Download citation
Download citation
link to html
Two chemical isomers of 3-nitro­benzotrifluoride, namely 1-(4-chloro­phenyl­sulfanyl)-2-nitro-4-(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (I), and 1-(4-chloro­phenyl­sulfanyl)-4-nitro-2-(tri­fluoro­methyl)­benzene, C13H7ClF3NO2S, (II), have been prepared and their crystal structures determined with the specific purpose of forming a cocrystal of the two. The two compounds display a similar conformation, with dihedral angles between the benzene rings of 83.1 (1) and 76.2 (1)°, respectively, but (I) packs in P\overline 1 while (II) packs in P21/c, with C—H...O interactions. No cocrystal could be formed, and it is suggested that the C—H...O associations in (II) prevent intermolecular mixing and promote phase separation.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021309/gg1187sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021309/gg1187Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021309/gg1187IIsup3.hkl
Contains datablock II

CCDC references: 226135; 226136

Comment top

The crystal structure of the 1:1 molecular adduct of (+)-2-(3-methoxyphenoxy)propionic acid with (-)-2(3-bromophenoxy)propionic acid, determined by Karle & Karle (1966), was the first crystallographic example of a designed cocrystal. The idea behind this combination was based on the use of two chemically similar optically active compounds to prepare a quasi-racemate. The existence of such species had been identified previously, but by techniques other than crystallography [as reviewed by Fredga (1973)]. More recently, Wheeler and co-workers have published similar studies using phenoxy- (Hendi et al., 2001) or anilino-substituted propanoic acids (Fomulu et al., 2002a). In these structural studies, the components associate via a heteromolecular carboxylic acid dimer, giving each component a mutual site for strong hydrogen-bonding interaction. Opposing chirality in the two enantiomers is also essential when producing a quasi-racemate. Fomulu et al. (2002b) have also recently produced quasi-racemates using benzoyl-substituted benzyl amines.

We posed the question that if neither strong hydrogen-bonding sites nor chemical chirality were present, would, or could, two structurally similar chemical isomers still cocrystallize? To study this question, we chose isomeric pairs of compounds containing 3-nitrobenzotrifluoride, such that the nitro and trifluoromethyl groups were structurally interchanged. Both groups are known to be weak hydrogen-bond acceptors from strong hydrogen-bond donors (Allen et al., 1997; Brammer et al., 2001), but in the absence of such donors, the packing can only, if at all, be influenced by weak C—H interactions. A search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) revealed 13 structures with a 3-nitrobenzotrifluoride moiety, although only four had one other substituent on the benzene ring, and two of these were bis(nitrotrifluoromethylphenyl) compounds that were bridged by either disulfide (Glidewell et al., 2000) or bis(sulfonyl)imide (Bombicz, 1995). Of the other two compounds, the additional substituents consisted of amine- (Glidewell et al., 2002) or amide-containing groups (He et al., 2001). Analyses of the crystal structures of the two individual components were essential in order to validate any comparisons to the cocrystal. Initial syntheses focused on thiophenol-substituted 3-nitrobenzotrifluoride. Again, the S atom in the thiophenol is not considered a strong hydrogen-bonding acceptor, and substituents on the thiophenol ring were limited to methyl and halogen groups. The first isomeric pair to simultaneously crystallize were 1-(4-chlorophenylsulfanyl)-2-nitro-4-(trifluoromethyl)benzene, (I), and 1-(4-chlorophenylsulfanyl)-4-nitro-2-(trifluoromethyl)benzene, (II), whose respective crystal structures are reported here.

The similar conformations of (I) and (II) are shown in Figs. 1 and 2, respectively. The compounds have a similar dihedral angle between the two benzene rings [83.1 (1) and 76.2 (1)°, respectively] but differ in their C6—C1—S1—C7 torsion angle [15.4 (4) and 1.3 (5)°, respectively]. The low torsion angle for (II) is a result of the orientation of the trifluoromethyl group and the lateral positions of atoms F22 and F23. The most significant difference between the two structures is in their packing, with (I) (Fig. 3) being triclinic P-1 and (II) (Fig. 4) being monoclinic P21/c. The 4-nitro group in (II) is involved in C—H···O interactions (Table 1), whereas no such associations are recorded in (I), nor are there any similar C—H close contacts recorded for either of the trifluoromethyl groups. However, in (I) there is a short contact [3.193 (5) Å] between atoms Cl1 and F43 (−1 + x, y, −1 + z). Attempts to cocrystallize (I) and (II) by dissolving equimolar amounts of each component in various solvents, with warming, and then allowing evaporation to dryness, led to the recrystallization in each case of the individual compounds. This result? was identified by distinct differences in the crystal morphology and the infrared analysis of each crystal type. The inability of (I) and (II) to cocrystallize may be due to the C—H···O interactions in (II), meaning that one molecule of (II) will preferentially associate with another molecule of (II) rather than a molecule of (I), thus propagating phase separation. Few conclusions can be drawn from just one isomeric pair, but the C—H···O interactions will be examined more closely as these studies into isomers of 3-nitrobenzotrifluoride progress.

Experimental top

Both compounds were obtained from Key Organics Ltd and crystals were grown from ethanol solution.

Refinement top

All H atoms were included in the refinement, at calculated positions, in the riding-model approximation, with C—H distances of 0.95 Å (Ar—H). The isotropic displacement parameters were set equal to 1.25Ueq of the carrier atom. The high weighting values for both (I) and (II) were the result of the soft poor-quality crystals obtained. There is no discernible disorder in the CF3 group in the structure of (II).

Computing details top

Data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998) for (I); DENZO (Otwinowski & Minor, 1997 and COLLECT (Hooft, 1998) for (II). For both compounds, cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. Molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. Molecular configuration and atom-numbering scheme for (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Packing diagram of (I).
[Figure 4] Fig. 4. Packing diagram of (II), viewed along the a axis.
(I) 1-(4-chlorophenylsulfanyl)-2-nitro-4-(trifluoromethyl)benzene top
Crystal data top
C13H7ClF3NO2SZ = 2
Mr = 333.71F(000) = 336
Triclinic, P1Dx = 1.645 Mg m3
Hall symbol: -P 1Melting point: ? K K
a = 7.1953 (14) ÅMo Kα radiation, λ = 0.71073 Å
b = 8.4763 (17) ÅCell parameters from 2771 reflections
c = 11.811 (2) Åθ = 2.9–30.5°
α = 84.35 (3)°µ = 0.48 mm1
β = 88.05 (3)°T = 150 K
γ = 70.06 (3)°Needle, yellow
V = 673.8 (2) Å30.20 × 0.06 × 0.06 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
2336 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1564 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.057
Detector resolution: 9.091 pixels mm-1θmax = 25.0°, θmin = 3.0°
ϕ and ω scansh = 88
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
k = 910
Tmin = 0.911, Tmax = 0.972l = 1414
4967 measured reflections
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.059Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.202H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.1266P)2]
where P = (Fo2 + 2Fc2)/3
2336 reflections(Δ/σ)max < 0.001
190 parametersΔρmax = 0.36 e Å3
0 restraintsΔρmin = 0.34 e Å3
Crystal data top
C13H7ClF3NO2Sγ = 70.06 (3)°
Mr = 333.71V = 673.8 (2) Å3
Triclinic, P1Z = 2
a = 7.1953 (14) ÅMo Kα radiation
b = 8.4763 (17) ŵ = 0.48 mm1
c = 11.811 (2) ÅT = 150 K
α = 84.35 (3)°0.20 × 0.06 × 0.06 mm
β = 88.05 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
2336 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
1564 reflections with I > 2σ(I)
Tmin = 0.911, Tmax = 0.972Rint = 0.057
4967 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0590 restraints
wR(F2) = 0.202H-atom parameters constrained
S = 1.03Δρmax = 0.36 e Å3
2336 reflectionsΔρmin = 0.34 e Å3
190 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

− 6.1676 (0.0067) x + 1.0443 (0.0131) y + 3.2430 (0.0171) z = 0.9122 (0.0148)

* 0.0113 (0.0026) C1 * −0.0117 (0.0026) C2 * −0.0006 (0.0027) C3 * 0.0131 (0.0027) C4 * −0.0132 (0.0026) C5 * 0.0010 (0.0027) C6

Rms deviation of fitted atoms = 0.0101

0.4458 (0.0122) x + 6.3194 (0.0096) y − 6.5896 (0.0169) z = 4.5579 (0.0087)

Angle to previous plane (with approximate e.s.d.) = 83.11 (0.13)

* −0.0008 (0.0026) C7 * 0.0021 (0.0028) C8 * −0.0027 (0.0028) C9 * 0.0020 (0.0029) C10 * −0.0006 (0.0029) C11 * 0.0000 (0.0027) C12

Rms deviation of fitted atoms = 0.0017

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.1761 (5)0.8402 (4)0.3492 (3)0.0450 (9)
C20.2390 (5)0.8915 (4)0.4451 (3)0.0463 (9)
N210.2727 (5)1.0537 (4)0.4400 (3)0.0584 (9)
O210.2988 (6)1.1188 (4)0.3469 (3)0.0901 (12)
O220.2784 (5)1.1130 (4)0.5284 (3)0.0763 (10)
C30.2751 (6)0.7952 (5)0.5482 (3)0.0483 (9)
H30.31570.83550.61190.060*
C40.2517 (5)0.6398 (4)0.5581 (3)0.0469 (9)
C410.2794 (7)0.5381 (5)0.6695 (3)0.0568 (10)
F410.3657 (5)0.3737 (3)0.6601 (2)0.0834 (9)
F420.1060 (4)0.5509 (4)0.7204 (2)0.0799 (8)
F430.3844 (6)0.5801 (4)0.7423 (2)0.1055 (12)
C50.1965 (6)0.5824 (5)0.4633 (3)0.0490 (9)
H50.18540.47340.46870.061*
C60.1574 (6)0.6808 (5)0.3618 (3)0.0501 (9)
H60.11670.63960.29850.063*
S10.11982 (18)0.97010 (13)0.22007 (9)0.0611 (4)
C70.0167 (6)0.8736 (5)0.1451 (3)0.0518 (10)
C80.2161 (7)0.9094 (5)0.1655 (3)0.0600 (11)
H80.27780.97670.22510.075*
C90.3266 (7)0.8480 (5)0.0999 (3)0.0613 (11)
H90.46370.87150.11410.077*
C100.2344 (7)0.7524 (5)0.0137 (3)0.0574 (11)
Cl10.3736 (2)0.67802 (16)0.07093 (10)0.0868 (5)
C110.0369 (7)0.7156 (5)0.0078 (3)0.0624 (11)
H110.02440.64860.06760.078*
C120.0719 (7)0.7770 (5)0.0584 (3)0.0583 (11)
H120.20910.75250.04400.073*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.037 (2)0.0461 (19)0.053 (2)0.0154 (17)0.0030 (16)0.0029 (16)
C20.038 (2)0.0404 (19)0.061 (2)0.0138 (16)0.0003 (17)0.0061 (17)
N210.049 (2)0.0504 (19)0.081 (2)0.0223 (17)0.0082 (18)0.008 (2)
O210.122 (3)0.078 (2)0.091 (2)0.065 (2)0.030 (2)0.0214 (19)
O220.087 (3)0.0611 (19)0.093 (2)0.0350 (18)0.0043 (18)0.0296 (17)
C30.042 (2)0.054 (2)0.049 (2)0.0148 (18)0.0004 (16)0.0118 (17)
C40.040 (2)0.050 (2)0.050 (2)0.0134 (17)0.0012 (16)0.0057 (17)
C410.056 (3)0.062 (3)0.054 (2)0.022 (2)0.003 (2)0.0057 (19)
F410.097 (2)0.0613 (16)0.0732 (16)0.0066 (15)0.0007 (15)0.0087 (13)
F420.072 (2)0.0955 (19)0.0659 (15)0.0247 (15)0.0150 (14)0.0025 (13)
F430.148 (3)0.125 (3)0.0725 (16)0.087 (2)0.0542 (18)0.0192 (17)
C50.048 (2)0.047 (2)0.055 (2)0.0200 (18)0.0019 (17)0.0030 (18)
C60.051 (3)0.049 (2)0.050 (2)0.0168 (18)0.0076 (17)0.0032 (17)
S10.0686 (8)0.0588 (7)0.0605 (7)0.0303 (6)0.0128 (5)0.0082 (5)
C70.055 (3)0.052 (2)0.0475 (19)0.0181 (19)0.0078 (18)0.0045 (17)
C80.058 (3)0.071 (3)0.045 (2)0.014 (2)0.0024 (19)0.0036 (19)
C90.049 (3)0.073 (3)0.057 (2)0.016 (2)0.0029 (19)0.000 (2)
C100.061 (3)0.054 (2)0.053 (2)0.014 (2)0.0209 (19)0.0056 (18)
Cl10.0876 (11)0.0801 (9)0.0929 (9)0.0236 (7)0.0352 (7)0.0155 (7)
C110.071 (3)0.056 (2)0.056 (2)0.016 (2)0.001 (2)0.007 (2)
C120.052 (3)0.057 (2)0.060 (2)0.014 (2)0.002 (2)0.003 (2)
Geometric parameters (Å, º) top
C1—C21.394 (5)C5—H50.95
C1—C61.396 (5)C6—H60.95
C1—S11.763 (4)S1—C71.780 (4)
C2—C31.378 (5)C7—C121.375 (6)
C2—N211.470 (5)C7—C81.379 (6)
N21—O221.210 (4)C8—C91.381 (6)
N21—O211.219 (4)C8—H80.95
C3—C41.377 (5)C9—C101.372 (6)
C3—H30.95C9—H90.95
C4—C51.385 (5)C10—C111.367 (6)
C4—C411.481 (5)C10—Cl11.739 (4)
C41—F431.313 (5)C11—C121.376 (6)
C41—F411.332 (5)C11—H110.95
C41—F421.341 (5)C12—H120.95
C5—C61.371 (5)
C2—C1—C6116.1 (3)C4—C5—H5119.6
C2—C1—S1122.0 (3)C5—C6—C1121.5 (3)
C6—C1—S1121.9 (3)C5—C6—H6119.2
C3—C2—C1122.9 (3)C1—C6—H6119.2
C3—C2—N21116.3 (3)C1—S1—C7102.55 (17)
C1—C2—N21120.7 (3)C12—C7—C8119.7 (4)
O22—N21—O21123.5 (3)C12—C7—S1119.8 (3)
O22—N21—C2118.4 (4)C8—C7—S1120.2 (3)
O21—N21—C2118.0 (3)C7—C8—C9120.4 (4)
C4—C3—C2119.4 (3)C7—C8—H8119.8
C4—C3—H3120.3C9—C8—H8119.8
C2—C3—H3120.3C10—C9—C8118.7 (4)
C3—C4—C5119.2 (3)C10—C9—H9120.7
C3—C4—C41120.3 (3)C8—C9—H9120.7
C5—C4—C41120.6 (3)C11—C10—C9121.7 (4)
F43—C41—F41107.0 (4)C11—C10—Cl1119.4 (3)
F43—C41—F42106.6 (3)C9—C10—Cl1118.9 (4)
F41—C41—F42104.3 (3)C10—C11—C12119.1 (4)
F43—C41—C4114.0 (3)C10—C11—H11120.4
F41—C41—C4112.6 (3)C12—C11—H11120.4
F42—C41—C4111.7 (3)C7—C12—C11120.4 (4)
C6—C5—C4120.8 (3)C7—C12—H12119.8
C6—C5—H5119.6C11—C12—H12119.8
C6—C1—C2—C32.1 (6)C41—C4—C5—C6175.5 (4)
S1—C1—C2—C3177.0 (3)C4—C5—C6—C11.5 (6)
C6—C1—C2—N21177.1 (3)C2—C1—C6—C50.8 (6)
S1—C1—C2—N213.8 (5)S1—C1—C6—C5178.2 (3)
C3—C2—N21—O2218.9 (5)C2—C1—S1—C7163.6 (3)
C1—C2—N21—O22161.8 (4)C6—C1—S1—C715.4 (4)
C3—C2—N21—O21159.1 (4)C1—S1—C7—C12103.7 (3)
C1—C2—N21—O2120.2 (6)C1—S1—C7—C883.1 (4)
C1—C2—C3—C41.0 (6)C12—C7—C8—C90.4 (6)
N21—C2—C3—C4178.2 (3)S1—C7—C8—C9173.6 (3)
C2—C3—C4—C51.4 (6)C7—C8—C9—C100.6 (6)
C2—C3—C4—C41176.8 (3)C8—C9—C10—C110.6 (6)
C3—C4—C41—F4320.7 (6)C8—C9—C10—Cl1178.8 (3)
C5—C4—C41—F43161.2 (4)C9—C10—C11—C120.4 (6)
C3—C4—C41—F41142.8 (4)Cl1—C10—C11—C12179.0 (3)
C5—C4—C41—F4139.1 (5)C8—C7—C12—C110.2 (6)
C3—C4—C41—F42100.2 (4)S1—C7—C12—C11173.5 (3)
C5—C4—C41—F4277.9 (5)C10—C11—C12—C70.2 (6)
C3—C4—C5—C62.6 (6)
(II) 1-(4-chlorophenylsulfanyl)-4-nitro-2-(trifluoromethyl)benzene top
Crystal data top
C13H7ClF3NO2SF(000) = 672
Mr = 333.71Dx = 1.583 Mg m3
Monoclinic, P21/nMelting point: ? K K
Hall symbol: -P 2ynMo Kα radiation, λ = 0.71073 Å
a = 12.335 (3) ÅCell parameters from 11965 reflections
b = 9.2477 (18) Åθ = 2.9–27.5°
c = 12.929 (3) ŵ = 0.46 mm1
β = 108.32 (3)°T = 568 K
V = 1400.1 (5) Å3Plate, colourless
Z = 40.30 × 0.27 × 0.02 mm
Data collection top
Nonius KappaCCD area-detector
diffractometer
3183 independent reflections
Radiation source: Enraf Nonius FR591 rotating anode1305 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.091
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.0°
ϕ and ω scansh = 1515
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
k = 1111
Tmin = 0.875, Tmax = 0.991l = 1616
10187 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.083H-atom parameters constrained
wR(F2) = 0.258 w = 1/[σ2(Fo2) + (0.1331P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.99(Δ/σ)max < 0.001
3183 reflectionsΔρmax = 0.66 e Å3
191 parametersΔρmin = 0.39 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.051 (8)
Crystal data top
C13H7ClF3NO2SV = 1400.1 (5) Å3
Mr = 333.71Z = 4
Monoclinic, P21/nMo Kα radiation
a = 12.335 (3) ŵ = 0.46 mm1
b = 9.2477 (18) ÅT = 568 K
c = 12.929 (3) Å0.30 × 0.27 × 0.02 mm
β = 108.32 (3)°
Data collection top
Nonius KappaCCD area-detector
diffractometer
3183 independent reflections
Absorption correction: multi-scan
SORTAV (Blessing, 1995)
1305 reflections with I > 2σ(I)
Tmin = 0.875, Tmax = 0.991Rint = 0.091
10187 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0830 restraints
wR(F2) = 0.258H-atom parameters constrained
S = 0.99Δρmax = 0.66 e Å3
3183 reflectionsΔρmin = 0.39 e Å3
191 parameters
Special details top

Geometry. Least-squares planes (x,y,z in crystal coordinates) and deviations from them (* indicates atom used to define plane)

8.3347 (0.0172) x + 6.8117 (0.0120) y − 2.3852 (0.0241) z = 5.2963 (0.0183)

* 0.0084 (0.0031) C1 * −0.0057 (0.0031) C2 * 0.0012 (0.0029) C3 * 0.0008 (0.0029) C4 * 0.0020 (0.0031) C5 * −0.0067 (0.0032) C6

Rms deviation of fitted atoms = 0.0051

6.8408 (0.0229) x − 7.6930 (0.0120) y − 2.5004 (0.0256) z = 2.4145 (0.0250)

Angle to previous plane (with approximate e.s.d.) = 76.20 (0.12)

* 0.0053 (0.0031) C7 * −0.0016 (0.0033) C8 * −0.0060 (0.0033) C9 * 0.0099 (0.0033) C10 * −0.0060 (0.0033) C11 * −0.0016 (0.0032) C12

Rms deviation of fitted atoms = 0.0058

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.7970 (4)0.0018 (5)0.5659 (3)0.0637 (12)
C20.7821 (3)0.0210 (5)0.4550 (3)0.0629 (12)
C210.6917 (5)0.0536 (8)0.3679 (4)0.0952 (18)
F210.6899 (4)0.0160 (6)0.2701 (2)0.176 (2)
F220.5880 (3)0.0260 (5)0.3713 (3)0.1478 (17)
F230.6955 (4)0.1928 (5)0.3732 (3)0.1572 (18)
C30.8520 (4)0.1162 (5)0.4242 (3)0.0649 (12)
H30.84270.12990.35070.081*
C40.9351 (3)0.1910 (5)0.5012 (3)0.0573 (11)
N411.0086 (3)0.2915 (5)0.4693 (3)0.0806 (12)
O410.9996 (3)0.3004 (5)0.3724 (3)0.0975 (13)
O421.0762 (4)0.3634 (6)0.5392 (3)0.1267 (18)
C50.9510 (4)0.1721 (5)0.6101 (3)0.0675 (12)
H51.00790.22270.66190.084*
C60.8816 (4)0.0776 (5)0.6414 (3)0.0675 (13)
H60.89140.06610.71520.084*
S10.71112 (13)0.12763 (19)0.60618 (10)0.1004 (7)
C70.7642 (4)0.1212 (5)0.7501 (3)0.0646 (12)
C80.8640 (4)0.1929 (6)0.8055 (4)0.0754 (14)
H80.90500.24200.76710.094*
C90.9023 (4)0.1911 (6)0.9174 (4)0.0780 (14)
H90.96890.23980.95530.097*
C100.8420 (4)0.1175 (6)0.9725 (3)0.0745 (14)
Cl10.88837 (16)0.1151 (2)1.11375 (11)0.1304 (8)
C110.7416 (4)0.0479 (5)0.9185 (4)0.0787 (14)
H110.70010.00020.95700.098*
C120.7042 (4)0.0501 (5)0.8075 (4)0.0769 (14)
H120.63680.00260.77010.096*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.061 (2)0.074 (3)0.051 (2)0.003 (2)0.011 (2)0.006 (2)
C20.057 (2)0.081 (3)0.047 (2)0.000 (2)0.0112 (19)0.004 (2)
C210.099 (4)0.113 (6)0.055 (3)0.018 (4)0.002 (3)0.004 (3)
F210.184 (4)0.275 (6)0.0488 (17)0.114 (4)0.006 (2)0.001 (2)
F220.078 (2)0.210 (5)0.125 (3)0.029 (3)0.013 (2)0.003 (3)
F230.200 (4)0.112 (4)0.110 (3)0.029 (3)0.021 (3)0.033 (2)
C30.064 (2)0.080 (3)0.051 (2)0.014 (2)0.019 (2)0.009 (2)
C40.054 (2)0.066 (3)0.055 (2)0.004 (2)0.022 (2)0.011 (2)
N410.073 (3)0.099 (4)0.074 (3)0.005 (2)0.029 (2)0.020 (2)
O410.099 (2)0.128 (4)0.076 (2)0.001 (2)0.0430 (19)0.021 (2)
O420.124 (3)0.164 (5)0.091 (3)0.073 (3)0.031 (3)0.012 (3)
C50.065 (2)0.080 (3)0.055 (2)0.009 (2)0.015 (2)0.007 (2)
C60.073 (3)0.078 (3)0.048 (2)0.008 (2)0.015 (2)0.010 (2)
S10.1028 (11)0.1272 (15)0.0601 (8)0.0528 (9)0.0096 (7)0.0097 (7)
C70.067 (3)0.067 (3)0.060 (2)0.012 (2)0.021 (2)0.009 (2)
C80.081 (3)0.078 (4)0.076 (3)0.006 (3)0.039 (3)0.001 (3)
C90.070 (3)0.091 (4)0.072 (3)0.013 (3)0.022 (2)0.022 (3)
C100.088 (3)0.079 (4)0.061 (3)0.021 (3)0.031 (3)0.004 (2)
Cl10.1476 (15)0.177 (2)0.0608 (8)0.0519 (13)0.0241 (9)0.0051 (9)
C110.088 (3)0.069 (4)0.089 (3)0.006 (3)0.043 (3)0.005 (3)
C120.066 (3)0.079 (4)0.087 (3)0.005 (2)0.025 (3)0.018 (3)
Geometric parameters (Å, º) top
C1—C61.393 (6)C5—H50.93
C1—C21.403 (5)C6—H60.93
C1—S11.759 (4)S1—C71.769 (4)
C2—C31.376 (6)C7—C121.370 (6)
C2—C211.483 (7)C7—C81.383 (6)
C21—F231.289 (7)C8—C91.374 (6)
C21—F211.304 (6)C8—H80.93
C21—F221.319 (7)C9—C101.363 (7)
C3—C41.371 (6)C9—H90.93
C3—H30.93C10—C111.376 (7)
C4—C51.369 (5)C10—Cl11.734 (4)
C4—N411.447 (5)C11—C121.363 (7)
N41—O421.216 (5)C11—H110.93
N41—O411.225 (4)C12—H120.93
C5—C61.370 (6)
C6—C1—C2117.7 (4)C6—C5—H5120.5
C6—C1—S1122.0 (3)C5—C6—C1122.0 (4)
C2—C1—S1120.3 (3)C5—C6—H6119.0
C3—C2—C1120.0 (4)C1—C6—H6119.0
C3—C2—C21117.8 (4)C1—S1—C7103.35 (19)
C1—C2—C21122.2 (4)C12—C7—C8119.7 (4)
F23—C21—F21107.9 (5)C12—C7—S1120.1 (4)
F23—C21—F22102.2 (5)C8—C7—S1120.2 (4)
F21—C21—F22105.1 (5)C9—C8—C7119.6 (4)
F23—C21—C2114.7 (5)C9—C8—H8120.2
F21—C21—C2113.1 (5)C7—C8—H8120.2
F22—C21—C2113.0 (5)C10—C9—C8119.6 (4)
C4—C3—C2120.4 (4)C10—C9—H9120.2
C4—C3—H3119.8C8—C9—H9120.2
C2—C3—H3119.8C9—C10—C11121.4 (4)
C5—C4—C3121.0 (4)C9—C10—Cl1120.2 (4)
C5—C4—N41118.4 (4)C11—C10—Cl1118.3 (4)
C3—C4—N41120.6 (4)C12—C11—C10118.7 (4)
O42—N41—O41122.9 (4)C12—C11—H11120.6
O42—N41—C4119.0 (4)C10—C11—H11120.6
O41—N41—C4118.1 (4)C11—C12—C7121.0 (4)
C4—C5—C6119.0 (4)C11—C12—H12119.5
C4—C5—H5120.5C7—C12—H12119.5
C6—C1—C2—C31.7 (6)N41—C4—C5—C6179.8 (4)
S1—C1—C2—C3177.9 (3)C4—C5—C6—C11.2 (7)
C6—C1—C2—C21177.6 (5)C2—C1—C6—C51.8 (7)
S1—C1—C2—C212.8 (7)S1—C1—C6—C5177.8 (4)
C3—C2—C21—F23123.5 (6)C6—C1—S1—C71.3 (5)
C1—C2—C21—F2357.2 (7)C2—C1—S1—C7178.3 (4)
C3—C2—C21—F210.7 (8)C1—S1—C7—C12104.1 (4)
C1—C2—C21—F21178.6 (5)C1—S1—C7—C878.6 (4)
C3—C2—C21—F22119.9 (5)C12—C7—C8—C90.4 (7)
C1—C2—C21—F2259.4 (7)S1—C7—C8—C9177.8 (4)
C1—C2—C3—C41.0 (6)C7—C8—C9—C100.6 (7)
C21—C2—C3—C4178.3 (5)C8—C9—C10—C111.8 (7)
C2—C3—C4—C50.4 (6)C8—C9—C10—Cl1179.5 (4)
C2—C3—C4—N41179.9 (4)C9—C10—C11—C121.8 (7)
C5—C4—N41—O425.3 (7)Cl1—C10—C11—C12179.6 (4)
C3—C4—N41—O42175.0 (5)C10—C11—C12—C70.6 (7)
C5—C4—N41—O41174.9 (4)C8—C7—C12—C110.5 (7)
C3—C4—N41—O414.9 (6)S1—C7—C12—C11177.8 (4)
C3—C4—C5—C60.5 (6)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O41i0.932.503.397 (6)161
C11—H11···O42ii0.932.473.392 (6)174
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y1/2, z+1/2.

Experimental details

(I)(II)
Crystal data
Chemical formulaC13H7ClF3NO2SC13H7ClF3NO2S
Mr333.71333.71
Crystal system, space groupTriclinic, P1Monoclinic, P21/n
Temperature (K)150568
a, b, c (Å)7.1953 (14), 8.4763 (17), 11.811 (2)12.335 (3), 9.2477 (18), 12.929 (3)
α, β, γ (°)84.35 (3), 88.05 (3), 70.06 (3)90, 108.32 (3), 90
V3)673.8 (2)1400.1 (5)
Z24
Radiation typeMo KαMo Kα
µ (mm1)0.480.46
Crystal size (mm)0.20 × 0.06 × 0.060.30 × 0.27 × 0.02
Data collection
DiffractometerNonius KappaCCD area-detector
diffractometer
Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
SORTAV (Blessing, 1995)
Multi-scan
SORTAV (Blessing, 1995)
Tmin, Tmax0.911, 0.9720.875, 0.991
No. of measured, independent and
observed [I > 2σ(I)] reflections
4967, 2336, 1564 10187, 3183, 1305
Rint0.0570.091
(sin θ/λ)max1)0.5950.649
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.059, 0.202, 1.03 0.083, 0.258, 0.99
No. of reflections23363183
No. of parameters190191
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.36, 0.340.66, 0.39

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Hooft, 1998), DENZO (Otwinowski & Minor, 1997 and COLLECT (Hooft, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C8—H8···O41i0.932.503.397 (6)161.2
C11—H11···O42ii0.932.473.392 (6)173.6
Symmetry codes: (i) x+2, y, z+1; (ii) x1/2, y1/2, z+1/2.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds