Download citation
Download citation
link to html
The molecular structures of the title compounds, C25H46N6 and C15H30N6, respectively, show the two guanidyl moieties each connected by propyl bridges. The different substitution pattern of the guanidyl groups has no influence on the distinct localization of their C=N double bonds. Both compounds exhibit approximate twofold symmetry and the crystal packing shows no prominent hydrogen-bonding interactions.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270104007012/gg1207sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007012/gg1207Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270104007012/gg1207IIsup3.hkl
Contains datablock II

pdf

Portable Document Format (PDF) file https://doi.org/10.1107/S0108270104007012/gg1207sup4.pdf
Supplementary material

CCDC references: 241239; 241240

Comment top

In the search for bifunctional N-donor ligands able to stabilize unusually high metal oxidation states, we have extended our studies to guanidyl-type systems. The first derivative, the ligand bis(tetramethylguanidino)propylene (btmgp), and its complexes with Cu, Fe and Ni, have recently been investigated (Harmjanz, 1997; Waden, 1999; Pohl et al., 2000; Schneider, 2000; Herres, 2002). We have now developed the title compounds, (I) [a piperidine derivative, bis(dipiperidylguanidino)propylene] and (II) [a propylene derivative, 1,3-bis(dimethylpropyleneguanidino)propane], as novel ligands for use in biomimetic coordination chemistry. In Cu—O2 chemistry in particular, the modification of the guanidyl moieties within the ligands is expected to control the formation of different Cu—O2 species (Herres et al., 2004). \sch

The molecule of (I) lies roughly on a non-crystallographic twofold axis running through C13, with a trans arrangement of the guanidino groups relative to the C12—C13—C14 centre. The resulting torsion angles are N1—C12—C13—C14 70.3 (1) and N4—C14—C13—C12 68.8 (1)°. The C—N single bonds range from 1.392 (1) to 1.404 (1) Å, while the CN double bonds, C1N1 and C14N4, are similar, with a mean of 1.276 (1) Å. The mean of the N2—C1—N3 and N5—C15—N6 angles is 113.91 (10)°, and the mean of the C1—N1—C12 and C15—N4—C14 angles is 119.88 (9)°. Thus, the guanidino double bonds in (I) are clearly localized. The same is valid for the related compound, (II). Here, the corresponding C—N single bond lengths range from 1.375 (3) to 1.407 (3) Å, and the mean of the C6N3 and C10N4 double bonds is 1.284 (2) Å. The mean of the N1—C6—N2 and N5—C10—N6 angles is 114.8 (2)° and the mean of the C6—N3—C7 and C9—N4—C10 angles is 119.5 (2)°.

Similar double-bond localization is observed in bis(tetramethylguanidino)naphthalene (Raab et al., 2002), with equally unprotonated imine N and NR2 amino groups having a mean CN bond length of 1.282 (3) Å and a mean C—N bond length of 1.384 (1) Å. In bis(tetramethylguanidino)biphenyl (Pruszynski et al., 1992), with a protonated imine N, strong delocalization is observed among the three C—N bonds, which are in the range 1.31 (1)–1.34 (1) Å. 2-Cyanoguanidine, with C—N bonds in the range 1.3327 (3)–1.3441 (3) Å (Hirshfeld & Hope, 1980), and, to a lesser extent, tetrabenzylcyanoguanidine, with CN 1.315 and C—N 1.370 Å (no s.u.s given; Shiba et al., 1993), also show delocalization, but this is due to the cyano groups attached to the imine N atom. Substitution of the NH2 groups in cyanoguanidine with NBz2 leads to the observed increase in localization.

For compound (I), the shortest non-bonding intramolecular C—H···A distance is C14—H14B···N5, with H···N 2.45 Å Should this be C···N?, while the shortest intermolecular distance results from a C4—H4A···N4i interaction, with H···N 2.86 Å Should this be C···N? [symmetry code: (i) x + 1/2, 1/2 − y, z − 1/2]. For compound (II), the corresponding distances are C2—H2B···N3ii 2.62 Å (Fig. 2) and C12—H12B···N2iii 2.68 Å [symmetry codes: (ii) −x, 2 − y, −z; (iii) x + 1, y − 1, z]. The former interaction generates a hydrogen-bonded dimer with graph set R22(10) (Fig. 2).

Experimental top

Compound (I) was prepared as follows. A solution of N,N,N',N'-dipiperidylchloroformamidinium chloride (7.53 g, 30 mmol) in dry MeCN was added dropwise under vigorous stirring to an ice-cooled solution of 1,3-diaminopropane (1.11 g, 15 mmol) and triethylamine (4.18 ml, 3.03 g, 30 mmol) in dry MeCN. After 3 h at reflux, a solution of NaOH (1.2 g, 30 mmol) in water was added. The solvents and NEt3 were then evaporated under vacuum. In order to deprotonate the bis-hydrochloride, 50 wt% KOH (aq., 15 ml) was added and the free base was extracted into the MeCN phase (3 × 20 ml). The organic phase was dried with Na2SO4 over charcoal. After filtration over Celite, the solvent was evaporated under reduced pressure. The pure product, (I), was obtained as a white powder (yield 66%, 4.26 g). Colourless crystals of (I) suitable for X-ray diffraction were obtained by crystallization from a cold saturated MeCN solution. Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 1.48–1.61 (m, 24H, Pip-CH2), 1.80 (q, 2H, CH2), 3.02 (t, 16H, Pip-CH2), 3.18 (t, 4H, CH2); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 24.8 (Pip), 25.9 (Pip), 34.5 (C13), 46.7 (C12, C14), 49.1 (Pip), 160.0 (Cquart.); IR (KBr, ν, cm−1, important bands): 2927 (versus), 1626 (versus, CN), 1608 (s, CN), 1398 (s), 1367 (s), 1246 (s), 1209 (s). EI—MS: m/z (%) 430 (42) [M+], 346 (10) [M+—Pip], 237 (13), 222 (81), 196 (12), 154 (41), 126 (43), 85 (51) [HPip], 84 (100) [Pip], 69 (22). Compound (II) was prepared as follows. A solution of N,N'-dimethylpropylenechloroformamidinium chloride (7.33 g, 40 mmol) in dry MeCN was added dropwise under vigorous stirring to an ice-cooled solution of 1,3-diaminopropane (1.48 g, 20 mmol) and triethylamine (5.57 ml, 4.04 g, 40 mmol) in dry MeCN. After 3 h at reflux, a solution of NaOH (1.6 g, 40 mmol) in water was added. Further treatment was carried out as for (I). The pure product, (II), was obtained as a colourless oil which crystallized after 2 months to give needles suitable for X-ray diffraction (yield 92%, 5.4 g, 18.4 mmol). Spectroscopic analysis: 1H NMR (500 MHz, CDCl3, δ, p.p.m.): 1.50 (m, 2H, CH2), 1.68 (m, 4H, CH2), 2.70 (s, 12H, CH3), 2.95 (m, 8H, CH2), 3.02 (t, 4H, CH2); 13C NMR (125 MHz, CDCl3, δ, p.p.m.): 20.9 (CH2), 32.3 (C8), 39.3 (CH3), 45.8 (C7, 9), 48.4 (CH2), 157.5 (Cquart.); IR (KBr, ν, cm−1, important bands): 2921 (s), 2858 (s), 1621 (versus, CN), 1576 (s, CN), 1541 (s). CI—MS: m/z 294 (25) [M+]. The formamidinium salts were prepared using the literature procedures of Kantlehner et al. (1984).

Refinement top

For both compounds, all H atoms were placed in calculated positions, with C—H distances in the range 0.98–0.99 Å Please check added text, and refined as riding on their attached C atoms, with Uiso(H) = 1.2Ueq(C).

Computing details top

For both compounds, data collection: SMART (Bruker, 2002); cell refinement: SMART; data reduction: SAINT (Bruker, 2002); program(s) used to solve structure: SHELXTL (Bruker, 2002); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL and PLATON (Spek, 2002); software used to prepare material for publication: SHELXTL.

Figures top
[Figure 1] Fig. 1. The molecular structure of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular structure of (II),showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. The C2···N3iii interaction is depicted [symmetry code: (ii) −x, 2 − y, −z].
(I) N,N'-Bis(dipiperidin-1-ylmethylene)propane-1,3-diamine top
Crystal data top
C25H46N6F(000) = 952
Mr = 430.68Dx = 1.141 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 3799 reflections
a = 10.0619 (7) Åθ = 2.3–27.5°
b = 19.8127 (13) ŵ = 0.07 mm1
c = 12.7511 (8) ÅT = 120 K
β = 99.594 (2)°Prism, colourless
V = 2506.4 (3) Å30.40 × 0.35 × 0.20 mm
Z = 4
Data collection top
Bruker SMART CCD area-detector
diffractometer
6205 independent reflections
Radiation source: sealed tube4055 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.044
ϕ and ω scansθmax = 28.3°, θmin = 1.9°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 1313
Tmin = 0.951, Tmax = 0.989k = 2226
19511 measured reflectionsl = 1217
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.042Hydrogen site location: difference Fourier map
wR(F2) = 0.090H-atom parameters constrained
S = 0.86 w = 1/[σ2(Fo2) + (0.0397P)2]
where P = (Fo2 + 2Fc2)/3
6205 reflections(Δ/σ)max < 0.001
280 parametersΔρmax = 0.22 e Å3
0 restraintsΔρmin = 0.15 e Å3
Crystal data top
C25H46N6V = 2506.4 (3) Å3
Mr = 430.68Z = 4
Monoclinic, P21/nMo Kα radiation
a = 10.0619 (7) ŵ = 0.07 mm1
b = 19.8127 (13) ÅT = 120 K
c = 12.7511 (8) Å0.40 × 0.35 × 0.20 mm
β = 99.594 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
6205 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
4055 reflections with I > 2σ(I)
Tmin = 0.951, Tmax = 0.989Rint = 0.044
19511 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0420 restraints
wR(F2) = 0.090H-atom parameters constrained
S = 0.86Δρmax = 0.22 e Å3
6205 reflectionsΔρmin = 0.15 e Å3
280 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N11.25914 (9)0.24511 (5)0.10722 (7)0.0270 (2)
N21.27042 (9)0.14622 (5)0.01131 (7)0.0265 (2)
N31.33223 (10)0.14286 (5)0.19724 (7)0.0289 (2)
N40.97422 (9)0.25464 (4)0.26632 (7)0.0243 (2)
N50.87013 (9)0.16025 (4)0.17075 (7)0.0253 (2)
N60.94131 (9)0.15528 (4)0.35501 (7)0.0241 (2)
C11.28848 (11)0.18249 (6)0.10722 (9)0.0255 (3)
C21.18668 (12)0.17841 (6)0.08015 (9)0.0301 (3)
H2A1.23820.21480.10840.036*
H2B1.10590.19870.05790.036*
C31.14425 (12)0.12590 (6)0.16583 (9)0.0322 (3)
H3A1.09010.14780.22860.039*
H3B1.08720.09140.13890.039*
C41.26648 (13)0.09197 (6)0.19865 (9)0.0337 (3)
H4A1.31630.12510.23540.040*
H4B1.23640.05490.24900.040*
C51.35952 (12)0.06390 (6)0.10228 (9)0.0321 (3)
H5A1.31490.02560.07230.039*
H5B1.44320.04690.12420.039*
C61.39421 (11)0.11804 (6)0.01823 (9)0.0290 (3)
H6A1.45090.09850.04540.035*
H6B1.44620.15440.04600.035*
C71.30596 (13)0.07070 (6)0.19894 (9)0.0346 (3)
H7A1.38290.04570.17860.042*
H7B1.22440.05980.14680.042*
C81.28547 (14)0.04928 (7)0.30954 (10)0.0417 (3)
H8A1.27340.00030.31120.050*
H8B1.20280.07070.32660.050*
C91.40589 (15)0.06966 (7)0.39265 (10)0.0481 (4)
H9A1.38680.05910.46450.058*
H9B1.48610.04340.38150.058*
C101.43533 (13)0.14439 (7)0.38541 (10)0.0418 (3)
H10A1.51940.15550.43450.050*
H10B1.36100.17080.40730.050*
C111.45031 (12)0.16359 (7)0.27276 (9)0.0350 (3)
H11A1.46210.21310.26840.042*
H11B1.53170.14160.25420.042*
C121.24621 (12)0.27921 (6)0.20667 (8)0.0273 (3)
H12A1.32950.30490.23290.033*
H12B1.23340.24540.26130.033*
C131.12667 (11)0.32669 (5)0.18786 (9)0.0271 (3)
H13A1.13310.35570.12570.032*
H13B1.12870.35630.25070.032*
C140.99451 (11)0.28821 (5)0.16803 (8)0.0255 (3)
H14A0.91920.31970.14430.031*
H14B0.99650.25430.11130.031*
C150.92822 (11)0.19442 (5)0.26243 (8)0.0230 (2)
C160.88042 (12)0.08746 (5)0.15955 (9)0.0284 (3)
H16A0.79670.06570.17380.034*
H16B0.95660.07010.21180.034*
C170.90245 (12)0.07037 (6)0.04781 (9)0.0296 (3)
H17A0.90480.02070.03950.035*
H17B0.99040.08870.03620.035*
C180.79051 (12)0.09971 (6)0.03509 (9)0.0310 (3)
H18A0.81180.09170.10710.037*
H18B0.70450.07660.03030.037*
C190.77476 (12)0.17513 (6)0.01814 (8)0.0285 (3)
H19A0.85450.19920.03560.034*
H19B0.69420.19180.06650.034*
C200.76026 (11)0.19008 (6)0.09617 (8)0.0261 (3)
H20A0.75960.23960.10710.031*
H20B0.67330.17190.11020.031*
C211.03450 (12)0.18007 (6)0.44712 (8)0.0273 (3)
H21A0.99250.21790.48050.033*
H21B1.11760.19710.42410.033*
C221.06958 (12)0.12344 (6)0.52727 (9)0.0296 (3)
H22A1.12960.14110.59080.036*
H22B1.11880.08750.49560.036*
C230.94348 (12)0.09371 (6)0.56044 (9)0.0316 (3)
H23A0.96830.05460.60800.038*
H23B0.90000.12800.60000.038*
C240.84572 (12)0.07132 (6)0.46295 (9)0.0307 (3)
H24A0.88500.03310.42850.037*
H24B0.76080.05570.48460.037*
C250.81598 (11)0.12915 (6)0.38472 (9)0.0270 (3)
H25A0.75530.11330.32020.032*
H25B0.76960.16580.41720.032*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0287 (6)0.0318 (6)0.0218 (5)0.0027 (4)0.0077 (4)0.0017 (4)
N20.0248 (5)0.0338 (6)0.0212 (5)0.0026 (4)0.0046 (4)0.0019 (4)
N30.0300 (6)0.0329 (6)0.0229 (5)0.0009 (5)0.0016 (4)0.0003 (4)
N40.0277 (5)0.0251 (5)0.0209 (5)0.0003 (4)0.0064 (4)0.0015 (4)
N50.0288 (6)0.0218 (5)0.0237 (5)0.0021 (4)0.0007 (4)0.0013 (4)
N60.0237 (5)0.0273 (5)0.0211 (5)0.0031 (4)0.0029 (4)0.0033 (4)
C10.0211 (6)0.0334 (7)0.0225 (6)0.0024 (5)0.0053 (5)0.0008 (5)
C20.0327 (7)0.0341 (7)0.0236 (6)0.0019 (5)0.0049 (5)0.0002 (5)
C30.0357 (7)0.0374 (7)0.0224 (7)0.0031 (6)0.0014 (5)0.0017 (5)
C40.0452 (8)0.0339 (7)0.0231 (7)0.0068 (6)0.0088 (6)0.0055 (5)
C50.0332 (7)0.0323 (7)0.0324 (7)0.0018 (6)0.0101 (5)0.0053 (5)
C60.0249 (7)0.0352 (7)0.0278 (7)0.0028 (5)0.0074 (5)0.0031 (5)
C70.0399 (8)0.0339 (7)0.0304 (7)0.0045 (6)0.0069 (6)0.0017 (5)
C80.0474 (9)0.0439 (8)0.0350 (8)0.0053 (7)0.0103 (6)0.0096 (6)
C90.0483 (9)0.0649 (10)0.0314 (8)0.0150 (8)0.0078 (6)0.0140 (7)
C100.0330 (8)0.0657 (10)0.0246 (7)0.0046 (7)0.0014 (5)0.0009 (6)
C110.0260 (7)0.0509 (8)0.0269 (7)0.0033 (6)0.0012 (5)0.0011 (6)
C120.0323 (7)0.0297 (6)0.0206 (6)0.0064 (5)0.0062 (5)0.0017 (5)
C130.0386 (7)0.0233 (6)0.0199 (6)0.0043 (5)0.0066 (5)0.0004 (5)
C140.0326 (7)0.0237 (6)0.0202 (6)0.0010 (5)0.0047 (5)0.0006 (4)
C150.0213 (6)0.0251 (6)0.0229 (6)0.0034 (5)0.0047 (4)0.0005 (5)
C160.0325 (7)0.0239 (6)0.0271 (7)0.0007 (5)0.0003 (5)0.0005 (5)
C170.0317 (7)0.0257 (6)0.0321 (7)0.0021 (5)0.0075 (5)0.0018 (5)
C180.0346 (7)0.0333 (7)0.0250 (7)0.0000 (6)0.0053 (5)0.0023 (5)
C190.0300 (7)0.0319 (7)0.0227 (6)0.0018 (5)0.0017 (5)0.0023 (5)
C200.0248 (6)0.0273 (6)0.0254 (6)0.0028 (5)0.0021 (5)0.0013 (5)
C210.0294 (7)0.0300 (6)0.0221 (6)0.0030 (5)0.0030 (5)0.0012 (5)
C220.0314 (7)0.0347 (7)0.0222 (6)0.0037 (5)0.0029 (5)0.0034 (5)
C230.0397 (8)0.0309 (6)0.0266 (7)0.0058 (6)0.0123 (5)0.0073 (5)
C240.0327 (7)0.0289 (6)0.0330 (7)0.0006 (5)0.0126 (5)0.0046 (5)
C250.0238 (6)0.0298 (6)0.0282 (7)0.0003 (5)0.0064 (5)0.0015 (5)
Geometric parameters (Å, º) top
N1—C11.2753 (14)C10—H10A0.9900
N1—C121.4616 (13)C10—H10B0.9900
N2—C11.4039 (14)C11—H11A0.9900
N2—C21.4661 (14)C11—H11B0.9900
N2—C61.4702 (14)C12—C131.5144 (16)
N3—C11.3999 (14)C12—H12A0.9900
N3—C71.4548 (14)C12—H12B0.9900
N3—C111.4581 (14)C13—C141.5171 (15)
N4—C151.2776 (13)C13—H13A0.9900
N4—C141.4629 (13)C13—H13B0.9900
N5—C151.3924 (13)C14—H14A0.9900
N5—C161.4546 (13)C14—H14B0.9900
N5—C201.4579 (13)C16—C171.5162 (15)
N6—C151.4002 (13)C16—H16A0.9900
N6—C211.4604 (13)C16—H16B0.9900
N6—C251.4700 (13)C17—C181.5254 (16)
C2—C31.5176 (15)C17—H17A0.9900
C2—H2A0.9900C17—H17B0.9900
C2—H2B0.9900C18—C191.5219 (15)
C3—C41.5201 (17)C18—H18A0.9900
C3—H3A0.9900C18—H18B0.9900
C3—H3B0.9900C19—C201.5180 (15)
C4—C51.5206 (16)C19—H19A0.9900
C4—H4A0.9900C19—H19B0.9900
C4—H4B0.9900C20—H20A0.9900
C5—C61.5153 (15)C20—H20B0.9900
C5—H5A0.9900C21—C221.5192 (15)
C5—H5B0.9900C21—H21A0.9900
C6—H6A0.9900C21—H21B0.9900
C6—H6B0.9900C22—C231.5214 (16)
C7—C81.5193 (16)C22—H22A0.9900
C7—H7A0.9900C22—H22B0.9900
C7—H7B0.9900C23—C241.5173 (16)
C8—C91.5251 (19)C23—H23A0.9900
C8—H8A0.9900C23—H23B0.9900
C8—H8B0.9900C24—C251.5160 (15)
C9—C101.5157 (18)C24—H24A0.9900
C9—H9A0.9900C24—H24B0.9900
C9—H9B0.9900C25—H25A0.9900
C10—C111.5175 (17)C25—H25B0.9900
C1—N1—C12120.24 (9)C13—C12—H12A109.8
C1—N2—C2116.36 (9)N1—C12—H12B109.8
C1—N2—C6115.17 (9)C13—C12—H12B109.8
C2—N2—C6111.14 (9)H12A—C12—H12B108.2
C1—N3—C7122.03 (9)C12—C13—C14111.42 (9)
C1—N3—C11119.59 (10)C12—C13—H13A109.3
C7—N3—C11113.39 (10)C14—C13—H13A109.3
C15—N4—C14119.52 (9)C12—C13—H13B109.3
C15—N5—C16122.52 (9)C14—C13—H13B109.3
C15—N5—C20121.14 (9)H13A—C13—H13B108.0
C16—N5—C20113.36 (9)N4—C14—C13109.23 (9)
C15—N6—C21116.70 (9)N4—C14—H14A109.8
C15—N6—C25116.62 (9)C13—C14—H14A109.8
C21—N6—C25112.00 (9)N4—C14—H14B109.8
N1—C1—N3125.94 (10)C13—C14—H14B109.8
N1—C1—N2120.11 (10)H14A—C14—H14B108.3
N3—C1—N2113.86 (10)N4—C15—N5125.82 (10)
N2—C2—C3109.26 (10)N4—C15—N6120.12 (10)
N2—C2—H2A109.8N5—C15—N6113.95 (9)
C3—C2—H2A109.8N5—C16—C17109.73 (9)
N2—C2—H2B109.8N5—C16—H16A109.7
C3—C2—H2B109.8C17—C16—H16A109.7
H2A—C2—H2B108.3N5—C16—H16B109.7
C2—C3—C4110.97 (10)C17—C16—H16B109.7
C2—C3—H3A109.4H16A—C16—H16B108.2
C4—C3—H3A109.4C16—C17—C18111.06 (10)
C2—C3—H3B109.4C16—C17—H17A109.4
C4—C3—H3B109.4C18—C17—H17A109.4
H3A—C3—H3B108.0C16—C17—H17B109.4
C3—C4—C5110.90 (9)C18—C17—H17B109.4
C3—C4—H4A109.5H17A—C17—H17B108.0
C5—C4—H4A109.5C19—C18—C17110.98 (9)
C3—C4—H4B109.5C19—C18—H18A109.4
C5—C4—H4B109.5C17—C18—H18A109.4
H4A—C4—H4B108.0C19—C18—H18B109.4
C6—C5—C4110.54 (10)C17—C18—H18B109.4
C6—C5—H5A109.5H18A—C18—H18B108.0
C4—C5—H5A109.5C20—C19—C18110.91 (9)
C6—C5—H5B109.5C20—C19—H19A109.5
C4—C5—H5B109.5C18—C19—H19A109.5
H5A—C5—H5B108.1C20—C19—H19B109.5
N2—C6—C5110.18 (9)C18—C19—H19B109.5
N2—C6—H6A109.6H19A—C19—H19B108.0
C5—C6—H6A109.6N5—C20—C19111.31 (9)
N2—C6—H6B109.6N5—C20—H20A109.4
C5—C6—H6B109.6C19—C20—H20A109.4
H6A—C6—H6B108.1N5—C20—H20B109.4
N3—C7—C8109.96 (10)C19—C20—H20B109.4
N3—C7—H7A109.7H20A—C20—H20B108.0
C8—C7—H7A109.7N6—C21—C22109.79 (9)
N3—C7—H7B109.7N6—C21—H21A109.7
C8—C7—H7B109.7C22—C21—H21A109.7
H7A—C7—H7B108.2N6—C21—H21B109.7
C7—C8—C9110.85 (11)C22—C21—H21B109.7
C7—C8—H8A109.5H21A—C21—H21B108.2
C9—C8—H8A109.5C21—C22—C23111.22 (10)
C7—C8—H8B109.5C21—C22—H22A109.4
C9—C8—H8B109.5C23—C22—H22A109.4
H8A—C8—H8B108.1C21—C22—H22B109.4
C10—C9—C8110.92 (11)C23—C22—H22B109.4
C10—C9—H9A109.5H22A—C22—H22B108.0
C8—C9—H9A109.5C24—C23—C22110.01 (10)
C10—C9—H9B109.5C24—C23—H23A109.7
C8—C9—H9B109.5C22—C23—H23A109.7
H9A—C9—H9B108.0C24—C23—H23B109.7
C9—C10—C11110.71 (11)C22—C23—H23B109.7
C9—C10—H10A109.5H23A—C23—H23B108.2
C11—C10—H10A109.5C25—C24—C23110.37 (10)
C9—C10—H10B109.5C25—C24—H24A109.6
C11—C10—H10B109.5C23—C24—H24A109.6
H10A—C10—H10B108.1C25—C24—H24B109.6
N3—C11—C10110.85 (10)C23—C24—H24B109.6
N3—C11—H11A109.5H24A—C24—H24B108.1
C10—C11—H11A109.5N6—C25—C24110.61 (9)
N3—C11—H11B109.5N6—C25—H25A109.5
C10—C11—H11B109.5C24—C25—H25A109.5
H11A—C11—H11B108.1N6—C25—H25B109.5
N1—C12—C13109.44 (9)C24—C25—H25B109.5
N1—C12—H12A109.8H25A—C25—H25B108.1
C12—N1—C1—N311.06 (17)C15—N4—C14—C13138.49 (10)
C12—N1—C1—N2165.14 (9)C12—C13—C14—N468.79 (11)
C7—N3—C1—N1151.32 (12)C14—N4—C15—N512.98 (16)
C11—N3—C1—N155.32 (16)C14—N4—C15—N6163.03 (9)
C7—N3—C1—N225.09 (14)C16—N5—C15—N4148.62 (11)
C11—N3—C1—N2128.28 (11)C20—N5—C15—N452.19 (16)
C2—N2—C1—N115.11 (15)C16—N5—C15—N627.61 (14)
C6—N2—C1—N1117.55 (12)C20—N5—C15—N6131.58 (10)
C2—N2—C1—N3161.53 (9)C21—N6—C15—N413.71 (15)
C6—N2—C1—N365.81 (12)C25—N6—C15—N4122.44 (11)
C1—N2—C2—C3163.65 (9)C21—N6—C15—N5162.75 (9)
C6—N2—C2—C361.88 (12)C25—N6—C15—N561.10 (12)
N2—C2—C3—C457.35 (12)C15—N5—C16—C17140.15 (10)
C2—C3—C4—C553.40 (13)C20—N5—C16—C1759.19 (12)
C3—C4—C5—C652.60 (13)N5—C16—C17—C1856.29 (13)
C1—N2—C6—C5163.11 (9)C16—C17—C18—C1953.66 (13)
C2—N2—C6—C561.84 (12)C17—C18—C19—C2051.69 (13)
C4—C5—C6—N256.37 (13)C15—N5—C20—C19140.92 (10)
C1—N3—C7—C8146.44 (11)C16—N5—C20—C1958.12 (12)
C11—N3—C7—C858.69 (13)C18—C19—C20—N553.25 (13)
N3—C7—C8—C955.56 (14)C15—N6—C21—C22162.75 (9)
C7—C8—C9—C1053.88 (15)C25—N6—C21—C2259.17 (12)
C8—C9—C10—C1153.08 (15)N6—C21—C22—C2356.61 (12)
C1—N3—C11—C10146.00 (10)C21—C22—C23—C2454.76 (13)
C7—N3—C11—C1058.46 (13)C22—C23—C24—C2554.43 (13)
C9—C10—C11—N354.57 (14)C15—N6—C25—C24162.09 (9)
C1—N1—C12—C13138.97 (10)C21—N6—C25—C2459.79 (12)
N1—C12—C13—C1470.29 (11)C23—C24—C25—N656.74 (12)
(II) N,N'-Bis(1,3-dimethylperhydropyrimidin-2-ylidene)propane-1,3-diamine top
Crystal data top
C15H30N6Z = 2
Mr = 294.45F(000) = 324
Triclinic, P1Dx = 1.191 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 6.9057 (7) ÅCell parameters from 718 reflections
b = 7.6661 (7) Åθ = 2.5–21.1°
c = 16.3568 (16) ŵ = 0.08 mm1
α = 89.307 (3)°T = 120 K
β = 82.355 (2)°Prism, colourless
γ = 73.152 (2)°0.20 × 0.15 × 0.10 mm
V = 821.07 (14) Å3
Data collection top
Bruker SMART CCD area-detector
diffractometer
4053 independent reflections
Radiation source: sealed tube1931 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.047
π and ω scansθmax = 28.3°, θmin = 1.3°
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
h = 89
Tmin = 0.910, Tmax = 0.989k = 910
7147 measured reflectionsl = 2121
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.054Hydrogen site location: difference Fourier map
wR(F2) = 0.113H-atom parameters constrained
S = 0.84 w = 1/[σ2(Fo2) + (0.0224P)2 + 0.0587P]
where P = (Fo2 + 2Fc2)/3
4053 reflections(Δ/σ)max < 0.001
194 parametersΔρmax = 0.23 e Å3
0 restraintsΔρmin = 0.17 e Å3
Crystal data top
C15H30N6γ = 73.152 (2)°
Mr = 294.45V = 821.07 (14) Å3
Triclinic, P1Z = 2
a = 6.9057 (7) ÅMo Kα radiation
b = 7.6661 (7) ŵ = 0.08 mm1
c = 16.3568 (16) ÅT = 120 K
α = 89.307 (3)°0.20 × 0.15 × 0.10 mm
β = 82.355 (2)°
Data collection top
Bruker SMART CCD area-detector
diffractometer
4053 independent reflections
Absorption correction: multi-scan
(SADABS; Bruker, 2002)
1931 reflections with I > 2σ(I)
Tmin = 0.910, Tmax = 0.989Rint = 0.047
7147 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0540 restraints
wR(F2) = 0.113H-atom parameters constrained
S = 0.84Δρmax = 0.23 e Å3
4053 reflectionsΔρmin = 0.17 e Å3
194 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > σ(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.2269 (3)1.0989 (3)0.09859 (12)0.0293 (5)
N20.0566 (3)1.2593 (2)0.16972 (11)0.0253 (5)
N30.0595 (3)0.9345 (2)0.15180 (11)0.0250 (5)
N40.3994 (3)0.5215 (2)0.35211 (11)0.0209 (5)
N50.7371 (3)0.5082 (2)0.37725 (11)0.0188 (4)
N60.6318 (3)0.2455 (2)0.36994 (11)0.0213 (5)
C10.2592 (4)0.9284 (3)0.07584 (15)0.0396 (7)
H1A0.16760.87720.02540.059*
H1B0.40120.95030.06620.059*
H1C0.23050.84240.12060.059*
C20.3155 (4)1.2520 (3)0.04755 (15)0.0326 (7)
H2A0.46471.27130.05200.039*
H2B0.25691.22130.01090.039*
C30.2761 (4)1.4269 (3)0.07296 (15)0.0396 (7)
H3A0.15651.44490.03710.048*
H3B0.39611.53230.06720.048*
C40.2360 (4)1.4129 (3)0.16166 (14)0.0360 (7)
H4A0.21321.52720.17980.043*
H4B0.35631.39560.19730.043*
C50.1348 (4)1.3044 (3)0.15106 (15)0.0364 (7)
H5A0.24871.19190.14440.055*
H5B0.15051.37950.19640.055*
H5C0.13411.37210.09990.055*
C60.0630 (4)1.0903 (3)0.13949 (13)0.0236 (6)
C70.1953 (3)0.9168 (3)0.21408 (13)0.0234 (6)
H7A0.13651.01580.25640.028*
H7B0.32900.92780.18820.028*
C80.2248 (3)0.7333 (3)0.25451 (14)0.0241 (6)
H8A0.09010.72270.27930.029*
H8B0.28310.63530.21170.029*
C90.3636 (3)0.7061 (3)0.32051 (13)0.0227 (6)
H9A0.49540.72540.29720.027*
H9B0.30020.79650.36620.027*
C100.5794 (3)0.4339 (3)0.36795 (13)0.0181 (5)
C110.6909 (3)0.6615 (3)0.43606 (14)0.0262 (6)
H11A0.54980.73700.43540.039*
H11B0.78430.73500.42060.039*
H11C0.70780.61530.49160.039*
C120.9377 (3)0.3784 (3)0.38082 (13)0.0223 (6)
H12A1.03420.44350.39470.027*
H12B0.99170.31540.32650.027*
C130.9170 (3)0.2400 (3)0.44633 (14)0.0236 (6)
H13A1.05290.15720.45350.028*
H13B0.85230.30280.49990.028*
C140.7854 (3)0.1338 (3)0.41670 (14)0.0222 (6)
H14A0.87320.02900.38160.027*
H14B0.71680.08520.46490.027*
C150.5040 (4)0.1503 (3)0.33783 (15)0.0321 (7)
H15A0.40980.12410.38330.048*
H15B0.58990.03580.31050.048*
H15C0.42580.22670.29800.048*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.0335 (13)0.0300 (12)0.0265 (12)0.0067 (10)0.0174 (10)0.0075 (10)
N20.0305 (12)0.0192 (11)0.0245 (12)0.0029 (9)0.0080 (10)0.0043 (9)
N30.0287 (12)0.0216 (11)0.0238 (11)0.0022 (9)0.0119 (9)0.0049 (9)
N40.0199 (11)0.0145 (10)0.0290 (12)0.0046 (8)0.0077 (9)0.0082 (8)
N50.0206 (11)0.0139 (10)0.0235 (11)0.0053 (8)0.0080 (9)0.0012 (8)
N60.0235 (11)0.0125 (10)0.0321 (12)0.0072 (9)0.0147 (9)0.0041 (9)
C10.0401 (17)0.0415 (17)0.0433 (18)0.0160 (14)0.0186 (14)0.0064 (14)
C20.0265 (15)0.0413 (16)0.0264 (15)0.0023 (12)0.0092 (12)0.0127 (12)
C30.0485 (19)0.0307 (16)0.0316 (16)0.0033 (13)0.0112 (14)0.0118 (12)
C40.0465 (18)0.0226 (14)0.0311 (16)0.0035 (12)0.0090 (13)0.0043 (11)
C50.0537 (19)0.0282 (15)0.0329 (16)0.0194 (13)0.0095 (14)0.0096 (12)
C60.0273 (14)0.0267 (14)0.0177 (13)0.0085 (11)0.0045 (11)0.0038 (11)
C70.0256 (14)0.0193 (13)0.0243 (14)0.0039 (11)0.0056 (11)0.0049 (10)
C80.0236 (13)0.0199 (13)0.0301 (14)0.0057 (10)0.0091 (11)0.0027 (10)
C90.0272 (14)0.0158 (12)0.0254 (14)0.0053 (10)0.0069 (11)0.0038 (10)
C100.0242 (13)0.0160 (12)0.0167 (12)0.0094 (10)0.0043 (10)0.0030 (9)
C110.0324 (15)0.0195 (13)0.0294 (14)0.0091 (11)0.0104 (12)0.0010 (11)
C120.0181 (13)0.0234 (13)0.0282 (14)0.0079 (10)0.0086 (11)0.0026 (10)
C130.0219 (13)0.0220 (13)0.0264 (14)0.0030 (11)0.0098 (11)0.0052 (11)
C140.0241 (14)0.0143 (12)0.0278 (14)0.0038 (10)0.0066 (11)0.0052 (10)
C150.0354 (16)0.0212 (14)0.0459 (17)0.0125 (12)0.0188 (13)0.0060 (12)
Geometric parameters (Å, º) top
N1—C61.375 (3)C4—H4B0.9900
N1—C11.449 (3)C5—H5A0.9800
N1—C21.464 (3)C5—H5B0.9800
N2—C61.407 (3)C5—H5C0.9800
N2—C51.454 (3)C7—C81.518 (3)
N2—C41.461 (3)C7—H7A0.9900
N3—C61.279 (2)C7—H7B0.9900
N3—C71.453 (3)C8—C91.510 (3)
N4—C101.289 (2)C8—H8A0.9900
N4—C91.464 (2)C8—H8B0.9900
N5—C101.393 (3)C9—H9A0.9900
N5—C121.461 (2)C9—H9B0.9900
N5—C111.462 (2)C11—H11A0.9800
N6—C101.385 (2)C11—H11B0.9800
N6—C151.446 (3)C11—H11C0.9800
N6—C141.455 (2)C12—C131.521 (3)
C1—H1A0.9800C12—H12A0.9900
C1—H1B0.9800C12—H12B0.9900
C1—H1C0.9800C13—C141.509 (3)
C2—C31.516 (3)C13—H13A0.9900
C2—H2A0.9900C13—H13B0.9900
C2—H2B0.9900C14—H14A0.9900
C3—C41.510 (3)C14—H14B0.9900
C3—H3A0.9900C15—H15A0.9800
C3—H3B0.9900C15—H15B0.9800
C4—H4A0.9900C15—H15C0.9800
C6—N1—C1117.68 (19)C8—C7—H7A109.6
C6—N1—C2123.2 (2)N3—C7—H7B109.6
C1—N1—C2114.15 (19)C8—C7—H7B109.6
C6—N2—C5117.32 (19)H7A—C7—H7B108.2
C6—N2—C4115.3 (2)C9—C8—C7112.94 (19)
C5—N2—C4113.35 (18)C9—C8—H8A109.0
C6—N3—C7119.93 (19)C7—C8—H8A109.0
C10—N4—C9119.16 (19)C9—C8—H8B109.0
C10—N5—C12116.26 (17)C7—C8—H8B109.0
C10—N5—C11117.15 (18)H8A—C8—H8B107.8
C12—N5—C11112.79 (17)N4—C9—C8110.21 (18)
C10—N6—C15119.63 (17)N4—C9—H9A109.6
C10—N6—C14124.42 (18)C8—C9—H9A109.6
C15—N6—C14114.84 (16)N4—C9—H9B109.6
N1—C1—H1A109.5C8—C9—H9B109.6
N1—C1—H1B109.5H9A—C9—H9B108.1
H1A—C1—H1B109.5N4—C10—N6118.5 (2)
N1—C1—H1C109.5N4—C10—N5126.45 (19)
H1A—C1—H1C109.5N6—C10—N5114.86 (18)
H1B—C1—H1C109.5N5—C11—H11A109.5
N1—C2—C3112.3 (2)N5—C11—H11B109.5
N1—C2—H2A109.1H11A—C11—H11B109.5
C3—C2—H2A109.1N5—C11—H11C109.5
N1—C2—H2B109.1H11A—C11—H11C109.5
C3—C2—H2B109.1H11B—C11—H11C109.5
H2A—C2—H2B107.9N5—C12—C13108.85 (18)
C4—C3—C2108.46 (19)N5—C12—H12A109.9
C4—C3—H3A110.0C13—C12—H12A109.9
C2—C3—H3A110.0N5—C12—H12B109.9
C4—C3—H3B110.0C13—C12—H12B109.9
C2—C3—H3B110.0H12A—C12—H12B108.3
H3A—C3—H3B108.4C14—C13—C12106.78 (18)
N2—C4—C3109.89 (19)C14—C13—H13A110.4
N2—C4—H4A109.7C12—C13—H13A110.4
C3—C4—H4A109.7C14—C13—H13B110.4
N2—C4—H4B109.7C12—C13—H13B110.4
C3—C4—H4B109.7H13A—C13—H13B108.6
H4A—C4—H4B108.2N6—C14—C13112.10 (16)
N2—C5—H5A109.5N6—C14—H14A109.2
N2—C5—H5B109.5C13—C14—H14A109.2
H5A—C5—H5B109.5N6—C14—H14B109.2
N2—C5—H5C109.5C13—C14—H14B109.2
H5A—C5—H5C109.5H14A—C14—H14B107.9
H5B—C5—H5C109.5N6—C15—H15A109.5
N3—C6—N1119.2 (2)N6—C15—H15B109.5
N3—C6—N2125.9 (2)H15A—C15—H15B109.5
N1—C6—N2114.7 (2)N6—C15—H15C109.5
N3—C7—C8110.09 (19)H15A—C15—H15C109.5
N3—C7—H7A109.6H15B—C15—H15C109.5
C6—N1—C2—C325.0 (3)C10—N4—C9—C8140.1 (2)
C1—N1—C2—C3179.4 (2)C7—C8—C9—N4175.28 (18)
N1—C2—C3—C423.0 (3)C9—N4—C10—N6158.05 (19)
C6—N2—C4—C354.4 (3)C9—N4—C10—N516.4 (3)
C5—N2—C4—C384.8 (3)C15—N6—C10—N412.9 (3)
C2—C3—C4—N260.7 (3)C14—N6—C10—N4154.4 (2)
C7—N3—C6—N1162.0 (2)C15—N6—C10—N5162.2 (2)
C7—N3—C6—N212.8 (3)C14—N6—C10—N530.5 (3)
C1—N1—C6—N33.7 (3)C12—N5—C10—N4169.8 (2)
C2—N1—C6—N3149.8 (2)C11—N5—C10—N452.7 (3)
C1—N1—C6—N2171.64 (19)C12—N5—C10—N64.9 (3)
C2—N1—C6—N234.8 (3)C11—N5—C10—N6132.69 (19)
C5—N2—C6—N354.5 (3)C10—N5—C12—C1352.2 (2)
C4—N2—C6—N3168.0 (2)C11—N5—C12—C1387.2 (2)
C5—N2—C6—N1130.5 (2)N5—C12—C13—C1465.2 (2)
C4—N2—C6—N17.0 (3)C10—N6—C14—C1313.7 (3)
C6—N3—C7—C8145.6 (2)C15—N6—C14—C13178.40 (19)
N3—C7—C8—C9179.60 (18)C12—C13—C14—N633.3 (2)

Experimental details

(I)(II)
Crystal data
Chemical formulaC25H46N6C15H30N6
Mr430.68294.45
Crystal system, space groupMonoclinic, P21/nTriclinic, P1
Temperature (K)120120
a, b, c (Å)10.0619 (7), 19.8127 (13), 12.7511 (8)6.9057 (7), 7.6661 (7), 16.3568 (16)
α, β, γ (°)90, 99.594 (2), 9089.307 (3), 82.355 (2), 73.152 (2)
V3)2506.4 (3)821.07 (14)
Z42
Radiation typeMo KαMo Kα
µ (mm1)0.070.08
Crystal size (mm)0.40 × 0.35 × 0.200.20 × 0.15 × 0.10
Data collection
DiffractometerBruker SMART CCD area-detector
diffractometer
Bruker SMART CCD area-detector
diffractometer
Absorption correctionMulti-scan
(SADABS; Bruker, 2002)
Multi-scan
(SADABS; Bruker, 2002)
Tmin, Tmax0.951, 0.9890.910, 0.989
No. of measured, independent and
observed [I > 2σ(I)] reflections
19511, 6205, 4055 7147, 4053, 1931
Rint0.0440.047
(sin θ/λ)max1)0.6680.667
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.042, 0.090, 0.86 0.054, 0.113, 0.84
No. of reflections62054053
No. of parameters280194
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.22, 0.150.23, 0.17

Computer programs: SMART (Bruker, 2002), SMART, SAINT (Bruker, 2002), SHELXTL (Bruker, 2002), SHELXTL and PLATON (Spek, 2002).

Selected geometric parameters (Å, º) for (I) top
N1—C11.2753 (14)N4—C141.4629 (13)
N1—C121.4616 (13)N5—C151.3924 (13)
N2—C11.4039 (14)N6—C151.4002 (13)
N3—C11.3999 (14)C12—C131.5144 (16)
N4—C151.2776 (13)C13—C141.5171 (15)
C1—N1—C12120.24 (9)C12—C13—C14111.42 (9)
C15—N4—C14119.52 (9)N4—C14—C13109.23 (9)
N1—C1—N3125.94 (10)N4—C15—N5125.82 (10)
N1—C1—N2120.11 (10)N4—C15—N6120.12 (10)
N3—C1—N2113.86 (10)N5—C15—N6113.95 (9)
N1—C12—C13109.44 (9)
C12—N1—C1—N2165.14 (9)C14—N4—C15—N6163.03 (9)
C6—N2—C1—N1117.55 (12)C25—N6—C15—N4122.44 (11)
Selected geometric parameters (Å, º) for (II) top
N1—C61.375 (3)N4—C91.464 (2)
N2—C61.407 (3)N5—C101.393 (3)
N3—C61.279 (2)N6—C101.385 (2)
N3—C71.453 (3)C7—C81.518 (3)
N4—C101.289 (2)C8—C91.510 (3)
C6—N3—C7119.93 (19)C9—C8—C7112.94 (19)
C10—N4—C9119.16 (19)N4—C9—C8110.21 (18)
N3—C6—N1119.2 (2)N4—C10—N6118.5 (2)
N3—C6—N2125.9 (2)N4—C10—N5126.45 (19)
N1—C6—N2114.7 (2)N6—C10—N5114.86 (18)
N3—C7—C8110.09 (19)
C7—N3—C6—N212.8 (3)C9—N4—C10—N516.4 (3)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds