organic compounds\(\def\hfill{\hskip 5em}\def\hfil{\hskip 3em}\def\eqno#1{\hfil {#1}}\)

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296

(Cyclo­hexyl­­idene­amino)­­oxy­acetic acid and [chloro­(phenyl)­methyl­ene­amino]­­oxy­acetic acid: hydrogen-bonded R[_2^2](8) dimers and aromatic ππ stacking interactions

CROSSMARK_Color_square_no_text.svg

aSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland, bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB24 3UE, Scotland, and cInstituto de Química, Departamento de Química Inorgânica, Universidade Federal do Rio de Janeiro, 21945-970 Rio de Janeiro, RJ, Brazil
*Correspondence e-mail: cg@st-andrews.ac.uk

(Received 12 February 2004; accepted 23 February 2004; online 20 March 2004)

Molecules of (cyclo­hexyl­idene­amino)­oxy­acetic acid, C8H13NO3, (I[link]), are linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds [H⋯O = 1.84 Å, O⋯O = 2.6782 (12) Å and O—H⋯O = 178°]. In [chloro­(phenyl)­methyl­ene­amino]­oxy­acetic acid, C9H8ClNO3, (II[link]), the mol­ecules are similarly linked into centrosymmetric dimers by pairs of O—H⋯O hydrogen bonds [H⋯O = 1.79 Å, O⋯O = 2.6329 (17) Å and O—H⋯O = 176°], and these dimers are weakly linked into chains by a single type of aromatic ππ stacking interaction.

Comment

Per­sulfate oxidation of iminooxy­acetic acids, R(R′)C=NOCH2COOH, provides a useful route to iminyl radicals (Forrester et al., 1979[Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J.  Chem. Soc. Perkin Trans. 1, pp. 606-611.]). The subsequent reactions of the iminyl radicals thus generated depend greatly on the substituents, and important species including nitro­gen-containing heterocycles can result. We report here the molecular and supra­mol­ecular structures of two representative examples of such

[Scheme 1]
precursors, viz. (cyclo­hexyl­idene­amino)­oxy­acetic acid, (I[link]), and [chloro­(phenyl)­methyl­ene­amino]­oxy­acetic acid, (II[link]).

In both (I[link]) and (II[link]) (Figs. 1[link] and 2[link]), the C—O distances in the carboxy groups (Tables 1[link] and 3[link]) are consistent with the fully ordered locations of the carboxy H atoms as deduced from difference maps. In the side chains of (I[link]) and (II[link]), the corresponding distances show very similar values, apart from the O3—N4 distances, which are significantly different; for comparison, the mean value for the —O—N= bond in oximes is 1.416 Å (Allen et al., 1987[Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.]). The other distances are typical for bonds of their types.

The conformations of the side chains both exhibit near-planar fragments, viz. O1—C1—C2—O3 and C2—O3—N4—Cn [n = 11 in (I[link]) and n = 5 in (II[link]); see Figs. 1[link] and 2[link]], but while the intervening C1—C2—O3—N4 torsion angles have similar magnitudes in (I[link]) and (II[link]), they have opposite signs, and it is this difference that determines the different overall conformations of these two mol­ecules. For the cyclo­hexyl­idene ring in (I[link]), the ring-puckering parameters (Cremer & Pople, 1975[Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.]) corresponding to the atom sequence C11–C16 [φ = 174.0 (2)° and θ = 12 (2)°] indicate a conformation close to the chair form (Evans & Boeyens, 1989[Evans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581-590.]), despite the planarity at atom C11.

In the structures of both (I[link]) and (II[link]), the mol­ecules are linked into centrosymmetric R22(8) (Bernstein et al., 1995[Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.]) dimers (Figs. 3[link] and 4[link]) by paired O—H⋯O hydrogen bonds, which are fairly short and effectively linear (Tables 2[link] and 4[link]). In each structure, the reference mol­ecule has been selected so that the hydrogen-bonded dimer in which this mol­ecule participates is centred at ([1 \over 2], [1 \over 2], [1 \over 2]). In the structure of (I[link]), there are no further direction-specific interactions between the mol­ecules, but in (II[link]), the R22(8) dimers are weakly linked into chains by a single aromatic ππ stacking interaction. The aryl rings in the mol­ecules at (x, y, z) and (2 − x, 1 − y, 2 − z) are parallel, with an interplanar spacing of 3.422 (2) Å; the ring-centroid separation is 3.856 (2) Å, corresponding to a centroid offset of 1.777 (2) Å. The mol­ecules at (x, y, z) and (2 − x, 1 − y, 2 − z) are components of hydrogen-bonded dimers centred at ([1 \over 2], [1 \over 2], [1 \over 2]) and (1, [1 \over 2], 1), respectively, and propagation by inversion of the two intermolecular interactions generates a chain running parallel to the [101] direction (Fig. 5[link]).

In neither (I[link]) nor (II[link]) do atoms O3 and N4 act as acceptors of C—H⋯X (X = O or N) hydrogen bonds; there are no intermolecular H⋯X contact distances involving O3 or N4 that are less than 2.60 Å in (I[link]), and none of less than 2.70 Å in (II[link]).

[Figure 1]
Figure 1
The mol­ecule of (I[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2]
Figure 2
The mol­ecule of (II[link]), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3]
Figure 3
Part of the crystal structure of (I[link]), showing the formation of an R22(8) dimer centred at ([1 \over 2], [1 \over 2], [1 \over 2]). For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4]
Figure 4
Part of the crystal structure of (II[link]), showing the formation of an R22(8) dimer centred at ([1 \over 2], [1 \over 2], [1 \over 2]). For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5]
Figure 5
A stereoview of part of the crystal structure of (II[link]), showing the formation of a π-stacked [101] chain of hydrogen-bonded dimers. For clarity, H atoms bonded to C atoms have been omitted.

Experimental

Benzhydroxamoyl chloride, Cl(Ph)C=NOH, was prepared from H(Ph)C=NOH according to the method of Baruah et al. (1988[Baruah, A. K., Prajapati, D. & Sandhu, J. S. (1988). Tetrahedron, 44, 1241-1246.]). Compounds (I[link]) and (II[link]) were prepared by reaction of chloro­acetic acid with either cyclo­hexanone oxime [for (I[link])] or Cl(Ph)C=NOH [for (II[link])], using the following modification of the procedure of Forrester et al. (1979[Forrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J.  Chem. Soc. Perkin Trans. 1, pp. 606-611.]). A solution of the oxime (0.10 mol), chloro­acetic acid (0.20 mol) and sodium hydro­xide (0.40 mol) in a mixture of water (100 ml) and ethanol (50 ml) was heated under reflux overnight. The cooled solution was poured on to ice and acidified with dilute hydro­chloric acid. The precipitate was collected, washed with water and dissolved in NaHCO3 solution (100 ml of 1 mol dm−3). This solution was extracted with diethyl ether and acidified with dilute hydro­chloric acid. The resulting solid was collected, washed with water and recrystallized from ethanol, yielding crystals suitable for single-crystal X-ray diffraction; m.p: (I[link]) 365–367 K, (II[link]) 381–383 K.

Compound (I)[link]

Crystal data
  • C8H13NO3

  • Mr = 171.19

  • Triclinic, [P\overline 1]

  • a = 5.0776 (1) Å

  • b = 8.6533 (3) Å

  • c = 10.7804 (3) Å

  • α = 111.2609 (15)°

  • β = 102.437 (2)°

  • γ = 93.597 (2)°

  • V = 425.88 (2) Å3

  • Z = 2

  • Dx = 1.335 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 1945 reflections

  • θ = 3.9–27.5°

  • μ = 0.10 mm−1

  • T = 120 (2) K

  • Block, colourless

  • 0.40 × 0.30 × 0.30 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.917, Tmax = 0.968

  • 9176 measured reflections

  • 1945 independent reflections

  • 1621 reflections with I > 2σ(I)

  • Rint = 0.042

  • θmax = 27.5°

  • h = −5 → 6

  • k = −11 → 11

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.038

  • wR(F2) = 0.098

  • S = 1.04

  • 1945 reflections

  • 110 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1199P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.25 e Å−3

  • Δρmin = −0.29 e Å−3

Table 1
Selected geometric parameters (Å, °) for (I)[link]

C1—O1 1.3186 (14)
C1—O2 1.2134 (14)
O3—N4 1.4331 (12)
N4—C11 1.2775 (15)
O1—C1—O2 124.23 (11)
O1—C1—C2 111.52 (10)
O2—C1—C2 124.24 (10)
C2—O3—N4 107.87 (8)
O3—N4—C11 111.71 (9)
O1—C1—C2—O3 −177.14 (9)
O2—C1—C2—O3 1.83 (17)
C1—C2—O3—N4 −83.62 (11)
C2—O3—N4—C11 −175.25 (9)
O3—N4—C11—C12 179.11 (9)
O3—N4—C11—C16 1.24 (16)

Table 2
Hydrogen-bonding geometry (Å, °) for (I)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.84 2.6782 (12) 178
Symmetry code: (i) 1-x,1-y,1-z.

Compound (II)[link]

Crystal data
  • C9H8ClNO3

  • Mr = 213.61

  • Triclinic, [P\overline 1]

  • a = 6.7961 (1) Å

  • b = 7.3857 (2) Å

  • c = 10.8173 (3) Å

  • α = 98.4852 (9)°

  • β = 93.4156 (10)°

  • γ = 117.0191 (12)°

  • V = 473.44 (2) Å3

  • Z = 2

  • Dx = 1.498 Mg m−3

  • Mo Kα radiation

  • Cell parameters from 2133 reflections

  • θ = 3.2–27.4°

  • μ = 0.38 mm−1

  • T = 120 (2) K

  • Plate, colourless

  • 0.28 × 0.20 × 0.05 mm

Data collection
  • Nonius KappaCCD diffractometer

  • φ scans, and ω scans with κ offsets

  • Absorption correction: multi-scan (SORTAV; Blessing, 1995[Blessing, R. H. (1995). Acta Cryst. A51, 33-37.], 1997[Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.]) Tmin = 0.922, Tmax = 0.981

  • 3988 measured reflections

  • 2133 independent reflections

  • 1980 reflections with I > 2σ(I)

  • Rint = 0.031

  • θmax = 27.4°

  • h = −8 → 8

  • k = −9 → 9

  • l = −13 → 13

Refinement
  • Refinement on F2

  • R[F2 > 2σ(F2)] = 0.040

  • wR(F2) = 0.141

  • S = 1.20

  • 2132 reflections

  • 128 parameters

  • H-atom parameters constrained

  • w = 1/[σ2(Fo2) + (0.0766P)2 + 0.1738P] where P = (Fo2 + 2Fc2)/3

  • (Δ/σ)max < 0.001

  • Δρmax = 0.34 e Å−3

  • Δρmin = −0.48 e Å−3

Table 3
Selected geometric parameters (Å, °) for (II)[link]

C5—Cl1 1.738 (2)
C1—O1 1.311 (2)
C1—O2 1.226 (2)
O3—N4 1.405 (2)
N4—C5 1.273 (2)
O1—C1—O2 124.64 (16)
O1—C1—C2 112.36 (14)
O2—C1—C2 123.00 (16)
C2—O3—N4 107.45 (13)
O3—N4—C5 113.12 (14)
O1—C1—C2—O3 −171.61 (14)
C1—C2—O3—N4 75.87 (17)
C2—O3—N4—C5 −173.61 (14)

Table 4
Hydrogen-bonding geometry (Å, °) for (II)[link]

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯O2i 0.84 1.79 2.6329 (17) 176
Symmetry code: (i) 1-x,1-y,1-z.

Crystals of (I[link]) and (II[link]) are triclinic; space group [P\overline 1] was selected for each and confirmed in both cases by the subsequent analyses. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), and O—H distances of 0.84 Å.

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997[Nonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.]); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997[Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.]); data reduction: DENZO–SMN; program(s) used to solve structure: OSCAIL (McArdle, 2003[McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.]) and SHELXS97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997[Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.]); molecular graphics: PLATON (Spek, 2003[Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.]); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999[Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.]).

Supporting information


Comment top

Persulfate oxidation of imino-oxyacetic acids, R(R')C=NOCH2COOH, provides a useful route to iminyl radicals (Forrester et al., 1979). The subsequent reactions of the iminyl radicals thus generated depend greatly on the substituents, and important species including nitrogen-containing heterocycles can result. We report here the molecular and supramolecular structures of two representative examples of such precursors, (cyclohexylideneamino)oxyacetic acid, (I), and [chloro(phenyl)methyleneamino]oxyacetic acid, (II).

In both (I) and (II) (Figs. 1 and 2), the C—O distances in the carboxy groups (Tables 1 and 3) are consistent with the fully ordered locations of the carboxy H atoms, as deduced from difference maps. In the side chains of (I) and (II), the corresponding distances show very similar values, apart from the O3—N4 distances, which are significantly different; for comparison, the mean value for –O—N= bonds in oximes is 1.416 Å (Allen et al., 1987). The other distances are typical for bonds of their types.

The conformations of the side chains both exhibit near-planar fragments, viz. O1—C1—C2—O3 and C2—O3—N4—Cn [n = 11 in (I) and n = 5 in (II), see Figs. 1 and 2], but while the intervening C1—C2—O3—N4 torsion angles have similar magnitudes in (I) and (II) they have opposite signs, and it is this difference that determines the different overall conformations of these two molecules. For the cyclohexylidene ring in (I), the ring-puckering parameters (Cremer & Pople, 1975) corresponding to the atom sequence C11–C16 [ϕ = 174.0 (2)° and θ = 12 (2) °] indicate a conformation close to the chair form (Evans & Boeyens, 1989), despite the planarity at atom C11.

In the structures of both (I) and (II), the molecules are linked into centrosymmetric R22(8) dimers (Figs. 3 and 4) by paired O—H···O hydrogen bonds, which are fairly short and effectively linear (Tables 2 and 4). In each structure, the reference molecule has been selected so that the hydrogen-bonded dimer in which this molecule participates is centred at (1/2, 1/2, 1/2). In the structure of (I), there are no further direction-specific interactions between the molecules, but in (II), the R22(8) dimers are weakly linked into chains by a single aromatic ππ stacking interaction. The aryl rings in the molecules at (x, y, z) and (2 − x, 1 − y, 2 − z) are parallel, with an interplanar spacing of 3.422 (2) Å; the ring-centroid separation is 3.856 (2) Å, corresponding to a centroid offset of 1.777 (2) Å. The molecules at (x, y, z) and (2 − x, 1 − y, 2 − z) are components of hydrogen-bonded dimers centred at (1/2, 1/2, 1/2) and (1, 1/2, 1), respectively, and propagation by inversion of the two intermolecular interactions generates a chain running parallel to the [101] direction (Fig. 5).

In neither (I) nor (II) do atoms O3 and N4 act as acceptors of C—H···X (X = O or N) hydrogen bonds; there are no intermolecular H···X contact distances involving O3 or N4 which are less than 2.60 Å in (I), and none of less than 2.70 Å in (II).

Experimental top

N-Hydroxybenzenecarboximidioyl chloride, Cl(Ph)C=NOH, was prepared from H(Ph)C=NOH according to the method of Baruah et al. (1988). Compounds (I) and (II) were prepared by reaction of chloroacetic acid with either cyclohexanone oxime [for (I)] or Cl(Ph)C=NOH [for (II)], using the following modification of the procedure of Forrester et al. (1979). A solution of the oxime (0.10 mol), chloroacetic acid (0.20 mol) and sodium hydroxide (0.40 mol) in a mixture of water (100 ml) and ethanol (50 ml) was heated under reflux overnight. The cooled solution was poured onto ice, and acidified with dilute hydrochloric acid. The precipitate was collected, washed with water and dissolved in Na[HCO3] solution (100 ml of 1 mol dm−3). This solution was extracted with diethyl ether and acidified with dilute hydrochloric acid. The resulting solid was collected, washed with water and recrystallized from ethanol to give crystals suitable for single-crystal X-ray diffraction. M.p. (I) 365–367 K, (II) 381–383 K.

Refinement top

Crystals of (I) and (II) are triclinic; the space group P-1 was selected for each and confirmed in both cases by the subsequent analysis. All H atoms were located from difference maps and then treated as riding atoms, with C—H distances of 0.95 (aromatic) or 0.99 Å (CH2), and O—H distances of 0.84 Å.

Computing details top

For both compounds, data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The molecule of (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. The molecule of (II), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of an R22(8) dimer centred at (1/2, 1/2, 1/2). For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 4] Fig. 4. Part of the crystal structure of (II), showing the formation of an R22(8) dimer centred at (1/2, 1/2, 1/2). For clarity, H atoms bonded to C atoms have been omitted. Atoms marked with an asterisk (*) are at the symmetry position (1 − x, 1 − y, 1 − z).
[Figure 5] Fig. 5. A stereoview of part of the crystal structure of (II), showing the formation of a π-stacked [101] chain of hydrogen-bonded dimers. For clarity, H atoms bonded to C atoms have been omitted.
(I) (Cyclohexylideneamino)oxyacetic acid top
Crystal data top
C8H13NO3Z = 2
Mr = 171.19F(000) = 184
Triclinic, P1Dx = 1.335 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 5.0776 (1) ÅCell parameters from 1945 reflections
b = 8.6533 (3) Åθ = 3.9–27.5°
c = 10.7804 (3) ŵ = 0.10 mm1
α = 111.2609 (15)°T = 120 K
β = 102.437 (2)°Block, colourless
γ = 93.597 (2)°0.40 × 0.30 × 0.30 mm
V = 425.88 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
1945 independent reflections
Radiation source: rotating anode1621 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.042
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.9°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 56
Tmin = 0.917, Tmax = 0.968k = 1111
9176 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.098H-atom parameters constrained
S = 1.04 w = 1/[σ2(Fo2) + (0.0482P)2 + 0.1199P]
where P = (Fo2 + 2Fc2)/3
1945 reflections(Δ/σ)max < 0.001
110 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.29 e Å3
Crystal data top
C8H13NO3γ = 93.597 (2)°
Mr = 171.19V = 425.88 (2) Å3
Triclinic, P1Z = 2
a = 5.0776 (1) ÅMo Kα radiation
b = 8.6533 (3) ŵ = 0.10 mm1
c = 10.7804 (3) ÅT = 120 K
α = 111.2609 (15)°0.40 × 0.30 × 0.30 mm
β = 102.437 (2)°
Data collection top
Nonius KappaCCD
diffractometer
1945 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1621 reflections with I > 2σ(I)
Tmin = 0.917, Tmax = 0.968Rint = 0.042
9176 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0380 restraints
wR(F2) = 0.098H-atom parameters constrained
S = 1.04Δρmax = 0.25 e Å3
1945 reflectionsΔρmin = 0.29 e Å3
110 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
O10.25509 (18)0.43807 (11)0.58143 (9)0.0258 (2)
O20.63107 (18)0.63065 (11)0.66261 (9)0.0253 (2)
O30.53648 (16)0.75100 (10)0.92037 (8)0.0198 (2)
N40.76773 (19)0.68931 (12)0.97793 (10)0.0191 (2)
C10.4331 (2)0.56279 (14)0.67960 (12)0.0180 (2)
C20.3569 (2)0.61259 (14)0.81506 (11)0.0197 (3)
C110.9316 (2)0.80606 (14)1.08118 (11)0.0169 (2)
C121.1796 (2)0.75439 (15)1.15083 (13)0.0229 (3)
C131.2053 (3)0.81203 (15)1.30557 (13)0.0243 (3)
C141.1915 (2)0.99871 (15)1.36960 (12)0.0202 (3)
C150.9271 (2)1.03967 (15)1.29856 (12)0.0204 (3)
C160.9009 (2)0.98760 (14)1.14378 (11)0.0188 (3)
H10.29400.41910.50590.031*
H2A0.16940.64060.80250.024*
H2B0.35690.51590.84350.024*
H12A1.34480.80421.13570.027*
H12B1.16650.63071.10980.027*
H13A1.05610.74771.32100.029*
H13B1.38100.78891.35090.029*
H14A1.34951.06371.36110.024*
H14B1.20171.03181.46880.024*
H15A0.92371.16171.34080.024*
H15B0.76960.98021.31220.024*
H16A0.72041.00511.09850.023*
H16B1.04351.05791.12940.023*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
O10.0266 (5)0.0269 (5)0.0144 (4)0.0078 (4)0.0022 (3)0.0008 (3)
O20.0272 (5)0.0249 (5)0.0169 (4)0.0064 (4)0.0039 (4)0.0027 (3)
O30.0203 (4)0.0184 (4)0.0150 (4)0.0042 (3)0.0013 (3)0.0030 (3)
N40.0183 (5)0.0195 (5)0.0178 (5)0.0051 (4)0.0020 (4)0.0065 (4)
C10.0192 (5)0.0148 (5)0.0160 (6)0.0016 (4)0.0000 (4)0.0041 (4)
C20.0190 (6)0.0206 (6)0.0149 (6)0.0002 (4)0.0012 (4)0.0037 (5)
C110.0185 (5)0.0176 (5)0.0147 (5)0.0025 (4)0.0047 (4)0.0063 (4)
C120.0202 (6)0.0181 (6)0.0239 (6)0.0033 (4)0.0002 (5)0.0037 (5)
C130.0222 (6)0.0246 (6)0.0245 (6)0.0012 (5)0.0034 (5)0.0135 (5)
C140.0172 (5)0.0263 (6)0.0138 (5)0.0020 (5)0.0013 (4)0.0064 (5)
C150.0178 (6)0.0244 (6)0.0146 (5)0.0024 (4)0.0039 (4)0.0027 (4)
C160.0234 (6)0.0157 (5)0.0145 (5)0.0024 (4)0.0016 (4)0.0046 (4)
Geometric parameters (Å, º) top
C1—O11.3186 (14)C12—H12B0.99
C1—O21.2134 (14)C13—C141.5221 (17)
C1—C21.5087 (17)C13—H13A0.99
O1—H10.84C13—H13B0.99
C2—O31.4092 (13)C14—C151.5261 (16)
C2—H2A0.99C14—H14A0.99
C2—H2B0.99C14—H14B0.99
O3—N41.4331 (12)C15—C161.5351 (16)
N4—C111.2775 (15)C15—H15A0.99
C11—C161.5015 (15)C15—H15B0.99
C11—C121.5022 (16)C16—H16A0.99
C12—C131.5309 (18)C16—H16B0.99
C12—H12A0.99
O1—C1—O2124.23 (11)C12—C13—H13A109.4
O1—C1—C2111.52 (10)C14—C13—H13B109.4
O2—C1—C2124.24 (10)C12—C13—H13B109.4
C1—O1—H1109.5H13A—C13—H13B108.0
O3—C2—C1112.73 (10)C13—C14—C15110.75 (10)
O3—C2—H2A109.0C13—C14—H14A109.5
C1—C2—H2A109.0C15—C14—H14A109.5
O3—C2—H2B109.0C13—C14—H14B109.5
C1—C2—H2B109.0C15—C14—H14B109.5
H2A—C2—H2B107.8H14A—C14—H14B108.1
C2—O3—N4107.87 (8)C14—C15—C16111.18 (10)
O3—N4—C11111.71 (9)C14—C15—H15A109.4
N4—C11—C16127.65 (10)C16—C15—H15A109.4
N4—C11—C12116.10 (10)C14—C15—H15B109.4
C16—C11—C12116.22 (10)C16—C15—H15B109.4
C11—C12—C13110.86 (10)H15A—C15—H15B108.0
C11—C12—H12A109.5C11—C16—C15109.79 (9)
C13—C12—H12A109.5C11—C16—H16A109.7
C11—C12—H12B109.5C15—C16—H16A109.7
C13—C12—H12B109.5C11—C16—H16B109.7
H12A—C12—H12B108.1C15—C16—H16B109.7
C14—C13—C12111.15 (10)H16A—C16—H16B108.2
C14—C13—H13A109.4
O1—C1—C2—O3177.14 (9)C16—C11—C12—C1351.20 (14)
O2—C1—C2—O31.83 (17)C11—C12—C13—C1452.29 (13)
C1—C2—O3—N483.62 (11)C12—C13—C14—C1557.08 (13)
C2—O3—N4—C11175.25 (9)C13—C14—C15—C1658.22 (13)
O3—N4—C11—C12179.11 (9)N4—C11—C16—C15126.14 (12)
O3—N4—C11—C161.24 (16)C12—C11—C16—C1551.73 (13)
N4—C11—C12—C13126.92 (11)C14—C15—C16—C1153.91 (13)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.842.6782 (12)178
Symmetry code: (i) x+1, y+1, z+1.
(II) [Chloro(phenyl)methyleneamino]oxyacetic acid top
Crystal data top
C9H8ClNO3Z = 2
Mr = 213.61F(000) = 220
Triclinic, P1Dx = 1.498 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.7961 (1) ÅCell parameters from 2133 reflections
b = 7.3857 (2) Åθ = 3.2–27.4°
c = 10.8173 (3) ŵ = 0.38 mm1
α = 98.4852 (9)°T = 120 K
β = 93.4156 (10)°Plate, colourless
γ = 117.0191 (12)°0.28 × 0.20 × 0.05 mm
V = 473.44 (2) Å3
Data collection top
Nonius KappaCCD
diffractometer
2133 independent reflections
Radiation source: rotating anode1980 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.031
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.2°
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
h = 88
Tmin = 0.922, Tmax = 0.981k = 99
3988 measured reflectionsl = 1313
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.040Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.141H-atom parameters constrained
S = 1.20 w = 1/[σ2(Fo2) + (0.0766P)2 + 0.1738P]
where P = (Fo2 + 2Fc2)/3
2132 reflections(Δ/σ)max < 0.001
128 parametersΔρmax = 0.34 e Å3
0 restraintsΔρmin = 0.48 e Å3
Crystal data top
C9H8ClNO3γ = 117.0191 (12)°
Mr = 213.61V = 473.44 (2) Å3
Triclinic, P1Z = 2
a = 6.7961 (1) ÅMo Kα radiation
b = 7.3857 (2) ŵ = 0.38 mm1
c = 10.8173 (3) ÅT = 120 K
α = 98.4852 (9)°0.28 × 0.20 × 0.05 mm
β = 93.4156 (10)°
Data collection top
Nonius KappaCCD
diffractometer
2133 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995, 1997)
1980 reflections with I > 2σ(I)
Tmin = 0.922, Tmax = 0.981Rint = 0.031
3988 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0400 restraints
wR(F2) = 0.141H-atom parameters constrained
S = 1.20Δρmax = 0.34 e Å3
2132 reflectionsΔρmin = 0.48 e Å3
128 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Cl10.82919 (7)0.00737 (7)0.78680 (4)0.02459 (19)
O10.2370 (2)0.27726 (19)0.50408 (13)0.0235 (3)
O20.5944 (2)0.36247 (19)0.56736 (12)0.0229 (3)
O30.4685 (2)0.00535 (19)0.65729 (11)0.0211 (3)
N40.5117 (3)0.1192 (2)0.78071 (14)0.0197 (3)
C10.3942 (3)0.2414 (3)0.55267 (16)0.0193 (4)
C20.3016 (3)0.0310 (3)0.58876 (17)0.0219 (4)
C50.6749 (3)0.1242 (2)0.84810 (16)0.0175 (4)
C110.7394 (3)0.2326 (2)0.98149 (16)0.0183 (4)
C120.9281 (3)0.2563 (3)1.05444 (17)0.0219 (4)
C130.9880 (3)0.3636 (3)1.17899 (18)0.0264 (4)
C140.8604 (3)0.4479 (3)1.23152 (18)0.0276 (4)
C150.6704 (3)0.4242 (3)1.15935 (19)0.0272 (4)
C160.6092 (3)0.3170 (3)1.03528 (18)0.0230 (4)
H10.29510.39490.48480.028*
H2A0.18160.01410.64080.026*
H2B0.23530.07800.51130.026*
H121.01670.19871.01900.026*
H131.11720.37901.22810.032*
H140.90200.52171.31650.033*
H150.58230.48191.19540.033*
H160.47900.30070.98670.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Cl10.0273 (3)0.0281 (3)0.0234 (3)0.0181 (2)0.00411 (19)0.00161 (19)
O10.0176 (6)0.0243 (7)0.0273 (7)0.0094 (5)0.0010 (5)0.0045 (5)
O20.0174 (6)0.0228 (6)0.0254 (7)0.0076 (5)0.0016 (5)0.0039 (5)
O30.0230 (6)0.0223 (6)0.0172 (6)0.0109 (5)0.0008 (5)0.0014 (5)
N40.0228 (7)0.0193 (7)0.0160 (7)0.0091 (6)0.0037 (6)0.0030 (5)
C10.0188 (8)0.0226 (8)0.0149 (8)0.0097 (7)0.0009 (6)0.0004 (6)
C20.0176 (8)0.0241 (8)0.0216 (8)0.0079 (7)0.0005 (6)0.0044 (7)
C50.0185 (8)0.0143 (7)0.0210 (8)0.0078 (6)0.0058 (6)0.0053 (6)
C110.0211 (8)0.0134 (7)0.0193 (8)0.0063 (6)0.0050 (6)0.0059 (6)
C120.0245 (9)0.0174 (8)0.0229 (9)0.0092 (7)0.0021 (7)0.0043 (7)
C130.0287 (9)0.0225 (9)0.0241 (9)0.0097 (7)0.0019 (7)0.0036 (7)
C140.0360 (10)0.0202 (9)0.0196 (9)0.0080 (8)0.0038 (7)0.0018 (7)
C150.0326 (10)0.0246 (9)0.0258 (10)0.0145 (8)0.0091 (8)0.0029 (7)
C160.0243 (9)0.0232 (8)0.0232 (9)0.0124 (7)0.0050 (7)0.0048 (7)
Geometric parameters (Å, º) top
C5—Cl11.738 (2)C11—C121.390 (3)
C1—O11.311 (2)C11—C161.402 (3)
C1—O21.226 (2)C12—C131.391 (3)
C1—C21.510 (2)C12—H120.95
O1—H10.84C13—C141.381 (3)
C2—O31.418 (2)C13—H130.95
C2—H2A0.99C14—C151.393 (3)
C2—H2B0.99C14—H140.95
O3—N41.405 (2)C15—C161.386 (3)
N4—C51.273 (2)C15—H150.95
C5—C111.477 (2)C16—H160.95
O1—C1—O2124.64 (16)C16—C11—C5119.14 (16)
O1—C1—C2112.36 (14)C11—C12—C13120.46 (18)
O2—C1—C2123.00 (16)C11—C12—H12119.8
C1—O1—H1109.5C13—C12—H12119.8
O3—C2—C1111.90 (14)C14—C13—C12120.27 (18)
O3—C2—H2A109.2C14—C13—H13119.9
C1—C2—H2A109.2C12—C13—H13119.9
O3—C2—H2B109.2C13—C14—C15119.69 (18)
C1—C2—H2B109.2C13—C14—H14120.2
H2A—C2—H2B107.9C15—C14—H14120.2
C2—O3—N4107.45 (13)C16—C15—C14120.40 (18)
O3—N4—C5113.12 (14)C16—C15—H15119.8
N4—C5—C11120.30 (15)C14—C15—H15119.8
N4—C5—Cl1121.60 (14)C15—C16—C11120.00 (17)
C11—C5—Cl1118.09 (13)C15—C16—H16120.0
C12—C11—C16119.17 (17)C11—C16—H16120.0
C12—C11—C5121.68 (16)
O2—C1—C2—O38.7 (2)Cl1—C5—C11—C16176.09 (12)
O1—C1—C2—O3171.61 (14)C16—C11—C12—C130.5 (3)
C1—C2—O3—N475.87 (17)C5—C11—C12—C13178.41 (15)
C2—O3—N4—C5173.61 (14)C11—C12—C13—C140.0 (3)
O3—N4—C5—C11178.38 (13)C12—C13—C14—C150.3 (3)
O3—N4—C5—Cl12.2 (2)C13—C14—C15—C160.1 (3)
N4—C5—C11—C12174.38 (15)C14—C15—C16—C110.4 (3)
Cl1—C5—C11—C125.0 (2)C12—C11—C16—C150.6 (3)
N4—C5—C11—C164.5 (2)C5—C11—C16—C15178.26 (15)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6329 (17)176
Symmetry code: (i) x+1, y+1, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC8H13NO3C9H8ClNO3
Mr171.19213.61
Crystal system, space groupTriclinic, P1Triclinic, P1
Temperature (K)120120
a, b, c (Å)5.0776 (1), 8.6533 (3), 10.7804 (3)6.7961 (1), 7.3857 (2), 10.8173 (3)
α, β, γ (°)111.2609 (15), 102.437 (2), 93.597 (2)98.4852 (9), 93.4156 (10), 117.0191 (12)
V3)425.88 (2)473.44 (2)
Z22
Radiation typeMo KαMo Kα
µ (mm1)0.100.38
Crystal size (mm)0.40 × 0.30 × 0.300.28 × 0.20 × 0.05
Data collection
DiffractometerNonius KappaCCD
diffractometer
Nonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995, 1997)
Multi-scan
(SORTAV; Blessing, 1995, 1997)
Tmin, Tmax0.917, 0.9680.922, 0.981
No. of measured, independent and
observed [I > 2σ(I)] reflections
9176, 1945, 1621 3988, 2133, 1980
Rint0.0420.031
(sin θ/λ)max1)0.6500.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.038, 0.098, 1.04 0.040, 0.141, 1.20
No. of reflections19452132
No. of parameters110128
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.290.34, 0.48

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997), OSCAIL and SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) for (I) top
C1—O11.3186 (14)O3—N41.4331 (12)
C1—O21.2134 (14)N4—C111.2775 (15)
O1—C1—O2124.23 (11)C2—O3—N4107.87 (8)
O1—C1—C2111.52 (10)O3—N4—C11111.71 (9)
O2—C1—C2124.24 (10)
O1—C1—C2—O3177.14 (9)C2—O3—N4—C11175.25 (9)
O2—C1—C2—O31.83 (17)O3—N4—C11—C12179.11 (9)
C1—C2—O3—N483.62 (11)O3—N4—C11—C161.24 (16)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.842.6782 (12)178
Symmetry code: (i) x+1, y+1, z+1.
Selected geometric parameters (Å, º) for (II) top
C5—Cl11.738 (2)O3—N41.405 (2)
C1—O11.311 (2)N4—C51.273 (2)
C1—O21.226 (2)
O1—C1—O2124.64 (16)C2—O3—N4107.45 (13)
O1—C1—C2112.36 (14)O3—N4—C5113.12 (14)
O2—C1—C2123.00 (16)
O1—C1—C2—O3171.61 (14)C2—O3—N4—C5173.61 (14)
C1—C2—O3—N475.87 (17)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
O1—H1···O2i0.841.792.6329 (17)176
Symmetry code: (i) x+1, y+1, z+1.
 

Acknowledgements

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England; the authors thank the staff for all their help and advice. JNL thanks NCR Self-Service, Dundee, for grants that have provided computing facilities for this work. JLW thanks CNPq and FAPERJ for financial support.

References

First citationAllen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.  CrossRef Web of Science Google Scholar
First citationBaruah, A. K., Prajapati, D. & Sandhu, J. S. (1988). Tetrahedron, 44, 1241–1246.  CrossRef CAS Web of Science Google Scholar
First citationBernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.  CrossRef CAS Web of Science Google Scholar
First citationBlessing, R. H. (1995). Acta Cryst. A51, 33–37.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationBlessing, R. H. (1997). J. Appl. Cryst. 30, 421–426.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationCremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.  CrossRef CAS Web of Science Google Scholar
First citationEvans, D. G. & Boeyens, J. C. A. (1989). Acta Cryst. B45, 581–590.  CrossRef CAS Web of Science IUCr Journals Google Scholar
First citationFerguson, G. (1999). PRPKAPPA. University of Guelph, Canada.  Google Scholar
First citationForrester, A. R., Gill, M., Meyer, C. J., Sadd, J. S. & Thomson, R. H. (1979). J.  Chem. Soc. Perkin Trans. 1, pp. 606–611.  CrossRef Web of Science Google Scholar
First citationMcArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography Centre, Chemistry Department, NUI Galway, Ireland.  Google Scholar
First citationNonius (1997). KappaCCD Server Software. Windows 3.11 Version. Nonius BV, Delft, The Netherlands.  Google Scholar
First citationOtwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.  Google Scholar
First citationSheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.  Google Scholar
First citationSpek, A. L. (2003). J. Appl. Cryst. 36, 7–13.  Web of Science CrossRef CAS IUCr Journals Google Scholar

© International Union of Crystallography. Prior permission is not required to reproduce short quotations, tables and figures from this article, provided the original authors and source are cited. For more information, click here.

Journal logoSTRUCTURAL
CHEMISTRY
ISSN: 2053-2296
Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds