Download citation
Download citation
link to html
Two of the title compounds, namely (E)-1,2-bis­(1-methyl­benzimidazol-2-yl)ethene, C18H16N4, (Ib), and (E)-1,2-bis­(1-ethyl­benzimidazol-2-yl)ethene, C20H20N4, (Ic), consist of centrosymmetric trans-bis­(1-alkyl­benzimidazol-2-yl)ethene mol­ecules, while 3-eth­yl-2-[(E)-2-(1-ethyl­benzimidazol-2-yl)­ethen­yl]benzimidazol-1-ium perchlorate, C20H21N4+·ClO4, (II), contains the monoprotonated analogue of compound (Ic). In the three structures, the benzimidazole and benzimidazolium moieties are essentially planar; the geometric parameters for the ethene linkages and their bonds to the aromatic groups are consistent with double and single bonds, respectively, implying little, if any, conjugation of the central C=C bonds with the nitro­gen-containing rings. The C—N bond lengths in the N=C—N part of the benzimidazole groups differ and are consistent with localized imine C=N and amine C—N linkages in (Ib) and (Ic); in contrast, the corresponding distances in the benzimidazolium cation are equal in (II), consistent with electron delocalization resulting from protonation of the amine N atom. Crystals of (Ib) and (Ic) contain columns of parallel mol­ecules, which are linked by edge-over-edge C—H...π overlap. The columns are linked to one another by C—H...π inter­actions and, in the case of (Ib), C—H...N hydrogen bonds. Crystals of (II) contain layers of monocations linked by π–π inter­actions and separated by both perchlorate anions and the protruding eth­yl groups; the cations and anions are linked by N—H...O hydrogen bonds.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270105011881/gg1255sup1.cif
Contains datablocks Ib, Ic, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011881/gg1255Ibsup2.hkl
Contains datablock Ib

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011881/gg1255Icsup3.hkl
Contains datablock Ic

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270105011881/gg1255IIsup4.hkl
Contains datablock tyyy4m

CCDC references: 275518; 275519; 275520

Comment top

The three compounds C18H16N4, (Ib), C20H20N4, (Ic), and C20H21N4+·ClO4, (II), the structures of which we report here, were prepared as part of a project designed to extend our study of the chemistry of bis(imidazoles) and bis(benzimidazoles). Previously, we utilized molecules containing bis(imidazoles) as agents to study electron self-exchange (Knapp et al., 1990), while systems containing bis(benzimidazoles) have been shown to behave as catalysts (Patil et al., 2003; Stibrany et al., 2003; Stibrany & Kacker, 2002; Stibrany, 2001), as geometrically constraining ligands (Stibrany et al., 2004) and as proton sponges (Stibrany et al., 2002). In the past, trans-1,2-bis(benzimidazole)ethene compounds have been prepared directly from the condensation of maleic acid with an appropriate phenylenediamine (Dann et al., 1973). The preparation of (Ia) has been reported from the condensation of rac-malic acid at high temperature (403–468 K), but with little characterization (Siegrist & Ackermann, 1959). During our synthetic studies, we have found that malic acid-based derivatives, at ambient temperature, undergo facile dehydration during alkylation in the presence of excess NaH to yield trans-ethene products. Initial isolation of the trans isomer may be anticipated from the results obtained for the analogous molecule stilbene, whose trans isomer is reported to be stabilized by 4.59 kcal mol−1 over that of the cis isomer (Saltiel et al., 1987). Isolation of cis- or (Z)-1,2-bis(benzimidazole)ethene compounds will be explored in future investigations.

Structures (Ib) and (Ic) (Figs. 1 and 2, respectively) contain centrosymmetric molecules with the centers of symmetry located at the mid-points of the ethene fragments. In (Ib), the planar methylbenzimidazole fragments are not mutually coplanar; a twist about the ethene linkage gives the molecule a slight stepped appearance in profile. Owing to the center of symmetry, the benzimidazole planes in molecules of (Ib) are necessarily parallel; the distance between these planes is 0.501 (3) Å. In (Ic), the twist about the central ethene fragment is much smaller than that in (Ib), as indicated by the interplanar spacing of 0.211 (4) Å, so that (Ic), with the exception of the methyl groups of the ethyl moieties, which protrude on either side of the molecular plane, is very nearly planar.

Corresponding bond lengths in (Ib) and (Ic) (Table 1) for the benzimidazole and the ethene fragments are equivalent to each other within experimental error and agree well in general with those in (Id), the only example obtained from a search of the Cambridge Structural Database (CSD; Version 5.24; Allen, 2002) for a species containing a 1,2-bis(benzimidazole)ethene substructure (CSD refcode TACWAV; Morkovnik et al., 1995). In these three structures, the N11amine—C12 distances are longer than the N13imine—C12 distances, as expected. The ethene linkages, C1—C1', are normal for CC bonds of their type and are not all equal; in particular, the C1—C1' distance in (Id) is significantly longer than those in (Ib) and (Ic), while the C—Nimine distance in (Id) is slightly longer than than those in (Ib) and (Ic). The differences in the `ethene' and `imine' lengths suggest the possibility of some electron delocalization between the ethene and benzimidazole fragments in (Id), and possibly as a result of substitution at the C1 position in (Id). Lastly, we note that the C1—C12 distances in all three structures are comparable in length and are consistent with normal Csp2—Csp2 linkages.

In the perchlorate salt, (II) (Fig. 3), the monocation is effectively planar, except for the methyl groups. The Nimine—C2 and Namine—C2 bond distances in the benzimidazole group (N11—C12 and N13—C12; Fig 3) are unequal, with the `imine' length shorter than the `amine' length, as expected. These distances compare well with structures (Ib)–(Id), as do the angles in the imidazole fragments with atoms C12, N11 and N13 as vertices (Table 1). In contrast, the related distances in the benzimidazolium moiety, N21—C22 and N23—C22, are essentially equal, as are the angles with atoms C22, N22 and N23 as vertices, consistent with protonation occurring exclusively at N23. Atom N23 participates in three hydrogen bonds (Table 3), two interionic N—H···O bonds to two of the four O atoms of the [ClO4] ion and one intraionic C—H···N bond involving ethene atom H1. The perchlorate ion shows little evidence of disorder, possibly as a result of stabilization by hydrogen bonding, and exhibits typical Cl—O bond lengths, which range from 1.380 (2) to 1.428 (3) Å; the longer Cl—O bonds are associated with the O atoms involved in hydrogen bonding. Finally, we note that the ethene linkage, C1—C2, in (II) is slightly shorter than those in (Ib) and (Ic), possibly as a result of the positive charge and/or the weak intraionic C—H···N interaction.

In their crystal structures, molecules of (Ib) and (Ic) form columns parallel to the a-axis direction. Molecules within the columns are tilted, as in a slipped deck of cards, with the result that the molecules in a given column are linked to one another primarily by edge-over-edge C—H···π interactions. The interplanar spacings between molecules within the columns are 3.5107 (15) and 3.250 (2) Å for (Ib) and (Ic), respectively, values typical of π-system interactions (Janiak, 2000). In both structures, the columns of molecules are arranged in an offset herringbone pattern, and are linked by C—H···π and N—H···π interactions to complete the packing. From their calculated densities (see data), crystals of (Ic) are considerably less dense than (Ib), implying a more open structure for (Ic), despite the similarity of both structures. Crystals of (II) consist of layers of monocations parallel to the (100) planes, centered about the planes z = 0 and z = 1/2, and separated by the ethyl groups and the perchlorate anions. Within the cation layer centered about z = 0, individual cations are arranged in offset lines parallel to [110] (Fig. 4) to yield a two-dimensional array of cations, all of which are connected by ππ interactions among the aromatic fragments. For the fragments with the greatest overlap, benzimidazole–benzimidazole and benzimidazolium–benzimidazolium interplanar spacings are 3.379 (9) and 3.428 (3) Å, respectively. About the z = 1/2 plane (not shown), the cations are arranged with their planes parallel to [1–10]. Together, these two symmetry-related layers create a structure in which, in projection along the c axis, the cations appear as a criss-crossed array. As noted above, the anions are stabilized in the crystal structure by hydrogen bonds to the protonated N atom; these linkages are shown as dotted lines in Fig. 4.

Experimental top

Compounds (Ib) and (Ic) were prepared from rac-1,2-bis(1H-benzimidazol-2-yl)-1'-(hydroxyl)ethane (Taffs, et al., 1961). Alkylation was effected by using a reported method (Stibrany et al., 2004). Under N2, NaH (6 molar equivalents) was added to a mixture of rac-1,2-bis(1H-benzimidazol-2-yl)-1'-(hydroxyl)ethane in dry dimethyl sulfoxide. After a reaction time of 30 min, the appropriate alkyliodide (2 molar equivalents) was added dropwise. After an additional 30 min, the product was precipitated with water, collected by filtration and recrystallized to give products in >90% yield. Crystals of (Ib) were obtained by slow evaporation of a 10 ml mixture of 1/1 (v/v) ethanol/triethylorthoformate containing (Ib) (100 mg). 1H NMR (400 MHz, CDCl3): δ 8.04 (s, 2H), 7.81 (m, 2H), 7.33 (m, 6H), 3.97 (s, 6H); 13C NMR (400 MHz, CDCl3): δ 149.1, 143.4, 135.2, 123.2, 123.0, 120.6, 119.6, 109.4, 29.8. M.p. 574 K. Rf = 0.20 (ethyl acetate/silica). Crystals of (Ic) were obtained by slow evaporation of a 10 ml mixture of 1/1 (v/v) acetone/2-propanol containing (Ic) (100 mg). 1H NMR (400 MHz, CDCl3): δ 8.01 (s, 2H), 7.83 (m, 2H), 7.33 (m, 6H), 4.44 (q, J = 7.3 Hz, 4H), 1.52 (t, J = 7.3 Hz, 6H); 13C NMR (400 MHz, CDCl3): δ 149.1, 143.4, 135.2, 123.2, 123.0, 120.6, 119.7, 109.6, 38.4, 15.8. M.p. 504 K. Rf = 0.54 (ethyl acetate/silica). Crystals of (II) were obtained by addition of perchloric acid (1 molar equivalent) to a solution of C20H21N4+ in a 9:1 (v/v) mixture of ethanol and triethylorthoformate. Bright yellow prisms precipitated overnight. IR (KBr pellet, cm−1): 1641 (s), 1385 (m), 1122 (s), 1108 (sh), 1059 (m), 746 (m). M.p. 538 K (soften), 549 K (decomposition).

Refinement top

In the three structures, H atoms were located in difference electron-density maps but, in some cases, the ethylene and methyl H atoms did not refine smoothly. These atoms were subsequently positioned geometrically and refined using a riding model, with C—H distances of 0.93–0.96 Å and Uiso(H) values of 1.5Ueq(C) for methyl H atoms and 1.2Ueq(C) for the other H atoms.

Computing details top

For all compounds, data collection: SMART WNT/2000 (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2000); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997); software used to prepare material for publication: SHELXTL (Bruker, 2000).

Figures top
[Figure 1] Fig. 1. A view of (Ib), showing 25% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code: (i) −x, −y, −z.]
[Figure 2] Fig. 2. A view of (Ic), showing 25% probability displacement ellipsoids and the atom-numbering scheme. [Symmetry code: (i) −x, −y, −z.]
[Figure 3] Fig. 3. A view of (II), showing 25% probability displacement ellipsoids and the atom-numbering scheme. Hydrogen bonds are indicated by dashed lines.
[Figure 4] Fig. 4. A view, centered about the plane z = 0, of the structure of (II). Hydrogen bonds between the cations and anions are indicated by dashed lines. H atoms have been omitted for clarity.
(Ib) (E)-1,2-bis(1-methylbenzimidazol-2-yl)ethene top
Crystal data top
C18H16N4F(000) = 304
Mr = 288.35Dx = 1.313 Mg m3
Monoclinic, P21/nMelting point: 574 K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 6.2517 (2) ÅCell parameters from 886 reflections
b = 12.0363 (5) Åθ = 2.7–24.8°
c = 9.9464 (3) ŵ = 0.08 mm1
β = 102.927 (3)°T = 297 K
V = 729.47 (4) Å3Prism, pale yellow
Z = 20.43 × 0.24 × 0.22 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1273 independent reflections
Radiation source: fine-focus sealed tube1118 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.025
ϕ and ω scansθmax = 25.0°, θmin = 2.7°
Absorption correction: multi-scan
(SADABS, Blessing, 1995)
h = 77
Tmin = 0.852, Tmax = 1.00k = 1214
5056 measured reflectionsl = 1111
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0684P)2 + 0.1265P]
where P = (Fo2 + 2Fc2)/3
1273 reflections(Δ/σ)max < 0.001
117 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C18H16N4V = 729.47 (4) Å3
Mr = 288.35Z = 2
Monoclinic, P21/nMo Kα radiation
a = 6.2517 (2) ŵ = 0.08 mm1
b = 12.0363 (5) ÅT = 297 K
c = 9.9464 (3) Å0.43 × 0.24 × 0.22 mm
β = 102.927 (3)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1273 independent reflections
Absorption correction: multi-scan
(SADABS, Blessing, 1995)
1118 reflections with I > 2σ(I)
Tmin = 0.852, Tmax = 1.00Rint = 0.025
5056 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.111H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
1273 reflectionsΔρmin = 0.12 e Å3
117 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.21132 (18)0.47604 (9)0.25145 (10)0.0416 (3)
N130.10652 (19)0.39432 (10)0.26377 (11)0.0478 (3)
C10.0619 (2)0.51564 (12)0.45707 (14)0.0473 (4)
H10.15940.57420.48280.057*
C110.1524 (2)0.41042 (11)0.13563 (13)0.0412 (4)
C120.0514 (2)0.46226 (11)0.32472 (13)0.0421 (4)
C130.0465 (2)0.36080 (11)0.14452 (13)0.0433 (4)
C140.1510 (3)0.28873 (13)0.03998 (16)0.0557 (4)
C150.0503 (3)0.26799 (13)0.06628 (16)0.0628 (5)
C160.1504 (3)0.31662 (14)0.07216 (16)0.0626 (5)
C170.2553 (3)0.38856 (13)0.02850 (15)0.0542 (4)
C180.4100 (2)0.54273 (14)0.28615 (15)0.0563 (4)
H18A0.41980.57740.37430.084*
H18B0.40570.59890.21710.084*
H18C0.53560.49600.29000.084*
H140.286 (3)0.2581 (15)0.0456 (17)0.065 (5)*
H150.116 (3)0.2195 (16)0.1403 (18)0.072 (5)*
H160.217 (3)0.2968 (16)0.1476 (18)0.073 (5)*
H170.394 (3)0.4210 (15)0.0305 (17)0.065 (5)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0413 (6)0.0445 (6)0.0399 (6)0.0005 (5)0.0110 (5)0.0001 (4)
N130.0478 (7)0.0528 (7)0.0449 (6)0.0031 (5)0.0147 (5)0.0000 (5)
C10.0481 (8)0.0520 (8)0.0423 (7)0.0024 (6)0.0113 (6)0.0017 (6)
C110.0462 (8)0.0398 (7)0.0378 (7)0.0065 (5)0.0096 (5)0.0027 (5)
C120.0427 (7)0.0455 (7)0.0391 (7)0.0042 (6)0.0112 (5)0.0027 (5)
C130.0470 (8)0.0409 (7)0.0413 (7)0.0032 (6)0.0085 (6)0.0029 (5)
C140.0607 (10)0.0479 (8)0.0549 (9)0.0041 (7)0.0052 (7)0.0017 (6)
C150.0867 (12)0.0490 (9)0.0483 (8)0.0036 (8)0.0058 (8)0.0103 (7)
C160.0864 (12)0.0572 (10)0.0487 (8)0.0118 (9)0.0244 (8)0.0056 (7)
C170.0613 (10)0.0555 (9)0.0507 (8)0.0054 (7)0.0233 (7)0.0002 (7)
C180.0478 (8)0.0663 (10)0.0552 (9)0.0099 (7)0.0122 (7)0.0048 (7)
Geometric parameters (Å, º) top
N11—C121.3727 (17)C14—C151.369 (2)
N11—C111.3772 (16)C14—H140.931 (18)
N11—C181.4540 (18)C15—C161.397 (3)
N13—C121.3203 (18)C15—H150.957 (18)
N13—C131.3819 (18)C16—C171.374 (2)
C1—C1i1.329 (3)C16—H160.967 (19)
C1—C121.4532 (19)C17—H170.948 (19)
C1—H10.9300C18—H18A0.9600
C11—C171.388 (2)C18—H18B0.9600
C11—C131.3996 (19)C18—H18C0.9600
C13—C141.399 (2)
C12—N11—C11106.52 (11)C15—C14—H14123.5 (11)
C12—N11—C18128.72 (12)C13—C14—H14118.6 (11)
C11—N11—C18124.73 (12)C14—C15—C16121.89 (15)
C12—N13—C13104.84 (11)C14—C15—H15120.9 (11)
C1i—C1—C12122.84 (18)C16—C15—H15117.2 (11)
C1i—C1—H1118.6C17—C16—C15121.34 (15)
C12—C1—H1118.6C17—C16—H16120.2 (11)
N11—C11—C17131.89 (14)C15—C16—H16118.5 (11)
N11—C11—C13105.50 (11)C16—C17—C11116.82 (16)
C17—C11—C13122.59 (13)C16—C17—H17124.1 (11)
N13—C12—N11112.94 (12)C11—C17—H17119.0 (11)
N13—C12—C1124.56 (13)N11—C18—H18A109.5
N11—C12—C1122.48 (13)N11—C18—H18B109.5
N13—C13—C14130.36 (14)H18A—C18—H18B109.5
N13—C13—C11110.20 (12)N11—C18—H18C109.5
C14—C13—C11119.45 (13)H18A—C18—H18C109.5
C15—C14—C13117.89 (16)H18B—C18—H18C109.5
C12—N11—C11—C17177.30 (14)C12—N13—C13—C110.10 (15)
C18—N11—C11—C171.1 (2)N11—C11—C13—N130.66 (14)
C12—N11—C11—C130.93 (13)C17—C11—C13—N13177.77 (12)
C18—N11—C11—C13179.29 (12)N11—C11—C13—C14179.58 (12)
C13—N13—C12—N110.52 (15)C17—C11—C13—C142.0 (2)
C13—N13—C12—C1177.95 (12)N13—C13—C14—C15178.37 (14)
C11—N11—C12—N130.94 (15)C11—C13—C14—C151.3 (2)
C18—N11—C12—N13179.21 (13)C13—C14—C15—C160.1 (2)
C11—N11—C12—C1177.57 (12)C14—C15—C16—C170.5 (3)
C18—N11—C12—C10.7 (2)C15—C16—C17—C110.0 (2)
C1i—C1—C12—N1314.0 (3)N11—C11—C17—C16179.27 (14)
C1i—C1—C12—N11164.29 (17)C13—C11—C17—C161.3 (2)
C12—N13—C13—C14179.83 (14)
Symmetry code: (i) x, y+1, z+1.
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···N13ii0.962.613.560 (2)169
Symmetry code: (ii) x+1, y, z.
(Ic) (E)-1,2-bis(1-ethylbenzimidazol-2-yl)ethene top
Crystal data top
C20H20N4F(000) = 336
Mr = 316.40Dx = 1.250 Mg m3
Monoclinic, P21/cMelting point: 504 K K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 5.1789 (4) ÅCell parameters from 1011 reflections
b = 11.2713 (8) Åθ = 3.4–24.6°
c = 14.4525 (9) ŵ = 0.08 mm1
β = 94.905 (5)°T = 298 K
V = 840.55 (10) Å3Prism, colorless
Z = 20.50 × 0.31 × 0.16 mm
Data collection top
Bruker SMART CCD area-detector
diffractometer
1464 independent reflections
Radiation source: fine-focus sealed tube1193 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.040
ϕ and ω scansθmax = 25.0°, θmin = 2.3°
Absorption correction: multi-scan
(SADABS, Blessing, 1995)
h = 66
Tmin = 0.740, Tmax = 1.00k = 1312
5645 measured reflectionsl = 1715
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.056Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0976P)2 + 0.1481P]
where P = (Fo2 + 2Fc2)/3
1464 reflections(Δ/σ)max < 0.001
145 parametersΔρmax = 0.17 e Å3
0 restraintsΔρmin = 0.12 e Å3
Crystal data top
C20H20N4V = 840.55 (10) Å3
Mr = 316.40Z = 2
Monoclinic, P21/cMo Kα radiation
a = 5.1789 (4) ŵ = 0.08 mm1
b = 11.2713 (8) ÅT = 298 K
c = 14.4525 (9) Å0.50 × 0.31 × 0.16 mm
β = 94.905 (5)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
1464 independent reflections
Absorption correction: multi-scan
(SADABS, Blessing, 1995)
1193 reflections with I > 2σ(I)
Tmin = 0.740, Tmax = 1.00Rint = 0.040
5645 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0560 restraints
wR(F2) = 0.156H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.17 e Å3
1464 reflectionsΔρmin = 0.12 e Å3
145 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.0056 (3)0.31813 (14)0.34139 (12)0.0512 (5)
N130.2615 (4)0.47842 (15)0.35490 (13)0.0580 (5)
C10.0421 (4)0.45418 (17)0.47379 (15)0.0559 (6)
H10.18350.41120.49110.067*
C110.1602 (4)0.31330 (17)0.26824 (14)0.0500 (6)
C120.0758 (4)0.41857 (17)0.39145 (14)0.0510 (5)
C130.3179 (4)0.41455 (18)0.27792 (15)0.0521 (6)
C140.5014 (5)0.4344 (2)0.21472 (17)0.0633 (6)
C150.5211 (5)0.3534 (2)0.14486 (18)0.0686 (7)
C160.3616 (5)0.2540 (2)0.13629 (18)0.0679 (7)
C170.1770 (5)0.2318 (2)0.19639 (16)0.0606 (6)
C180.1789 (5)0.2255 (2)0.36363 (18)0.0595 (6)
C190.0514 (7)0.1274 (2)0.4211 (2)0.0744 (8)
H140.608 (5)0.503 (2)0.2207 (18)0.076 (7)*
H150.647 (5)0.363 (2)0.0992 (18)0.075 (7)*
H160.386 (5)0.202 (2)0.0849 (19)0.078 (7)*
H170.060 (4)0.164 (2)0.1915 (15)0.065 (6)*
H18A0.321 (5)0.262 (2)0.3980 (17)0.066 (6)*
H18B0.257 (5)0.196 (2)0.3048 (19)0.073 (7)*
H19A0.028 (6)0.157 (3)0.479 (2)0.101 (10)*
H19B0.173 (6)0.065 (3)0.436 (2)0.100 (9)*
H19C0.089 (6)0.091 (3)0.389 (2)0.109 (11)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0534 (10)0.0378 (9)0.0611 (10)0.0018 (7)0.0031 (8)0.0010 (7)
N130.0652 (12)0.0391 (9)0.0704 (12)0.0043 (8)0.0092 (9)0.0023 (8)
C10.0608 (13)0.0391 (11)0.0676 (14)0.0022 (9)0.0051 (10)0.0034 (9)
C110.0499 (11)0.0398 (11)0.0586 (12)0.0069 (8)0.0055 (9)0.0042 (9)
C120.0547 (12)0.0365 (10)0.0610 (12)0.0012 (9)0.0005 (10)0.0018 (9)
C130.0520 (11)0.0401 (11)0.0633 (13)0.0059 (9)0.0002 (9)0.0041 (9)
C140.0602 (13)0.0554 (14)0.0748 (16)0.0014 (11)0.0082 (12)0.0072 (12)
C150.0644 (14)0.0750 (17)0.0671 (15)0.0142 (12)0.0095 (12)0.0062 (13)
C160.0737 (16)0.0685 (16)0.0607 (14)0.0174 (13)0.0009 (12)0.0069 (12)
C170.0667 (14)0.0454 (12)0.0666 (14)0.0054 (11)0.0119 (11)0.0055 (10)
C180.0614 (14)0.0484 (13)0.0671 (14)0.0122 (10)0.0032 (12)0.0009 (11)
C190.094 (2)0.0558 (15)0.0709 (16)0.0070 (14)0.0054 (16)0.0140 (13)
Geometric parameters (Å, º) top
N11—C121.376 (3)C14—H140.95 (3)
N11—C111.381 (3)C15—C161.391 (4)
N11—C181.469 (3)C15—H150.97 (3)
N13—C121.321 (3)C16—C171.368 (4)
N13—C131.377 (3)C16—H160.96 (3)
C1—C1i1.332 (4)C17—H170.97 (2)
C1—C121.440 (3)C18—C191.502 (3)
C1—H10.9300C18—H18A1.01 (2)
C11—C171.395 (3)C18—H18B0.97 (3)
C11—C131.404 (3)C19—H19A0.96 (4)
C13—C141.391 (3)C19—H19B0.98 (4)
C14—C151.372 (4)C19—H19C0.98 (3)
C12—N11—C11106.89 (16)C14—C15—H15121.3 (15)
C12—N11—C18128.12 (19)C16—C15—H15117.3 (15)
C11—N11—C18124.75 (18)C17—C16—C15122.2 (2)
C12—N13—C13105.54 (18)C17—C16—H16121.4 (15)
C1i—C1—C12123.0 (3)C15—C16—H16116.4 (15)
C1i—C1—H1118.5C16—C17—C11116.3 (2)
C12—C1—H1118.5C16—C17—H17124.1 (13)
N11—C11—C17132.33 (19)C11—C17—H17119.5 (13)
N11—C11—C13105.22 (17)N11—C18—C19112.4 (2)
C17—C11—C13122.5 (2)N11—C18—H18A109.3 (13)
N13—C12—N11112.26 (18)C19—C18—H18A109.5 (14)
N13—C12—C1124.23 (19)N11—C18—H18B106.4 (14)
N11—C12—C1123.51 (18)C19—C18—H18B111.3 (15)
N13—C13—C14130.5 (2)H18A—C18—H18B108 (2)
N13—C13—C11110.09 (18)C18—C19—H19A110.9 (19)
C14—C13—C11119.3 (2)C18—C19—H19B112.8 (18)
C15—C14—C13118.3 (2)H19A—C19—H19B107 (3)
C15—C14—H14122.0 (16)C18—C19—H19C111 (2)
C13—C14—H14119.7 (15)H19A—C19—H19C106 (3)
C14—C15—C16121.4 (2)H19B—C19—H19C109 (3)
Symmetry code: (i) x, y+1, z+1.
(II) 3-ethyl-2-[(E)-2-(1-ethylbenzimidazol-2-yl)ethenyl]benzimidazol-1-ium perchlorate top
Crystal data top
C20H21N4+·ClO4F(000) = 872
Mr = 416.86Dx = 1.408 Mg m3
Monoclinic, P21/cMelting point: 538 K (soften) 549 K (decomp.) K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 14.3810 (5) ÅCell parameters from 862 reflections
b = 8.3007 (3) Åθ = 2.8–23.5°
c = 16.4788 (6) ŵ = 0.23 mm1
β = 91.561 (3)°T = 297 K
V = 1966.38 (12) Å3Block, yellow
Z = 40.42 × 0.33 × 0.23 mm
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3452 independent reflections
Radiation source: fine-focus sealed tube2725 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.030
ϕ and ω scansθmax = 25.1°, θmin = 2.8°
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
h = 1717
Tmin = 0.873, Tmax = 1.00k = 99
14068 measured reflectionsl = 1917
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.049Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.00 w = 1/[σ2(Fo2) + (0.0892P)2 + 0.7662P]
where P = (Fo2 + 2Fc2)/3
3452 reflections(Δ/σ)max = 0.001
324 parametersΔρmax = 0.33 e Å3
0 restraintsΔρmin = 0.19 e Å3
Crystal data top
C20H21N4+·ClO4V = 1966.38 (12) Å3
Mr = 416.86Z = 4
Monoclinic, P21/cMo Kα radiation
a = 14.3810 (5) ŵ = 0.23 mm1
b = 8.3007 (3) ÅT = 297 K
c = 16.4788 (6) Å0.42 × 0.33 × 0.23 mm
β = 91.561 (3)°
Data collection top
Bruker SMART APEX CCD area-detector
diffractometer
3452 independent reflections
Absorption correction: multi-scan
(SADABS; Blessing, 1995)
2725 reflections with I > 2σ(I)
Tmin = 0.873, Tmax = 1.00Rint = 0.030
14068 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0490 restraints
wR(F2) = 0.148H atoms treated by a mixture of independent and constrained refinement
S = 1.00Δρmax = 0.33 e Å3
3452 reflectionsΔρmin = 0.19 e Å3
324 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl0.21254 (5)0.38125 (8)0.73859 (3)0.0609 (3)
O20.2003 (2)0.2945 (3)0.66557 (12)0.0979 (8)
O30.2553 (2)0.2886 (4)0.79832 (16)0.1201 (11)
O10.2701 (2)0.5156 (3)0.71961 (18)0.1146 (10)
O40.1277 (2)0.4359 (5)0.7657 (2)0.1472 (13)
N110.49077 (12)0.2180 (2)0.56399 (10)0.0423 (5)
N130.49647 (13)0.3030 (2)0.43423 (11)0.0448 (5)
N210.17449 (12)0.6190 (2)0.41069 (11)0.0430 (5)
N230.18004 (13)0.5317 (3)0.53502 (12)0.0467 (5)
C10.36074 (17)0.3846 (3)0.51119 (15)0.0475 (6)
C110.57220 (15)0.1583 (3)0.53360 (13)0.0407 (5)
C120.44856 (15)0.3031 (3)0.50149 (13)0.0415 (5)
C130.57470 (15)0.2131 (3)0.45325 (13)0.0418 (5)
C140.65095 (17)0.1750 (3)0.40618 (16)0.0526 (6)
C150.71975 (18)0.0804 (4)0.44093 (17)0.0589 (7)
C160.71532 (18)0.0248 (3)0.52091 (17)0.0571 (7)
C170.64185 (17)0.0628 (3)0.56890 (16)0.0501 (6)
C180.45992 (19)0.1961 (3)0.64716 (14)0.0494 (6)
C190.5002 (2)0.3188 (4)0.70462 (17)0.0774 (9)
H19A0.56680.31080.70570.116*
H19B0.47770.29970.75810.116*
H19C0.48200.42470.68700.116*
C20.31059 (16)0.4483 (3)0.45142 (15)0.0453 (5)
C210.09671 (15)0.6810 (3)0.44869 (14)0.0427 (5)
C220.22400 (15)0.5297 (3)0.46460 (13)0.0423 (5)
C230.10093 (15)0.6246 (3)0.52810 (14)0.0439 (5)
C240.03366 (18)0.6643 (3)0.58375 (17)0.0546 (6)
C250.0374 (2)0.7618 (4)0.55597 (19)0.0622 (7)
C260.0417 (2)0.8172 (4)0.47616 (19)0.0640 (8)
C270.02503 (18)0.7801 (3)0.42091 (17)0.0552 (6)
C280.1969 (2)0.6520 (5)0.32569 (17)0.0642 (8)
C290.1299 (3)0.5742 (5)0.26675 (17)0.0862 (10)
H29A0.13180.45940.27390.129*
H29B0.14670.60050.21240.129*
H29C0.06820.61260.27620.129*
H230.1964 (19)0.476 (4)0.5789 (18)0.063 (8)*
H170.6381 (17)0.024 (3)0.6200 (17)0.055 (7)*
H160.7653 (18)0.041 (3)0.5424 (16)0.056 (7)*
H240.0402 (19)0.622 (3)0.6347 (18)0.060 (8)*
H270.0260 (17)0.822 (3)0.3666 (16)0.053 (7)*
H250.0854 (18)0.795 (3)0.5902 (16)0.055 (7)*
H20.3325 (16)0.445 (3)0.3978 (16)0.049 (6)*
H10.3411 (18)0.392 (3)0.5619 (17)0.057 (8)*
H150.771 (2)0.056 (4)0.4074 (17)0.069 (8)*
H260.090 (2)0.888 (4)0.4616 (17)0.065 (8)*
H140.6526 (17)0.214 (3)0.3541 (17)0.056 (7)*
H18A0.4807 (19)0.092 (4)0.6630 (17)0.063 (8)*
H18B0.3947 (19)0.198 (3)0.6463 (15)0.049 (7)*
H28A0.198 (2)0.758 (4)0.325 (2)0.076 (10)*
H28B0.261 (2)0.619 (4)0.3182 (17)0.069 (8)*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl0.0759 (5)0.0672 (5)0.0396 (4)0.0023 (3)0.0021 (3)0.0051 (3)
O20.146 (2)0.0958 (18)0.0508 (12)0.0131 (16)0.0164 (13)0.0081 (11)
O30.160 (3)0.115 (2)0.0819 (17)0.0268 (19)0.0601 (17)0.0382 (15)
O10.147 (2)0.0836 (17)0.115 (2)0.0358 (17)0.0336 (18)0.0118 (15)
O40.115 (2)0.183 (3)0.146 (3)0.032 (2)0.065 (2)0.012 (3)
N110.0408 (10)0.0482 (11)0.0376 (9)0.0053 (9)0.0026 (8)0.0007 (8)
N130.0444 (11)0.0503 (11)0.0394 (10)0.0019 (9)0.0020 (8)0.0010 (8)
N210.0394 (10)0.0494 (11)0.0403 (10)0.0052 (9)0.0011 (8)0.0063 (8)
N230.0449 (11)0.0594 (13)0.0357 (10)0.0059 (10)0.0009 (8)0.0050 (9)
C10.0482 (13)0.0518 (14)0.0423 (13)0.0058 (11)0.0006 (11)0.0016 (10)
C110.0372 (12)0.0419 (12)0.0428 (12)0.0001 (10)0.0047 (9)0.0029 (9)
C120.0404 (12)0.0434 (12)0.0405 (12)0.0009 (10)0.0054 (9)0.0016 (9)
C130.0391 (12)0.0440 (12)0.0419 (11)0.0018 (10)0.0041 (9)0.0025 (9)
C140.0486 (14)0.0633 (16)0.0460 (14)0.0019 (12)0.0042 (11)0.0027 (12)
C150.0404 (13)0.0708 (17)0.0658 (17)0.0051 (13)0.0082 (12)0.0055 (14)
C160.0419 (13)0.0595 (16)0.0694 (17)0.0100 (12)0.0048 (12)0.0011 (13)
C170.0463 (13)0.0526 (14)0.0508 (14)0.0036 (11)0.0073 (11)0.0030 (12)
C180.0467 (14)0.0612 (16)0.0404 (12)0.0056 (12)0.0011 (10)0.0075 (11)
C190.085 (2)0.103 (2)0.0446 (15)0.0140 (18)0.0002 (14)0.0115 (15)
C20.0419 (12)0.0522 (13)0.0418 (12)0.0048 (11)0.0003 (10)0.0016 (10)
C210.0379 (12)0.0426 (12)0.0474 (12)0.0000 (10)0.0002 (10)0.0018 (10)
C220.0405 (12)0.0468 (13)0.0396 (11)0.0004 (10)0.0016 (9)0.0002 (9)
C230.0397 (12)0.0481 (13)0.0437 (12)0.0012 (10)0.0013 (9)0.0049 (10)
C240.0507 (15)0.0645 (16)0.0487 (15)0.0029 (13)0.0043 (12)0.0089 (12)
C250.0515 (15)0.0659 (17)0.0696 (18)0.0041 (14)0.0106 (13)0.0197 (14)
C260.0502 (15)0.0620 (17)0.080 (2)0.0184 (14)0.0010 (14)0.0101 (14)
C270.0509 (15)0.0547 (15)0.0597 (16)0.0089 (12)0.0025 (12)0.0028 (12)
C280.0541 (17)0.087 (2)0.0525 (16)0.0159 (16)0.0119 (12)0.0264 (15)
C290.105 (2)0.112 (3)0.0409 (14)0.032 (2)0.0016 (15)0.0019 (16)
Geometric parameters (Å, º) top
Cl—O31.380 (2)C16—H160.96 (3)
Cl—O41.387 (3)C17—H170.90 (3)
Cl—O21.409 (2)C18—C191.497 (4)
Cl—O11.428 (3)C18—H18A0.95 (3)
N11—C121.376 (3)C18—H18B0.94 (3)
N11—C111.378 (3)C19—H19A0.9600
N11—C181.463 (3)C19—H19B0.9600
N13—C121.321 (3)C19—H19C0.9600
N13—C131.379 (3)C2—C221.438 (3)
N21—C221.346 (3)C2—H20.95 (3)
N21—C211.395 (3)C21—C271.387 (3)
N21—C281.472 (3)C21—C231.390 (3)
N23—C221.337 (3)C23—C241.391 (3)
N23—C231.376 (3)C24—C251.373 (4)
N23—H230.88 (3)C24—H240.91 (3)
C1—C21.316 (3)C25—C261.393 (4)
C1—C121.445 (3)C25—H250.94 (3)
C1—H10.89 (3)C26—C271.376 (4)
C11—C171.392 (3)C26—H260.94 (3)
C11—C131.401 (3)C27—H270.96 (3)
C13—C141.396 (3)C28—C291.496 (5)
C14—C151.376 (4)C28—H28A0.88 (3)
C14—H140.92 (3)C28—H28B0.98 (3)
C15—C161.399 (4)C29—H29A0.9600
C15—H150.95 (3)C29—H29B0.9600
C16—C171.373 (4)C29—H29C0.9600
O3—Cl—O4109.3 (2)C19—C18—H18B111.6 (15)
O3—Cl—O2111.54 (18)H18A—C18—H18B109 (2)
O4—Cl—O2110.6 (2)C18—C19—H19A109.5
O3—Cl—O1110.00 (19)C18—C19—H19B109.5
O4—Cl—O1109.6 (2)H19A—C19—H19B109.5
O2—Cl—O1105.76 (17)C18—C19—H19C109.5
C12—N11—C11105.92 (18)H19A—C19—H19C109.5
C12—N11—C18128.7 (2)H19B—C19—H19C109.5
C11—N11—C18125.32 (18)C1—C2—C22122.3 (2)
C12—N13—C13104.51 (18)C1—C2—H2119.8 (14)
C22—N21—C21108.85 (18)C22—C2—H2117.8 (14)
C22—N21—C28127.2 (2)C27—C21—C23121.6 (2)
C21—N21—C28123.92 (19)C27—C21—N21131.9 (2)
C22—N23—C23110.16 (19)C23—C21—N21106.47 (19)
C22—N23—H23125.6 (19)N23—C22—N21108.18 (19)
C23—N23—H23124.1 (19)N23—C22—C2124.7 (2)
C2—C1—C12124.6 (2)N21—C22—C2127.1 (2)
C2—C1—H1119.5 (17)N23—C23—C21106.3 (2)
C12—C1—H1115.9 (17)N23—C23—C24131.8 (2)
N11—C11—C17131.4 (2)C21—C23—C24121.9 (2)
N11—C11—C13105.72 (18)C25—C24—C23116.4 (3)
C17—C11—C13122.9 (2)C25—C24—H24126.2 (18)
N13—C12—N11113.5 (2)C23—C24—H24117.3 (18)
N13—C12—C1124.8 (2)C24—C25—C26121.5 (3)
N11—C12—C1121.8 (2)C24—C25—H25121.5 (16)
N13—C13—C14130.1 (2)C26—C25—H25117.0 (16)
N13—C13—C11110.39 (19)C27—C26—C25122.5 (3)
C14—C13—C11119.5 (2)C27—C26—H26119.7 (18)
C15—C14—C13117.7 (2)C25—C26—H26117.6 (18)
C15—C14—H14123.6 (16)C26—C27—C21116.1 (3)
C13—C14—H14118.7 (16)C26—C27—H27124.3 (15)
C14—C15—C16122.0 (3)C21—C27—H27119.6 (15)
C14—C15—H15116.0 (17)N21—C28—C29112.5 (3)
C16—C15—H15122.1 (17)N21—C28—H28A102 (2)
C17—C16—C15121.5 (2)C29—C28—H28A116 (2)
C17—C16—H16119.8 (16)N21—C28—H28B107.5 (17)
C15—C16—H16118.7 (16)C29—C28—H28B113.1 (17)
C16—C17—C11116.5 (2)H28A—C28—H28B105 (3)
C16—C17—H17121.3 (17)C28—C29—H29A109.5
C11—C17—H17122.1 (17)C28—C29—H29B109.5
N11—C18—C19112.7 (2)H29A—C29—H29B109.5
N11—C18—H18A105.6 (17)C28—C29—H29C109.5
C19—C18—H18A109.5 (17)H29A—C29—H29C109.5
N11—C18—H18B108.2 (15)H29B—C29—H29C109.5
C12—N11—C11—C17179.2 (2)C22—N21—C21—C27179.3 (3)
C18—N11—C11—C172.4 (4)C28—N21—C21—C270.4 (4)
C12—N11—C11—C130.5 (2)C22—N21—C21—C230.3 (2)
C18—N11—C11—C13177.9 (2)C28—N21—C21—C23179.1 (2)
C13—N13—C12—N110.1 (2)C23—N23—C22—N210.6 (3)
C13—N13—C12—C1179.3 (2)C23—N23—C22—C2177.9 (2)
C11—N11—C12—N130.3 (2)C21—N21—C22—N230.6 (2)
C18—N11—C12—N13178.0 (2)C28—N21—C22—N23179.3 (3)
C11—N11—C12—C1179.6 (2)C21—N21—C22—C2177.9 (2)
C18—N11—C12—C11.4 (4)C28—N21—C22—C20.9 (4)
C2—C1—C12—N1310.7 (4)C1—C2—C22—N238.9 (4)
C2—C1—C12—N11170.0 (2)C1—C2—C22—N21169.4 (2)
C12—N13—C13—C14178.5 (2)C22—N23—C23—C210.4 (3)
C12—N13—C13—C110.4 (2)C22—N23—C23—C24179.3 (3)
N11—C11—C13—N130.5 (2)C27—C21—C23—N23179.7 (2)
C17—C11—C13—N13179.2 (2)N21—C21—C23—N230.1 (2)
N11—C11—C13—C14178.5 (2)C27—C21—C23—C240.1 (4)
C17—C11—C13—C141.8 (3)N21—C21—C23—C24179.7 (2)
N13—C13—C14—C15179.4 (2)N23—C23—C24—C25179.9 (2)
C11—C13—C14—C151.8 (4)C21—C23—C24—C250.2 (4)
C13—C14—C15—C160.8 (4)C23—C24—C25—C260.2 (4)
C14—C15—C16—C170.2 (4)C24—C25—C26—C270.9 (5)
C15—C16—C17—C110.3 (4)C25—C26—C27—C211.2 (4)
N11—C11—C17—C16179.7 (2)C23—C21—C27—C260.8 (4)
C13—C11—C17—C160.7 (4)N21—C21—C27—C26179.7 (2)
C12—N11—C18—C1993.0 (3)C22—N21—C28—C29112.3 (3)
C11—N11—C18—C1984.9 (3)C21—N21—C28—C2969.1 (4)
C12—C1—C2—C22179.3 (2)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O20.88 (3)2.08 (3)2.925 (3)161 (3)
N23—H23···O10.88 (3)2.54 (3)3.276 (4)141 (3)
C1—H1···N230.89 (3)2.62 (3)2.908 (3)100 (2)

Experimental details

(Ib)(Ic)(II)
Crystal data
Chemical formulaC18H16N4C20H20N4C20H21N4+·ClO4
Mr288.35316.40416.86
Crystal system, space groupMonoclinic, P21/nMonoclinic, P21/cMonoclinic, P21/c
Temperature (K)297298297
a, b, c (Å)6.2517 (2), 12.0363 (5), 9.9464 (3)5.1789 (4), 11.2713 (8), 14.4525 (9)14.3810 (5), 8.3007 (3), 16.4788 (6)
β (°) 102.927 (3) 94.905 (5) 91.561 (3)
V3)729.47 (4)840.55 (10)1966.38 (12)
Z224
Radiation typeMo KαMo KαMo Kα
µ (mm1)0.080.080.23
Crystal size (mm)0.43 × 0.24 × 0.220.50 × 0.31 × 0.160.42 × 0.33 × 0.23
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Bruker SMART APEX CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS, Blessing, 1995)
Multi-scan
(SADABS, Blessing, 1995)
Multi-scan
(SADABS; Blessing, 1995)
Tmin, Tmax0.852, 1.000.740, 1.000.873, 1.00
No. of measured, independent and
observed [I > 2σ(I)] reflections
5056, 1273, 1118 5645, 1464, 1193 14068, 3452, 2725
Rint0.0250.0400.030
(sin θ/λ)max1)0.5950.5950.596
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.111, 1.00 0.056, 0.156, 1.00 0.049, 0.148, 1.00
No. of reflections127314643452
No. of parameters117145324
H-atom treatmentH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinementH atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å3)0.17, 0.120.17, 0.120.33, 0.19

Computer programs: SMART WNT/2000 (Bruker, 2000), SAINT-Plus (Bruker, 2000), SAINT-Plus, SHELXS97 (Sheldrick, 1990), SHELXL97 (Sheldrick, 1997), ORTEPIII (Burnett & Johnson, 1996) and ORTEP-32 (Farrugia, 1997), SHELXTL (Bruker, 2000).

Hydrogen-bond geometry (Å, º) for (Ib) top
D—H···AD—HH···AD···AD—H···A
C18—H18C···N13i0.962.613.560 (2)169
Symmetry code: (i) x+1, y, z.
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
N23—H23···O20.88 (3)2.08 (3)2.925 (3)161 (3)
N23—H23···O10.88 (3)2.54 (3)3.276 (4)141 (3)
C1—H1···N230.89 (3)2.62 (3)2.908 (3)100 (2)
Comparison of selected bond lengths (Å) and angles (°) in the bis(benzimidazole)ethene fragments of (Ib), (Ic), (Id), and (II) top
BondIbIcIdIIII
C1-C11.329 (3)1.332 (4)1.368 (3)1.316 (3)protonated
C1-C121.4532 (19)1.440 (3)1.451 (2)1.445 (3)1.438 (3)
N11-C121.3727 (17)1.376 (3)1.371 (2)1.376 (3)1.346 (3)
N13-C121.3203 (18)1.321 (3)1.337 (2)1.321 (3)1.337 (3)
N11-C111.3772 (16)1.381 (3)1.386 (2)1.378 (3)1.395 (3)
N13-C131.3819 (18)1.377 (3)1.382 (2)1.379 (3)1.376 (3)
C11-C131.3996 (19)1.404 (3)1.405 (6)1.401 (3)1.390 (3)
C11-C171.388 (2)1.395 (3)1.388 (2)1.392 (3)1.387 (3)
C13-C141.399 (2)1.391 (3)1.399 (2)1.396 (3)1.391 (3)
C14-C151.369 (2)1.372 (4)1.383 (3)1.376 (4)1.373 (4)
C16-C171.374 (2)1.368 (4)1.386 (3)1.373 (4)1.376 (4)
C15-C161.397 (3)1.391 (4)1.405 (3)1.399 (4)1.393 (4)
N11-C12–13112.94 (12)112.26 (18)112.4 (1)113.5 (2)108.18 (19)
C12-N11-C11106.52 (11)106.89 (16)106.5 (1)105.92 (18)108.85 (18)
C12–13-C13104.84 (11)105.54 (18)105.6 (1)104.51 (18)110.16 (19)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds