Å)7.444 (2), 10.067 (2), 15.330 (3)
α, β, γ (°)85.06 (3), 89.91 (3), 80.20 (3)
V3)1127.7 (5)
Z1
Radiation typeMo Kα
µ (mm1)1.28
Crystal size (mm)0.32 × 0.30 × 0.26
Data collection
DiffractometerRigaku Mercury
diffractometer
Absorption correctionMulti-scan
(Jacobson, 1998)
Tmin, Tmax0.684, 0.731
No. of measured, independent and
observed [I > 2σ(I)] reflections
10868, 4082, 3857
Rint0.017
(sin θ/λ)max1)0.601
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.027, 0.076, 1.01
No. of reflections4082
No. of parameters339
No. of restraints8
H-atom treatmentH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.72, 0.37

Computer programs: CrystalClear (Rigaku/MSC, 2001), CrystalClear, CrystalStructure (Rigaku/MSC, 2004), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEPII (Johnson, 1976), SHELXL97.

Selected geometric parameters (Å, º) top
Cu1—N21.971 (2)Cu2—N41.969 (2)
Cu1—N31.979 (2)Cu2—N51.961 (2)
Cu1—O92.701 (2)Cu2—O142.719 (2)
N2—Cu1—N388.70 (7)N4—Cu2—N588.51 (7)
N2—Cu1—O986.69 (6)N5—Cu2—O1492.66 (6)
N3—Cu1—O994.68 (6)N4—Cu2—O1496.83 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N1—H1···O130.84 (1)1.95 (1)2.774 (2)168 (2)
N2—H2···O10i0.84 (1)2.25 (1)3.067 (2)165 (2)
N3—H3···O10ii0.84 (1)2.29 (1)3.102 (2)163 (2)
N4—H4···O5iii0.84 (1)2.23 (1)3.011 (2)154 (2)
N5—H5···O5iv0.84 (1)2.50 (2)3.123 (2)132 (2)
N5—H5···O12i0.84 (1)2.48 (2)3.078 (2)129 (2)
N6—H6···O14ii0.84 (1)1.98 (1)2.808 (2)169 (2)
O13—H13···O60.83 (1)2.02 (1)2.833 (2)166 (3)
O14—H14···O11i0.83 (1)2.33 (2)3.101 (2)155 (3)
O14—H14···O12i0.83 (1)2.47 (2)3.196 (3)146 (3)
Symmetry codes: (i) x, y+1, z+1; (ii) x+1, y, z; (iii) x, y+2, z+2; (iv) x, y1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds