Download citation
Download citation
link to html
The structures of 2-phenyl­malonpiperadide [systematic name: 2-phenyl-1,3-bis­(piperidin-1-yl)­propane-1,3-dione, C19H26N2O2, (I)] and 2-phenyl­malonmorpholide [systematic name: 1,3-dimorpholino-2-phenyl­propane-1,3-dione, C17H22N2O4, (II)], have been determined and both their molecular conformations and packing arrangements compared. Although chemically similar, compounds (I) and (II) exhibit different molecular conformations. The only general conformational similarities are that their respective carbonyl groups are orientated in the same direction and the heterocyclic rings exist in the chair arrangement. General similarities in the packing arrangements arise due to both compounds having the same space group (P212121) and a similar alignment of their phenyl-substituted backbone with respect to the c axis. Similar C—H...O hydrogen-bonding associations are listed for the carbonyl O atoms, while only one of the morpholine O atoms is involved in any such association.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103021310/gg1184sup1.cif
Contains datablocks I, II, global

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021310/gg1184Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103021310/gg1184IIsup3.hkl
Contains datablock morph

CCDC references: 204757; 204758

Comment top

Symmetrical malonamides can be prepared by two classical methods (Burgada, 1964) with both involving the reaction of two molar equivalents of an amine with either diethyl malonate or malonyldichloride. A third, more modern but less efficient, synthesis involves the reaction of a two molar equivalence of a base or amine with 3-oxopyrazolo[1,2-a]pyrazol-8-ylium-1-olate (Zvilichovsky & David, 1982), a compound also derived from either diethyl malonate or malonyldichloride. The nucleophilic cleavage of derivatives of 3-oxopyrazolo[1,2-a]pyrazol-8-ylium-1-olate to produce symmetrical malonamides was also investigated by Potts et al. (1988), who studied their decomposition using morpholine, aniline or water. Experimental runs were performed in tetrahydrofuran at 298 K and took from a few s to several days for a complete reaction, depending on the substituents of the initial pyrazolo[1,2a]pyrazole with one of the slowest reactants being seen for 5,7-dimethyl-2-phenyl-1-oxo-1H-pyrazolo[1,2-a]pyrazol-4-ylium-3-olate. We decided to continue investigating the nucleophilic cleavage of this specific compound using a variety of nucleophiles including both piperidine and morpholine with all resultant products being 2-phenylmalonamide derivatives. Interestingly, a search of the April 2003 release of the Cambridge Structural Database (Allen, 2002) reveals that there are 37 reported structures of malonamides, including both symmetrical and unsymmetrical analogues, yet of these there is only one 2-phenylmalonamide derivative, that being the amide itself (Sakamoto et al., 2000). Reported here are the crystal structures of both 2-phenylmalonpiperadide, (I), and 2-phenylmalonmorpholide, (II).

Compounds (I) and (II) share crystallographic similarities by both packing in the same non-centrosymmetric space group and sharing similar cell dimensions and cell volumes. The only chemical difference between the two is the substitution of the piperidyl 4-position CH2 groups in (I) for the morpholine O atoms in (II), with the loss of ca 104 Å3 in cell volume. However, these two O atoms have the potential to cause a difference in the solid-state packing of (II), as opposed to (I), because exposed O atoms can act as hydrogen-bond acceptors, in addition to the two malonamide carbonyl O atoms. Comparative molecular conformations for (I) and (II) are shown in Figs 1 and 2, respectively, while selected torsion angles are listed in Tables 1 and 3.

With both the saturated heterocyclic rings systems in the chair conformation and the carbonyl groups orientated in the same direction for both molecules, the important torsion angles become those containing the C16—C2 bond, specifically N4—C1—C2—C16 and C16—C2—C3—N10, because the backbone torsion angles for the two compounds, N4—C1—C2—C3 and C1—C2—C3—N10, are inversely similar. The conformation of 2-phenylmalonamide itself differs from both (I) and (II), with the carbonyl groups arranged in opposing directions and the backbone chain being much flatter. Comparative torsion angles are 98.15 (N1—C1—C2—C4), 101.16 (C4—C2—C3—N2), −26.26 (N1—C1—C2—C3) and 134.11° (C1—C2—C3—N4) (note that in 2-phenylmalonamide atom C4 = C16).

The C—H···O hydrogen-bonding associations for compounds (I) and (II) are listed in Tables 2 and 4, respectively, and although both compounds arrange very differently the malonamide carbonyl O atoms in each are involved in the same number of intermolecular C—H···O associations. In addition, there is only one listed association to a morpholine O atom (O13) indicating that the morpholine O atoms do not have much effect on the difference in molecular packing. The unit cells for (I) and (II), both viewed down the a axis, are shown in Figs 3 and 4. Interestingly, the phenyl rings in both compounds are arranged almost perpendicular to the c axis orientating the main length of the backbone in the same direction as the c axis. However, apart from these general packing similarities the two structures remain considerably different. The occurrence of crystallographic differences between chemically similar compounds, such as (I) and (II), is interesting and in the structures discussed in this paper have no apparent cause. Additional comparative compounds would be those containing thiomorpholine, piperazine or any minor 4-position derivative of piperidine or piperazine.

Experimental top

For (I), a 2:1 molar ratio of piperidine (0.71 g, 8.33 mmol) and 5,7-dimethyl-2-phenyl-1-oxo-1H-pyrazolo[1,2-a]pyrazol-4-ylium-3-olate (1.00 g, 4.20 mmol) was refluxed in tetrahydrofuran (THF, 100 ml) for 48 h. Upon cooling the reaction, the solvent was removed under reduced pressure. The crude product was redissolved in minimal THF and precipitated by pouring into cool deionized water (100 ml). Collection in vacuo yielded an off-white powder (0.94 g, 72%; m.p. 416–419 K). Spectroscopic analysis, IR (νmax, KBr, cm−1: 1647 (s) and 1626 (s) (CO); 1H NMR (400 MHz, d6-DMSO, Me4Si, p.p.m.): 1.40 (m, 12H, CH2), 3.40 (m, 8H, NCH2), 5.40 (s, 1H), 7.30 (m, 5H, ArH); m/z (ES): 315 (MH+, 15%), 337 (M + Na, 39%), 651 (2M + Na, 100%). Compound (II) was produced using a method analogous to that used for (I), using morpholine (1.45 g, 1.67 mmol) and 5,7-dimethyl-2-phenyl-1-oxo-1H-pyrazolo[1,2-a]pyrazol-4-ylium-3-olate (2.00 g, 8.33 mmol). The final product was collected in vacuo as a white powder (2.33 g, 88%, m.p. 459–461 K). Spectroscopic analysis, IR (νmax, KBr, cm−1: 1658 (s) and 1633 (s) (CO); 1H NMR (400 MHz, d6-DMSO, Me4Si, p.p.m.): 3.27–3.63 (br m, 16H, NCH2 & OCH2), 5.51 (s, 1H), 7.21–7.39 (m, 5H, ArH); m/z (ES): 319 (MH+, 30%), 341 (M + Na, 100%), 659 (2M + Na, 73%). Crystals of both were grown from CHCl3 solutions.

Refinement top

All H atoms were included in the refinement, at calculated positions, in the riding-model approximation, with C—H set at 0.95 (aryl H), 0.99 (CH2) and 1.00 Å (C—H). The isotropic displacement parameters were set equal to 1.25Ueq of the carrier atom. The high Rint value for (I) was the result of weak high-angle data. The numbers of Friedel pairs for (I) and (II) are 1386 and 1195, respectively. In the absence of large atoms in both structures or strong anomalous dispersion effects, the Friedel opposites were merged prior to refinement.

Computing details top

For both compounds, data collection: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998); cell refinement: DENZO and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997); software used to prepare material for publication: SHELXL97.

Figures top
[Figure 1] Fig. 1. The molecular configuration and atom-numbering scheme for (I). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 2] Fig. 2. The molecular configuration and atom-numbering scheme for (II). Displacement ellipsoids are drawn at the 50% probability level.
[Figure 3] Fig. 3. Packing diagram of (I), viewed down the a axis.
[Figure 4] Fig. 4. Packing diagram of (II), viewed down the a axis.
(I) 2-phenyl-1,3-bis(piperidin-1-yl)propane-1,3-dione top
Crystal data top
C19H26N2O2Dx = 1.259 Mg m3
Mr = 314.42Melting point: 416-419 K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6419 reflections
a = 6.1652 (3) Åθ = 2.9–27.5°
b = 10.2718 (5) ŵ = 0.08 mm1
c = 26.1962 (17) ÅT = 120 K
V = 1658.95 (16) Å3Plate, colourless
Z = 40.15 × 0.10 × 0.04 mm
F(000) = 680
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2177 independent reflections
Radiation source: Bruker–Nonius FR591 rotating anode1013 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.176
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 3.1°
ϕ and ω scansh = 77
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 913
Tmin = 0.988, Tmax = 0.997l = 3425
6936 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.069H-atom parameters constrained
wR(F2) = 0.177 w = 1/[σ2(Fo2) + (0.0705P)2]
where P = (Fo2 + 2Fc2)/3
S = 0.94(Δ/σ)max < 0.001
2177 reflectionsΔρmax = 0.34 e Å3
209 parametersΔρmin = 0.34 e Å3
0 restraintsExtinction correction: SHELXL97, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.012 (3)
Crystal data top
C19H26N2O2V = 1658.95 (16) Å3
Mr = 314.42Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 6.1652 (3) ŵ = 0.08 mm1
b = 10.2718 (5) ÅT = 120 K
c = 26.1962 (17) Å0.15 × 0.10 × 0.04 mm
Data collection top
Bruker Nonius KappaCCD area-detector
diffractometer
2177 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1013 reflections with I > 2σ(I)
Tmin = 0.988, Tmax = 0.997Rint = 0.176
6936 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0690 restraints
wR(F2) = 0.177H-atom parameters constrained
S = 0.94Δρmax = 0.34 e Å3
2177 reflectionsΔρmin = 0.34 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9803 (9)0.2467 (6)0.1834 (2)0.0289 (14)
O10.9011 (6)0.3469 (4)0.19950 (14)0.0328 (10)
C21.1346 (8)0.2493 (5)0.1361 (2)0.0242 (13)
H21.25860.18840.14210.030*
C31.0037 (9)0.2022 (5)0.0903 (2)0.0276 (14)
O30.8046 (6)0.2120 (4)0.09015 (15)0.0364 (12)
N40.9471 (7)0.1286 (4)0.20548 (17)0.0287 (12)
C50.7861 (10)0.1181 (7)0.2474 (2)0.0370 (17)
H510.74810.20600.26000.046*
H520.84880.06800.27610.046*
C60.5838 (10)0.0500 (6)0.2278 (2)0.0372 (16)
H610.47640.04200.25570.047*
H620.51780.10200.20000.047*
C70.6426 (10)0.0836 (6)0.2080 (2)0.0424 (17)
H710.69560.13790.23670.053*
H720.51160.12580.19370.053*
C80.8154 (9)0.0758 (6)0.1673 (2)0.0379 (16)
H810.75480.03360.13650.047*
H820.86210.16480.15790.047*
C91.0098 (10)0.0014 (5)0.1861 (2)0.0365 (16)
H911.08380.04800.21340.046*
H921.11380.01280.15760.046*
N101.1110 (7)0.1500 (4)0.04983 (17)0.0266 (12)
C110.9889 (9)0.0865 (5)0.0089 (2)0.0309 (15)
H1111.04420.11560.02470.039*
H1120.83370.11070.01130.039*
C121.0134 (10)0.0602 (5)0.0138 (2)0.0313 (15)
H1210.94790.08960.04630.039*
H1220.93520.10340.01460.039*
C131.2499 (10)0.0990 (6)0.0124 (2)0.0385 (16)
H1311.31020.08010.02190.048*
H1321.26280.19370.01850.048*
C141.3803 (10)0.0252 (6)0.0528 (2)0.0354 (16)
H1411.33430.05370.08720.044*
H1421.53630.04570.04890.044*
C151.3465 (9)0.1212 (6)0.0476 (2)0.0317 (15)
H1511.42270.16720.07550.040*
H1521.40700.15180.01470.040*
C161.2215 (9)0.3858 (5)0.1280 (2)0.0246 (14)
C171.4316 (9)0.4170 (6)0.1421 (2)0.0275 (14)
H171.52560.35140.15490.034*
C181.5047 (10)0.5438 (6)0.1375 (2)0.0333 (16)
H181.64830.56500.14770.042*
C191.3699 (10)0.6408 (6)0.1180 (2)0.0355 (16)
H191.42020.72790.11480.044*
C201.1603 (10)0.6076 (6)0.1034 (2)0.0363 (16)
H201.06600.67260.09030.045*
C211.0878 (10)0.4805 (6)0.1078 (2)0.0313 (15)
H210.94550.45850.09690.039*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.028 (3)0.033 (4)0.025 (3)0.001 (3)0.008 (3)0.005 (3)
O10.037 (2)0.029 (2)0.032 (2)0.000 (2)0.001 (2)0.007 (2)
C20.022 (3)0.023 (3)0.028 (3)0.005 (3)0.011 (2)0.000 (3)
C30.032 (3)0.020 (3)0.030 (4)0.003 (3)0.004 (3)0.009 (3)
O30.017 (2)0.053 (3)0.040 (3)0.0046 (19)0.0048 (19)0.007 (2)
N40.033 (3)0.024 (3)0.029 (3)0.006 (2)0.001 (2)0.005 (3)
C50.044 (4)0.043 (4)0.024 (3)0.002 (3)0.008 (3)0.004 (3)
C60.032 (3)0.050 (4)0.030 (3)0.001 (3)0.001 (3)0.000 (3)
C70.036 (4)0.049 (5)0.042 (4)0.007 (4)0.003 (3)0.004 (4)
C80.035 (3)0.041 (4)0.038 (4)0.002 (3)0.001 (3)0.000 (3)
C90.038 (4)0.031 (4)0.041 (4)0.008 (3)0.001 (3)0.003 (3)
N100.022 (2)0.026 (3)0.031 (3)0.000 (2)0.001 (2)0.006 (2)
C110.028 (3)0.036 (4)0.029 (3)0.004 (3)0.000 (3)0.000 (3)
C120.039 (4)0.026 (3)0.029 (3)0.005 (3)0.007 (3)0.005 (3)
C130.049 (4)0.024 (4)0.042 (4)0.002 (3)0.011 (3)0.006 (3)
C140.031 (4)0.038 (4)0.037 (4)0.009 (3)0.008 (3)0.011 (3)
C150.029 (3)0.033 (4)0.033 (3)0.004 (3)0.001 (3)0.001 (3)
C160.032 (3)0.021 (4)0.021 (3)0.001 (3)0.002 (3)0.006 (3)
C170.022 (3)0.034 (4)0.026 (3)0.002 (3)0.002 (3)0.009 (3)
C180.027 (3)0.044 (4)0.029 (3)0.006 (3)0.006 (3)0.012 (3)
C190.055 (4)0.027 (4)0.025 (3)0.001 (3)0.009 (3)0.002 (3)
C200.039 (4)0.043 (5)0.027 (3)0.003 (3)0.002 (3)0.007 (3)
C210.034 (3)0.033 (4)0.027 (3)0.010 (3)0.006 (3)0.002 (3)
Geometric parameters (Å, º) top
C3—O31.231 (6)C5—C61.519 (8)
C3—N101.361 (7)C5—H510.99
C3—C21.524 (7)C5—H520.99
C2—C161.516 (7)C6—C71.510 (8)
C2—C11.562 (8)C6—H610.99
C2—H21.00C6—H620.99
C1—O11.215 (6)C7—C81.509 (8)
C1—N41.360 (7)C7—H710.99
N10—C111.464 (7)C7—H720.99
N10—C151.483 (7)C8—C91.518 (8)
C11—C121.520 (8)C8—H810.99
C11—H1110.99C8—H820.99
C11—H1120.99C9—H910.99
C12—C131.512 (8)C9—H920.99
C12—H1210.99C16—C211.380 (8)
C12—H1220.99C16—C171.384 (7)
C13—C141.530 (8)C17—C181.384 (8)
C13—H1310.99C17—H170.95
C13—H1320.99C18—C191.394 (8)
C14—C151.524 (8)C18—H180.95
C14—H1410.99C19—C201.390 (8)
C14—H1420.99C19—H190.95
C15—H1510.99C20—C211.384 (8)
C15—H1520.99C20—H200.95
N4—C91.454 (7)C21—H210.95
N4—C51.484 (7)
O3—C3—N10121.0 (5)N4—C5—C6109.4 (5)
O3—C3—C2120.3 (5)N4—C5—H51109.8
N10—C3—C2118.7 (5)C6—C5—H51109.8
C16—C2—C3111.8 (4)N4—C5—H52109.8
C16—C2—C1110.0 (5)C6—C5—H52109.8
C3—C2—C1107.2 (4)H51—C5—H52108.2
C16—C2—H2109.3C7—C6—C5109.7 (5)
C3—C2—H2109.3C7—C6—H61109.7
C1—C2—H2109.3C5—C6—H61109.7
O1—C1—N4123.2 (5)C7—C6—H62109.7
O1—C1—C2120.4 (5)C5—C6—H62109.7
N4—C1—C2116.4 (5)H61—C6—H62108.2
C3—N10—C11119.8 (4)C8—C7—C6111.3 (5)
C3—N10—C15125.9 (4)C8—C7—H71109.4
C11—N10—C15112.7 (4)C6—C7—H71109.4
N10—C11—C12109.2 (5)C8—C7—H72109.4
N10—C11—H111109.8C6—C7—H72109.4
C12—C11—H111109.8H71—C7—H72108.0
N10—C11—H112109.8C7—C8—C9110.9 (5)
C12—C11—H112109.8C7—C8—H81109.5
H111—C11—H112108.3C9—C8—H81109.5
C13—C12—C11110.8 (5)C7—C8—H82109.5
C13—C12—H121109.5C9—C8—H82109.5
C11—C12—H121109.5H81—C8—H82108.0
C13—C12—H122109.5N4—C9—C8111.8 (5)
C11—C12—H122109.5N4—C9—H91109.2
H121—C12—H122108.1C8—C9—H91109.2
C12—C13—C14111.1 (5)N4—C9—H92109.2
C12—C13—H131109.4C8—C9—H92109.2
C14—C13—H131109.4H91—C9—H92107.9
C12—C13—H132109.4C21—C16—C17119.8 (5)
C14—C13—H132109.4C21—C16—C2119.6 (5)
H131—C13—H132108.0C17—C16—C2120.5 (5)
C15—C14—C13110.8 (5)C16—C17—C18119.9 (6)
C15—C14—H141109.5C16—C17—H17120.0
C13—C14—H141109.5C18—C17—H17120.0
C15—C14—H142109.5C17—C18—C19120.7 (6)
C13—C14—H142109.5C17—C18—H18119.6
H141—C14—H142108.1C19—C18—H18119.6
N10—C15—C14109.1 (4)C20—C19—C18118.6 (6)
N10—C15—H151109.9C20—C19—H19120.7
C14—C15—H151109.9C18—C19—H19120.7
N10—C15—H152109.9C21—C20—C19120.6 (6)
C14—C15—H152109.9C21—C20—H20119.7
H151—C15—H152108.3C19—C20—H20119.7
C1—N4—C9127.8 (5)C16—C21—C20120.3 (5)
C1—N4—C5118.7 (5)C16—C21—H21119.9
C9—N4—C5111.8 (5)C20—C21—H21119.9
O1—C1—C2—C1619.1 (7)O1—C1—N4—C57.7 (8)
N4—C1—C2—C16159.0 (5)C2—C1—N4—C5174.3 (4)
O1—C1—C2—C3102.6 (6)C1—N4—C5—C6106.2 (6)
N4—C1—C2—C379.3 (5)C9—N4—C5—C660.1 (6)
C16—C2—C3—O396.3 (6)N4—C5—C6—C758.8 (7)
C1—C2—C3—O324.2 (7)C5—C6—C7—C856.3 (7)
C16—C2—C3—N1083.4 (6)C6—C7—C8—C952.9 (7)
C1—C2—C3—N10156.1 (5)C1—N4—C9—C8107.4 (6)
O3—C3—N10—C119.4 (8)C5—N4—C9—C857.3 (6)
C2—C3—N10—C11170.9 (4)C7—C8—C9—N453.1 (7)
O3—C3—N10—C15173.6 (5)C3—C2—C16—C2144.3 (7)
C2—C3—N10—C156.7 (7)C1—C2—C16—C2174.6 (6)
C3—N10—C11—C12104.9 (5)C3—C2—C16—C17137.5 (5)
C15—N10—C11—C1261.3 (6)C1—C2—C16—C17103.6 (6)
N10—C11—C12—C1357.2 (6)C21—C16—C17—C182.2 (8)
C11—C12—C13—C1454.3 (7)C2—C16—C17—C18176.0 (5)
C12—C13—C14—C1553.6 (6)C16—C17—C18—C191.0 (8)
C3—N10—C15—C14104.7 (6)C17—C18—C19—C200.1 (8)
C11—N10—C15—C1460.5 (6)C18—C19—C20—C210.4 (9)
C13—C14—C15—N1055.2 (6)C17—C16—C21—C202.5 (9)
O1—C1—N4—C9171.5 (5)C2—C16—C21—C20175.7 (5)
C2—C1—N4—C910.5 (7)C19—C20—C21—C161.6 (9)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C5—H51···O10.992.342.757 (7)104
C9—H91···O1i0.992.523.436 (7)153
C11—H112···O30.992.322.735 (7)104
C15—H151···O3ii0.992.433.177 (7)132
C17—H17···O1ii0.952.593.340 (7)136
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z.
(II) 1,3-dimorpholino-2-phenylpropane-1,3-dione top
Crystal data top
C17H22N2O4Dx = 1.360 Mg m3
Mr = 318.37Melting point: 459-461 K K
Orthorhombic, P212121Mo Kα radiation, λ = 0.71073 Å
Hall symbol: P 2ac 2abCell parameters from 6411 reflections
a = 8.3900 (1) Åθ = 1.0–30.5°
b = 10.8464 (2) ŵ = 0.10 mm1
c = 17.0838 (4) ÅT = 120 K
V = 1554.65 (5) Å3Block, colourless
Z = 40.60 × 0.40 × 0.26 mm
F(000) = 680
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2032 independent reflections
Radiation source: Bruker Nonius FR591 rotating anode1909 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.066
Detector resolution: 9.091 pixels mm-1θmax = 27.5°, θmin = 2.2°
ϕ and ω scansh = 910
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
k = 1114
Tmin = 0.944, Tmax = 0.975l = 1822
9999 measured reflections
Refinement top
Refinement on F2Secondary atom site location: difference Fourier map
Least-squares matrix: fullHydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.039H-atom parameters constrained
wR(F2) = 0.103 w = 1/[σ2(Fo2) + (0.0639P)2 + 0.2187P]
where P = (Fo2 + 2Fc2)/3
S = 1.12(Δ/σ)max < 0.001
2032 reflectionsΔρmax = 0.38 e Å3
209 parametersΔρmin = 0.35 e Å3
0 restraintsExtinction correction: SHELXL07, Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methodsExtinction coefficient: 0.067 (7)
Crystal data top
C17H22N2O4V = 1554.65 (5) Å3
Mr = 318.37Z = 4
Orthorhombic, P212121Mo Kα radiation
a = 8.3900 (1) ŵ = 0.10 mm1
b = 10.8464 (2) ÅT = 120 K
c = 17.0838 (4) Å0.60 × 0.40 × 0.26 mm
Data collection top
Bruker–Nonius KappaCCD area-detector
diffractometer
2032 independent reflections
Absorption correction: multi-scan
(SORTAV; Blessing, 1995)
1909 reflections with I > 2σ(I)
Tmin = 0.944, Tmax = 0.975Rint = 0.066
9999 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0390 restraints
wR(F2) = 0.103H-atom parameters constrained
S = 1.12Δρmax = 0.38 e Å3
2032 reflectionsΔρmin = 0.35 e Å3
209 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
C10.9933 (2)0.34874 (16)0.78954 (10)0.0154 (4)
O11.02680 (19)0.24983 (11)0.75851 (8)0.0231 (3)
C20.9005 (2)0.44671 (17)0.74398 (10)0.0147 (4)
H20.95370.52850.75070.018*
C30.9009 (2)0.41155 (17)0.65666 (10)0.0174 (4)
O30.78446 (18)0.36214 (15)0.62747 (8)0.0273 (4)
N41.03130 (19)0.37393 (14)0.86451 (9)0.0170 (3)
C51.1032 (2)0.27872 (18)0.91380 (11)0.0207 (4)
H511.20870.30660.93270.026*
H521.11830.20220.88310.026*
C60.9946 (3)0.25402 (18)0.98249 (12)0.0255 (5)
H610.89210.22050.96320.032*
H621.04400.19121.01680.032*
O70.9653 (2)0.36275 (13)1.02649 (8)0.0276 (4)
C80.8912 (2)0.45425 (19)0.97879 (12)0.0232 (4)
H810.87260.52951.01030.029*
H820.78650.42350.96060.029*
C90.9936 (2)0.48630 (16)0.90849 (10)0.0178 (4)
H910.93600.54500.87430.022*
H921.09340.52620.92620.022*
N101.0324 (2)0.44033 (16)0.61470 (9)0.0201 (4)
C111.0427 (3)0.4011 (2)0.53262 (11)0.0242 (5)
H1111.06190.47360.49870.030*
H1120.94080.36260.51650.030*
C121.1765 (3)0.30997 (19)0.52314 (12)0.0260 (5)
H1211.15330.23520.55440.033*
H1221.18470.28530.46750.033*
O131.32469 (18)0.36189 (15)0.54814 (8)0.0277 (4)
C141.3176 (3)0.3948 (2)0.62909 (11)0.0248 (4)
H1411.42070.43130.64520.031*
H1421.29950.31980.66090.031*
C151.1845 (2)0.48672 (17)0.64430 (11)0.0190 (4)
H1511.17570.50210.70130.024*
H1521.21010.56590.61840.024*
C160.7307 (2)0.45459 (17)0.77398 (10)0.0159 (4)
C170.6589 (2)0.56884 (18)0.78233 (10)0.0192 (4)
H170.71580.64130.76840.024*
C180.5037 (2)0.57841 (19)0.81094 (11)0.0226 (4)
H180.45540.65710.81710.028*
C190.4205 (2)0.4727 (2)0.83027 (11)0.0228 (4)
H190.31450.47890.84950.028*
C200.4906 (2)0.3580 (2)0.82179 (11)0.0222 (4)
H200.43290.28550.83490.028*
C210.6463 (2)0.34934 (18)0.79396 (11)0.0192 (4)
H210.69490.27070.78860.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
C10.0131 (8)0.0174 (8)0.0157 (8)0.0004 (7)0.0019 (6)0.0005 (7)
O10.0298 (8)0.0184 (7)0.0209 (7)0.0062 (6)0.0015 (6)0.0029 (5)
C20.0164 (9)0.0158 (8)0.0120 (8)0.0003 (7)0.0009 (6)0.0022 (6)
C30.0183 (9)0.0201 (9)0.0139 (8)0.0014 (7)0.0010 (7)0.0021 (7)
O30.0233 (7)0.0400 (8)0.0188 (7)0.0058 (7)0.0020 (6)0.0085 (6)
N40.0153 (7)0.0197 (7)0.0160 (7)0.0031 (6)0.0010 (6)0.0001 (6)
C50.0195 (9)0.0249 (9)0.0178 (9)0.0047 (8)0.0002 (7)0.0028 (8)
C60.0309 (11)0.0237 (9)0.0219 (9)0.0008 (9)0.0051 (9)0.0034 (8)
O70.0405 (9)0.0254 (7)0.0169 (6)0.0004 (7)0.0052 (6)0.0015 (6)
C80.0236 (10)0.0241 (9)0.0218 (9)0.0013 (9)0.0041 (8)0.0026 (8)
C90.0194 (9)0.0179 (8)0.0161 (8)0.0008 (7)0.0017 (7)0.0025 (7)
N100.0203 (8)0.0274 (8)0.0127 (7)0.0012 (7)0.0010 (6)0.0038 (6)
C110.0292 (11)0.0313 (10)0.0121 (8)0.0013 (9)0.0025 (7)0.0045 (8)
C120.0343 (12)0.0220 (9)0.0218 (9)0.0026 (9)0.0080 (9)0.0029 (8)
O130.0265 (8)0.0341 (8)0.0225 (7)0.0016 (7)0.0082 (6)0.0021 (6)
C140.0238 (10)0.0318 (11)0.0187 (9)0.0014 (8)0.0032 (8)0.0009 (8)
C150.0196 (9)0.0207 (9)0.0167 (8)0.0030 (7)0.0022 (7)0.0008 (7)
C160.0173 (9)0.0195 (8)0.0109 (7)0.0000 (7)0.0009 (6)0.0015 (7)
C170.0195 (9)0.0191 (9)0.0189 (8)0.0002 (7)0.0019 (7)0.0013 (7)
C180.0198 (9)0.0256 (10)0.0224 (9)0.0064 (8)0.0019 (8)0.0012 (8)
C190.0152 (9)0.0359 (11)0.0173 (9)0.0029 (9)0.0016 (6)0.0004 (8)
C200.0222 (10)0.0277 (9)0.0168 (8)0.0083 (9)0.0007 (7)0.0005 (8)
C210.0207 (9)0.0192 (9)0.0178 (8)0.0012 (8)0.0026 (7)0.0015 (7)
Geometric parameters (Å, º) top
C1—O11.229 (2)C11—C121.505 (3)
C1—N41.348 (2)C11—H1110.99
C1—C21.530 (2)C11—H1120.99
C2—C161.516 (2)C12—O131.430 (3)
C2—C31.540 (2)C12—H1210.99
C2—H21.00C12—H1220.99
C3—O31.220 (2)O13—C141.429 (2)
C3—N101.353 (3)C14—C151.519 (3)
N4—C51.463 (2)C14—H1410.99
N4—C91.466 (2)C14—H1420.99
C5—C61.509 (3)C15—H1510.99
C5—H510.99C15—H1520.99
C5—H520.99C16—C171.385 (3)
C6—O71.420 (2)C16—C211.386 (3)
C6—H610.99C17—C181.395 (3)
C6—H620.99C17—H170.95
O7—C81.427 (3)C18—C191.382 (3)
C8—C91.517 (3)C18—H180.95
C8—H810.99C19—C201.384 (3)
C8—H820.99C19—H190.95
C9—H910.99C20—C211.393 (3)
C9—H920.99C20—H200.95
N10—C151.462 (2)C21—H210.95
N10—C111.468 (2)
O1—C1—N4122.18 (17)N10—C11—C12109.69 (17)
O1—C1—C2120.21 (16)N10—C11—H111109.7
N4—C1—C2117.57 (15)C12—C11—H111109.7
C16—C2—C1110.20 (14)N10—C11—H112109.7
C16—C2—C3110.07 (15)C12—C11—H112109.7
C1—C2—C3108.65 (14)H111—C11—H112108.2
C16—C2—H2109.3O13—C12—C11110.98 (16)
C1—C2—H2109.3O13—C12—H121109.4
C3—C2—H2109.3C11—C12—H121109.4
O3—C3—N10122.54 (16)O13—C12—H122109.4
O3—C3—C2120.20 (17)C11—C12—H122109.4
N10—C3—C2117.24 (16)H121—C12—H122108.0
C1—N4—C5120.09 (16)C14—O13—C12110.55 (15)
C1—N4—C9127.19 (15)O13—C14—C15111.10 (16)
C5—N4—C9112.38 (15)O13—C14—H141109.4
N4—C5—C6108.92 (16)C15—C14—H141109.4
N4—C5—H51109.9O13—C14—H142109.4
C6—C5—H51109.9C15—C14—H142109.4
N4—C5—H52109.9H141—C14—H142108.0
C6—C5—H52109.9N10—C15—C14110.89 (15)
H51—C5—H52108.3N10—C15—H151109.5
O7—C6—C5111.64 (16)C14—C15—H151109.5
O7—C6—H61109.3N10—C15—H152109.5
C5—C6—H61109.3C14—C15—H152109.5
O7—C6—H62109.3H151—C15—H152108.0
C5—C6—H62109.3C17—C16—C21119.26 (16)
H61—C6—H62108.0C17—C16—C2119.60 (16)
C6—O7—C8110.54 (16)C21—C16—C2121.13 (17)
O7—C8—C9111.40 (16)C16—C17—C18120.59 (18)
O7—C8—H81109.3C16—C17—H17119.7
C9—C8—H81109.3C18—C17—H17119.7
O7—C8—H82109.3C19—C18—C17119.57 (18)
C9—C8—H82109.3C19—C18—H18120.2
H81—C8—H82108.0C17—C18—H18120.2
N4—C9—C8109.71 (15)C18—C19—C20120.39 (17)
N4—C9—H91109.7C18—C19—H19119.8
C8—C9—H91109.7C20—C19—H19119.8
N4—C9—H92109.7C19—C20—C21119.66 (19)
C8—C9—H92109.7C19—C20—H20120.2
H91—C9—H92108.2C21—C20—H20120.2
C3—N10—C15127.47 (14)C16—C21—C20120.52 (19)
C3—N10—C11119.14 (16)C16—C21—H21119.7
C15—N10—C11112.29 (15)C20—C21—H21119.7
O1—C1—C2—C16106.91 (18)O3—C3—N10—C115.7 (3)
N4—C1—C2—C1671.0 (2)C2—C3—N10—C11175.85 (16)
O1—C1—C2—C313.8 (2)C3—N10—C11—C12115.2 (2)
N4—C1—C2—C3168.29 (15)C15—N10—C11—C1253.7 (2)
C16—C2—C3—O320.3 (2)N10—C11—C12—O1357.7 (2)
C1—C2—C3—O3100.5 (2)C11—C12—O13—C1460.9 (2)
C16—C2—C3—N10158.25 (16)C12—O13—C14—C1558.5 (2)
C1—C2—C3—N1081.0 (2)C3—N10—C15—C14115.8 (2)
O1—C1—N4—C55.1 (3)C11—N10—C15—C1452.0 (2)
C2—C1—N4—C5172.81 (15)O13—C14—C15—N1054.0 (2)
O1—C1—N4—C9177.95 (17)C1—C2—C16—C17139.41 (17)
C2—C1—N4—C90.0 (3)C3—C2—C16—C17100.77 (19)
C1—N4—C5—C6119.06 (19)C1—C2—C16—C2140.0 (2)
C9—N4—C5—C654.8 (2)C3—C2—C16—C2179.8 (2)
N4—C5—C6—O757.5 (2)C21—C16—C17—C180.4 (3)
C5—C6—O7—C860.1 (2)C2—C16—C17—C18179.03 (15)
C6—O7—C8—C958.5 (2)C16—C17—C18—C190.7 (3)
C1—N4—C9—C8119.39 (19)C17—C18—C19—C200.3 (3)
C5—N4—C9—C853.9 (2)C18—C19—C20—C210.3 (3)
O7—C8—C9—N455.0 (2)C17—C16—C21—C200.3 (3)
O3—C3—N10—C15172.72 (18)C2—C16—C21—C20179.70 (16)
C2—C3—N10—C158.8 (3)C19—C20—C21—C160.6 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.413.344 (2)155
C17—H17···O1i0.952.503.361 (2)150
C5—H52···O10.992.322.747 (2)105
C9—H92···O13ii0.992.513.275 (2)134
C11—H112···O30.992.312.738 (3)105
C12—H122···O3iii0.992.433.305 (2)148
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+5/2, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1.

Experimental details

(I)(II)
Crystal data
Chemical formulaC19H26N2O2C17H22N2O4
Mr314.42318.37
Crystal system, space groupOrthorhombic, P212121Orthorhombic, P212121
Temperature (K)120120
a, b, c (Å)6.1652 (3), 10.2718 (5), 26.1962 (17)8.3900 (1), 10.8464 (2), 17.0838 (4)
V3)1658.95 (16)1554.65 (5)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.080.10
Crystal size (mm)0.15 × 0.10 × 0.040.60 × 0.40 × 0.26
Data collection
DiffractometerBruker Nonius KappaCCD area-detector
diffractometer
Bruker–Nonius KappaCCD area-detector
diffractometer
Absorption correctionMulti-scan
(SORTAV; Blessing, 1995)
Multi-scan
(SORTAV; Blessing, 1995)
Tmin, Tmax0.988, 0.9970.944, 0.975
No. of measured, independent and
observed [I > 2σ(I)] reflections
6936, 2177, 1013 9999, 2032, 1909
Rint0.1760.066
(sin θ/λ)max1)0.6500.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.069, 0.177, 0.94 0.039, 0.103, 1.12
No. of reflections21772032
No. of parameters209209
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.34, 0.340.38, 0.35

Computer programs: DENZO (Otwinowski & Minor, 1997) and COLLECT (Nonius, 1998), DENZO and COLLECT, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLUTON94 (Spek, 1994) and PLATON97 (Spek, 1997), SHELXL97.

Selected torsion angles (º) for (I) top
O1—C1—C2—C1619.1 (7)C16—C2—C3—O396.3 (6)
N4—C1—C2—C16159.0 (5)C1—C2—C3—O324.2 (7)
O1—C1—C2—C3102.6 (6)C16—C2—C3—N1083.4 (6)
N4—C1—C2—C379.3 (5)C1—C2—C3—N10156.1 (5)
Hydrogen-bond geometry (Å, º) for (I) top
D—H···AD—HH···AD···AD—H···A
C5—H51···O10.992.342.757 (7)104
C9—H91···O1i0.992.523.436 (7)153
C11—H112···O30.992.322.735 (7)104
C15—H151···O3ii0.992.433.177 (7)132
C17—H17···O1ii0.952.593.340 (7)136
Symmetry codes: (i) x+2, y1/2, z+1/2; (ii) x+1, y, z.
Selected torsion angles (º) for (II) top
O1—C1—C2—C16106.91 (18)C16—C2—C3—O320.3 (2)
N4—C1—C2—C1671.0 (2)C1—C2—C3—O3100.5 (2)
O1—C1—C2—C313.8 (2)C16—C2—C3—N10158.25 (16)
N4—C1—C2—C3168.29 (15)C1—C2—C3—N1081.0 (2)
Hydrogen-bond geometry (Å, º) for (II) top
D—H···AD—HH···AD···AD—H···A
C2—H2···O1i1.002.413.344 (2)155
C17—H17···O1i0.952.503.361 (2)150
C5—H52···O10.992.322.747 (2)105
C9—H92···O13ii0.992.513.275 (2)134
C11—H112···O30.992.312.738 (3)105
C12—H122···O3iii0.992.433.305 (2)148
Symmetry codes: (i) x+2, y+1/2, z+3/2; (ii) x+5/2, y+1, z+1/2; (iii) x+1/2, y+1/2, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds