Download citation
Download citation
link to html
The title compound, whose structure has been redetermined at 120 K, contains almost centrosymmetric trans-[Zn(C5H5N4O3)2(H2O)2]·2H2O units, together with two uncoordinated water mol­ecules. An extensive series of O—H...O, O—H...N and N—H...O hydrogen bonds gives rise to a three-dimensional framework structure.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011168/gg1171sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011168/gg1171Isup2.hkl
Contains datablock I

CCDC reference: 217133

Comment top

We have recently reported detailed analyses of the supramolecular structures of neutral 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dione, (1) (Godino Salido et al., 2003), as well as for those of the hydrated sodium, strontium and barium complexes of the 6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionate anion, (2) (Cuesta et al., 2001; Low et al., 2003; López Garzón et al., 2003). The structure of the corresponding hydrated zinc complex bis[6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionato]diaquazinc(II) dihydrate, (I), was determined some years ago (Moreno et al., 1986) from data collected at ambient temperature, but no analysis or description of the supramolecular structure was given; accordingly, we have now re-investigated this complex using data collected at 120 (2) K, and we present here a detailed description of the hydrogen-bonded supramolecular structure. The unit-cell dimensions and atomic coordinates show clearly that the same phase is present at both 120 and 293 K.

The molecular structures at 120 and 298 K are essentially the same, with trans diaxial water molecules coordinated to zinc in an octahedral complex whose structure, although close to being centrosymmetric (Fig. 1), shows significant deviation from centrosymmetry (Table 1); each of the anionic ligands contains the usual intramolecular N—H···O hydrogen bond with the nitroso O atoms as acceptors. The bond distances in the two anions are very similar (Table 1), and there are some unexpected values; firstly, the bonds Nn1—Cn2 (n = 1 or 2) are longer than Nn1—Cn6, secondly, the bonds Cn4—Cn5 and Cn5—Cn6 are very similar in length and, finally, the bonds Cn4—On4 are significantly longer than the bonds Cn2—On2. These observations taken together indicate the importance of form (2a) as an important contributor to the overall molecular–electronic structure, alongside form (2).

Within the asymmetric unit selected here, atom N16 acts as a hydrogen-bond donor to water atom O3, which itself acts as a donor via H3A to water atom O4, and this in turn acts as a donor via H4B to N11, so forming an R33(8) motif (Bernstein et al., 1995) (Fig. 1). There are thus six O—H bonds and one N—H bond not engaged in hydrogen bonding within the asymmetric unit (Table 2); these are thus all available to link the three-component aggregates, so forming a three-dimensional framework whose construction can be readily understood by use of the substructure approach (Gregson et al., 2000).

Coordinated water atom O1 in the aggregate at (x, y, z) acts as a hydrogen-bond donor, via H1A, to amide atom O22 in the aggregate at (x, 1 + y, z), while O2 at (x, y, z) acts as a donor, via H2A, to amide atom O12 at (x, −1 + y, z). The combination of these two hydrogen bonds generates a chain of spiro-fused R22(16) rings running parallel to the [010] direction (Fig. 2). This [010] chain is reinforced by the action of water atom O4 at (x, y, z), which acts as a hydrogen-bond donor, via H4A, in a weak but nearly-planar three-centre O—H····(O)2 system in which the acceptors are atoms O15 and O24 in the aggregate at (x, 1 + y, z).

Water atom O1 at (x, y, z) also acts as a hydrogen-bond donor, this time via H1B, to ring atom N21 in the aggregate at (1 − x, −y, 1 − z), so producing an R22(16) ring centred at (1/2, 0, 1/2); O2 at (x, y, z) likewise acts as a donor, via H2B, to water atom O4 at (-x, 1 − y, −z), producing an R44(20) ring centred at (0, 1/2, 0); and O3 at (x, y, z) acts as a donor, via H3B, to atom O1 at (-x, 1 − y, 1 − z), producing a third ring, this time of the R44(20) type centred at (0, 1/2, 1/2). The combination of the (0, 1/2, 0) and (0, 1/2, 1/2) rings produces a chain of rings along [001] (Fig. 3); the combination of the (1/2, 0, 1/2) and (0, 1/2,0.5) rings produces a chain of rings along [110] (Fig. 4), and the combination of the (1/2, 0, 1/2) and (0, 1/2, 0) rings produces a chain of rings along [111] (Fig. 5). The combination of the [001], [110] and [111] chains generates a (110) sheet, and the combination of (110) sheets with [010] chains (Fig. 2) generates a single three-dimensional framework.

Experimental top

Compound (I) was prepared by a addition of a threefold molar excess of zinc chloride to a solution of the corresponding potassium salt in methanol/water (9/1, v/v). Slow evaporation of the resulting solution gave orange crystals of analytically pure (I). Analysis found: C 25.5, H 4.1, N 23.6%; C10H18N8O10Zn requires: C 25.2, H 3.8, N 23.6%. Crystals suitable for single-crystal X-ray diffraction were selected directly from the prepared sample.

Refinement top

Crystals of (I) are triclinic and space group P1 was selected and confirmed by the successful structure solution and refinement. It was clear from an early stage that the atomic coordinates were essentially the same as those found in the ambient-temperature study (Moreno et al., 1986). To facilitate comparison with that study, we have retained the same non-conventional cell setting, although we have used the same atom-labelling scheme as used in our previous studies; in addition, we have used positions for the two non-coordinated water molecules which differ from those adopted earlier. H atoms bonded to C and N atoms were treated as riding atoms, with C—H distances of 0.98 Å and N—H distances of 0.88 Å; the H atoms bonded to O atoms were all located from difference maps and allowed to ride at the O—H distances, viz. 0.81–0.94 Å, deduced from the maps. The principal differences between the refinement reported here and that reported previously concern the weighting scheme, the convergence, and the goodness-of-fit, where the earlier refinement employed weights w = [σ2(F)]−1, with a maximum shift/s.u. value of 1.87 and an S value of 0.781 for a final R value of 0.042.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO–SMN (Otwinowski & Minor, 1997); data reduction: DENZO–SMN; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The independent components of compound (I), showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of a chain of spiro-fused rings along [010]. For the sake of clarity, the H atoms bonded to C atoms have been omitted, as have the non-coordinated water molecules. Atoms marked with an asterisk (*) or hash (#) are at the symmetry positions (x, 1 + y, z) and (x, −1 + y, z), respectively.
[Figure 3] Fig. 3. Stereoview of part of the crystal structure of (I), showing the formation of a [001] chain of fused R44(20) rings. For the sake of clarity, H atoms bonded to C atoms have been omitted.
[Figure 4] Fig. 4. Stereoview of part of the crystal structure of (I), showing formation of a [110] chain of fused R22(16) and R44(20) rings. For the sake of clarity, H atoms bonded to C atoms and to water atom O4 have been omitted.
[Figure 5] Fig. 5. Stereoview of part of the crystal structure of (I), showing the formation of a [111] chain of fused R22(16) and R44(20) rings. For the sake of clarity, H atoms bonded to C atoms and to water atom O3 have been omitted.
bis[6-amino-3-methyl-5-nitrosopyrimidine-2,4(1H,3H)-dionato]diaquazinc(II) dihydrate top
Crystal data top
[Zn(C5H7N4O4)2]·2H2OZ = 2
Mr = 475.69F(000) = 488
Triclinic, P1Dx = 1.873 Mg m3
Hall symbol: -P 1Mo Kα radiation, λ = 0.71073 Å
a = 11.3625 (2) ÅCell parameters from 3873 reflections
b = 9.5848 (2) Åθ = 3.0–27.5°
c = 8.0433 (2) ŵ = 1.53 mm1
α = 102.2410 (8)°T = 120 K
β = 94.2412 (11)°Block, orange
γ = 97.7735 (11)°0.40 × 0.20 × 0.15 mm
V = 843.41 (3) Å3
Data collection top
Nonius KappaCCD
diffractometer
3873 independent reflections
Radiation source: rotating anode3652 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.070
ϕ scans, and ω scans with κ offsetsθmax = 27.5°, θmin = 3.0°
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
h = 1414
Tmin = 0.579, Tmax = 0.803k = 1212
15390 measured reflectionsl = 1010
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.028Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.102H-atom parameters constrained
S = 1.21 w = 1/[σ2(Fo2) + (0.0547P)2 + 0.5527P]
where P = (Fo2 + 2Fc2)/3
3873 reflections(Δ/σ)max < 0.001
264 parametersΔρmax = 0.81 e Å3
0 restraintsΔρmin = 0.82 e Å3
Crystal data top
[Zn(C5H7N4O4)2]·2H2Oγ = 97.7735 (11)°
Mr = 475.69V = 843.41 (3) Å3
Triclinic, P1Z = 2
a = 11.3625 (2) ÅMo Kα radiation
b = 9.5848 (2) ŵ = 1.53 mm1
c = 8.0433 (2) ÅT = 120 K
α = 102.2410 (8)°0.40 × 0.20 × 0.15 mm
β = 94.2412 (11)°
Data collection top
Nonius KappaCCD
diffractometer
3873 independent reflections
Absorption correction: multi-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
3652 reflections with I > 2σ(I)
Tmin = 0.579, Tmax = 0.803Rint = 0.070
15390 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0280 restraints
wR(F2) = 0.102H-atom parameters constrained
S = 1.21Δρmax = 0.81 e Å3
3873 reflectionsΔρmin = 0.82 e Å3
264 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
Zn10.29218 (2)0.19497 (2)0.21546 (3)0.01148 (10)
N110.08914 (17)0.6416 (2)0.1387 (2)0.0150 (4)
C120.18549 (19)0.6603 (2)0.0500 (3)0.0146 (4)
O120.20890 (16)0.76744 (17)0.0086 (2)0.0217 (4)
N130.26318 (16)0.55620 (19)0.0221 (2)0.0132 (4)
C130.3634 (2)0.5811 (3)0.0804 (3)0.0194 (5)
C140.25103 (19)0.4379 (2)0.0901 (3)0.0124 (4)
O140.32660 (14)0.35417 (16)0.0758 (2)0.0142 (3)
C150.14517 (18)0.4144 (2)0.1790 (3)0.0121 (4)
N150.13637 (16)0.29441 (19)0.2377 (2)0.0132 (3)
O150.04770 (14)0.25503 (18)0.3153 (2)0.0204 (3)
C160.06631 (19)0.5222 (2)0.1991 (3)0.0135 (4)
N160.02826 (17)0.5031 (2)0.2825 (2)0.0171 (4)
N210.46031 (16)0.2580 (2)0.3670 (2)0.0136 (4)
C220.35547 (18)0.2684 (2)0.4385 (3)0.0111 (4)
O220.31783 (14)0.37343 (16)0.4951 (2)0.0168 (3)
N230.28497 (16)0.15615 (18)0.4499 (2)0.0112 (3)
C230.1810 (2)0.1647 (2)0.5473 (3)0.0161 (4)
C240.30794 (18)0.0462 (2)0.3690 (3)0.0113 (4)
O240.23699 (14)0.04297 (16)0.36609 (19)0.0137 (3)
C250.41895 (19)0.0363 (2)0.2911 (3)0.0120 (4)
N250.43853 (17)0.0796 (2)0.2211 (2)0.0154 (4)
O250.53556 (14)0.10828 (18)0.1591 (2)0.0204 (3)
C260.49402 (18)0.1454 (2)0.2979 (3)0.0126 (4)
N260.59717 (17)0.1356 (2)0.2324 (3)0.0177 (4)
O10.36191 (14)0.34881 (17)0.4478 (2)0.0179 (3)
O20.21359 (14)0.04606 (16)0.0123 (2)0.0154 (3)
O30.19013 (16)0.71519 (19)0.3114 (2)0.0228 (4)
O40.01861 (15)0.90508 (18)0.2039 (2)0.0234 (4)
H13A0.42470.65810.01280.029*
H13B0.33410.60980.18400.029*
H13C0.39780.49210.11260.029*
H16A0.07590.56880.29810.021*
H16B0.04360.42470.32240.021*
H23A0.15500.06990.57500.024*
H23B0.20280.19440.65340.024*
H23C0.11580.23570.47870.024*
H26A0.64280.20260.23450.021*
H26B0.62030.06210.18670.021*
H1A0.36190.44270.46150.021*
H1B0.42600.33390.51950.021*
H2A0.20110.04830.01700.018*
H2B0.14580.04970.07870.018*
H3A0.14080.79580.31700.027*
H3B0.21700.72310.40300.027*
H4A0.03030.97810.25630.028*
H4B0.01690.83500.18050.028*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
Zn10.01350 (15)0.00922 (14)0.01376 (15)0.00424 (9)0.00287 (9)0.00508 (9)
N110.0189 (9)0.0118 (8)0.0145 (9)0.0063 (7)0.0001 (7)0.0016 (7)
C120.0181 (10)0.0108 (9)0.0138 (10)0.0033 (8)0.0031 (8)0.0013 (7)
O120.0304 (9)0.0108 (7)0.0264 (9)0.0039 (7)0.0024 (7)0.0091 (6)
N130.0154 (8)0.0106 (8)0.0139 (8)0.0014 (7)0.0010 (7)0.0042 (7)
C130.0206 (11)0.0171 (11)0.0230 (11)0.0019 (8)0.0072 (9)0.0092 (9)
C140.0150 (10)0.0096 (9)0.0115 (9)0.0005 (7)0.0000 (7)0.0015 (7)
O140.0159 (7)0.0110 (7)0.0183 (7)0.0048 (6)0.0047 (6)0.0064 (6)
C150.0135 (9)0.0107 (9)0.0118 (9)0.0026 (7)0.0005 (7)0.0017 (7)
N150.0133 (8)0.0136 (8)0.0145 (8)0.0037 (7)0.0020 (7)0.0057 (7)
O150.0161 (8)0.0238 (9)0.0266 (9)0.0052 (6)0.0105 (6)0.0135 (7)
C160.0156 (10)0.0128 (9)0.0108 (9)0.0044 (8)0.0020 (7)0.0001 (7)
N160.0168 (9)0.0183 (9)0.0172 (9)0.0060 (7)0.0028 (7)0.0037 (7)
N210.0147 (9)0.0123 (8)0.0144 (8)0.0039 (7)0.0008 (7)0.0032 (7)
C220.0131 (9)0.0096 (9)0.0099 (9)0.0019 (7)0.0009 (7)0.0016 (7)
O220.0222 (8)0.0107 (7)0.0196 (8)0.0028 (6)0.0044 (6)0.0074 (6)
N230.0140 (8)0.0090 (8)0.0118 (8)0.0023 (6)0.0035 (6)0.0036 (6)
C230.0179 (10)0.0167 (10)0.0152 (10)0.0032 (8)0.0071 (8)0.0046 (8)
C240.0144 (10)0.0087 (9)0.0099 (9)0.0004 (7)0.0004 (7)0.0017 (7)
O240.0175 (7)0.0097 (7)0.0156 (7)0.0047 (6)0.0023 (6)0.0047 (6)
C250.0144 (10)0.0098 (9)0.0114 (9)0.0014 (7)0.0001 (7)0.0017 (7)
N250.0167 (9)0.0149 (9)0.0145 (9)0.0020 (7)0.0021 (7)0.0030 (7)
O250.0163 (8)0.0206 (8)0.0268 (9)0.0030 (6)0.0081 (6)0.0085 (7)
C260.0142 (10)0.0119 (9)0.0100 (9)0.0020 (7)0.0009 (7)0.0002 (7)
N260.0152 (9)0.0186 (9)0.0203 (9)0.0038 (7)0.0053 (7)0.0047 (7)
O10.0215 (8)0.0104 (7)0.0201 (8)0.0045 (6)0.0050 (6)0.0012 (6)
O20.0194 (8)0.0098 (7)0.0165 (7)0.0020 (6)0.0000 (6)0.0028 (6)
O30.0242 (9)0.0272 (9)0.0199 (8)0.0089 (7)0.0085 (7)0.0066 (7)
O40.0162 (8)0.0180 (8)0.0340 (10)0.0026 (6)0.0019 (7)0.0035 (7)
Geometric parameters (Å, º) top
Zn1—O12.1428 (16)C22—N231.418 (3)
Zn1—O142.0913 (15)N23—C241.358 (3)
Zn1—N152.1228 (18)C24—C251.450 (3)
Zn1—O22.1200 (15)C25—C261.443 (3)
Zn1—O242.1442 (15)C26—N211.340 (3)
Zn1—N252.1205 (19)C22—O221.229 (3)
N11—C121.362 (3)N23—C231.468 (3)
C12—N131.414 (3)C24—O241.254 (3)
N13—C141.354 (3)C25—N251.348 (3)
C14—C151.460 (3)N25—O251.264 (2)
C15—C161.449 (3)C26—N261.320 (3)
C16—N111.337 (3)C23—H23A0.98
C12—O121.224 (3)C23—H23B0.98
N13—C131.477 (3)C23—H23C0.98
C14—O141.248 (3)N26—H26A0.88
C15—N151.327 (3)N26—H26B0.88
N15—O151.279 (2)O1—H1A0.88
C16—N161.320 (3)O1—H1B0.94
C13—H13A0.98O2—H2A0.89
C13—H13B0.98O2—H2B0.91
C13—H13C0.98O3—H3A0.88
N16—H16A0.88O3—H3B0.81
N16—H16B0.88O4—H4A0.84
N21—C221.361 (3)O4—H4B0.82
O14—Zn1—O289.72 (6)C16—N16—H16A120.0
O14—Zn1—N25109.95 (7)C16—N16—H16B120.0
O2—Zn1—N2589.87 (7)H16A—N16—H16B120.0
O14—Zn1—N1578.39 (6)C26—N21—C22120.03 (18)
O2—Zn1—N1591.75 (6)O22—C22—N21122.31 (19)
O14—Zn1—O24172.82 (5)O22—C22—N23117.32 (19)
N15—Zn1—N25171.51 (7)N21—C22—N23120.37 (18)
O1—Zn1—O2176.78 (6)C24—N23—C22122.30 (18)
O14—Zn1—O190.29 (6)C24—N23—C23119.86 (17)
N25—Zn1—O193.15 (7)C22—N23—C23117.79 (17)
N15—Zn1—O185.10 (6)N23—C23—H23A109.5
O2—Zn1—O2491.02 (6)N23—C23—H23B109.5
N25—Zn1—O2477.20 (6)H23A—C23—H23B109.5
N15—Zn1—O2494.44 (6)N23—C23—H23C109.5
O1—Zn1—O2488.57 (6)H23A—C23—H23C109.5
C16—N11—C12119.79 (18)H23B—C23—H23C109.5
O12—C12—N11121.8 (2)O24—C24—N23120.92 (19)
O12—C12—N13117.0 (2)O24—C24—C25122.51 (19)
N11—C12—N13121.13 (19)N23—C24—C25116.55 (18)
C14—N13—C12122.46 (18)C24—O24—Zn1112.06 (13)
C14—N13—C13119.34 (18)N25—C25—C26128.2 (2)
C12—N13—C13118.16 (17)N25—C25—C24113.15 (18)
N13—C13—H13A109.5C26—C25—C24118.67 (18)
N13—C13—H13B109.5O25—N25—C25120.38 (19)
H13A—C13—H13B109.5O25—N25—Zn1125.29 (15)
N13—C13—H13C109.5C25—N25—Zn1114.26 (14)
H13A—C13—H13C109.5N26—C26—N21119.15 (19)
H13B—C13—H13C109.5N26—C26—C25119.51 (19)
O14—C14—N13121.19 (19)N21—C26—C25121.32 (19)
O14—C14—C15122.45 (18)C26—N26—H26A120.0
N13—C14—C15116.36 (18)C26—N26—H26B120.0
C14—O14—Zn1111.93 (13)H26A—N26—H26B120.0
N15—C15—C16127.8 (2)Zn1—O1—H1A123.3
N15—C15—C14113.47 (18)Zn1—O1—H1B121.6
C16—C15—C14118.64 (18)H1A—O1—H1B108.7
O15—N15—C15121.90 (18)Zn1—O2—H2A120.9
O15—N15—Zn1125.01 (14)Zn1—O2—H2B127.7
C15—N15—Zn1112.66 (14)H2A—O2—H2B97.5
N16—C16—N11119.70 (19)H3A—O3—H3B106.6
N16—C16—C15119.0 (2)H4A—O4—H4B109.3
N11—C16—C15121.3 (2)
C16—N11—C12—O12179.4 (2)C26—N21—C22—O22176.01 (19)
C16—N11—C12—N130.8 (3)C26—N21—C22—N234.0 (3)
O12—C12—N13—C14175.64 (19)O22—C22—N23—C24169.71 (18)
N11—C12—N13—C144.2 (3)N21—C22—N23—C2410.3 (3)
O12—C12—N13—C132.3 (3)O22—C22—N23—C237.6 (3)
N11—C12—N13—C13177.84 (19)N21—C22—N23—C23172.40 (18)
C12—N13—C14—O14173.79 (19)C22—N23—C24—O24172.28 (18)
C13—N13—C14—O144.1 (3)C23—N23—C24—O245.0 (3)
C12—N13—C14—C156.5 (3)C22—N23—C24—C259.1 (3)
C13—N13—C14—C15175.57 (18)C23—N23—C24—C25173.58 (18)
N13—C14—O14—Zn1174.01 (15)N23—C24—O24—Zn1176.34 (15)
C15—C14—O14—Zn16.3 (2)C25—C24—O24—Zn15.2 (2)
O2—Zn1—O14—C1499.97 (14)O2—Zn1—O24—C2482.70 (14)
N25—Zn1—O14—C14170.27 (14)N25—Zn1—O24—C246.94 (14)
N15—Zn1—O14—C148.13 (14)N15—Zn1—O24—C24174.53 (14)
O1—Zn1—O14—C1476.80 (14)O1—Zn1—O24—C24100.50 (14)
O14—C14—C15—N151.8 (3)O24—C24—C25—N251.8 (3)
N13—C14—C15—N15177.91 (18)N23—C24—C25—N25176.72 (18)
O14—C14—C15—C16175.99 (19)O24—C24—C25—C26178.86 (18)
N13—C14—C15—C164.3 (3)N23—C24—C25—C262.6 (3)
C16—C15—N15—O154.2 (3)C26—C25—N25—O254.2 (3)
C14—C15—N15—O15178.29 (18)C24—C25—N25—O25175.01 (18)
C16—C15—N15—Zn1168.74 (17)C26—C25—N25—Zn1172.79 (17)
C14—C15—N15—Zn18.8 (2)C24—C25—N25—Zn18.0 (2)
O14—Zn1—N15—O15178.07 (18)O14—Zn1—N25—O254.23 (19)
O2—Zn1—N15—O1588.72 (17)O2—Zn1—N25—O2593.88 (17)
O1—Zn1—N15—O1590.62 (17)O1—Zn1—N25—O2587.23 (17)
O24—Zn1—N15—O152.45 (17)O24—Zn1—N25—O25175.04 (18)
O14—Zn1—N15—C159.25 (14)O14—Zn1—N25—C25172.61 (14)
O2—Zn1—N15—C1598.61 (15)O2—Zn1—N25—C2582.95 (15)
O1—Zn1—N15—C1582.06 (15)O1—Zn1—N25—C2595.93 (15)
O24—Zn1—N15—C15170.23 (14)O24—Zn1—N25—C258.12 (14)
C12—N11—C16—N16178.83 (19)C22—N21—C26—N26178.61 (19)
C12—N11—C16—C152.8 (3)C22—N21—C26—C252.5 (3)
N15—C15—C16—N161.2 (3)N25—C25—C26—N261.3 (3)
C14—C15—C16—N16178.62 (18)C24—C25—C26—N26177.88 (18)
N15—C15—C16—N11177.1 (2)N25—C25—C26—N21177.6 (2)
C14—C15—C16—N110.3 (3)C24—C25—C26—N213.2 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···O30.882.032.906 (3)175
N16—H16B···O150.882.042.694 (3)131
N26—H26A···O3i0.882.253.063 (3)154
N26—H26B···O250.882.052.696 (3)130
N26—H26B···O2ii0.882.443.034 (3)125
O1—H1A···O22iii0.881.872.728 (2)164
O1—H1B···N21iv0.941.842.763 (2)166
O2—H2A···O12v0.891.802.670 (2)168
O2—H2B···O4vi0.911.852.754 (2)169
O3—H3A···O40.882.012.795 (3)147
O3—H3B···O1vii0.812.232.946 (2)148
O4—H4A···O24iii0.842.403.091 (2)140
O4—H4A···O15iii0.842.573.250 (2)138
O4—H4B···N110.822.102.919 (2)172
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y+1, z+1.

Experimental details

Crystal data
Chemical formula[Zn(C5H7N4O4)2]·2H2O
Mr475.69
Crystal system, space groupTriclinic, P1
Temperature (K)120
a, b, c (Å)11.3625 (2), 9.5848 (2), 8.0433 (2)
α, β, γ (°)102.2410 (8), 94.2412 (11), 97.7735 (11)
V3)843.41 (3)
Z2
Radiation typeMo Kα
µ (mm1)1.53
Crystal size (mm)0.40 × 0.20 × 0.15
Data collection
DiffractometerNonius KappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO-SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.579, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
15390, 3873, 3652
Rint0.070
(sin θ/λ)max1)0.650
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.028, 0.102, 1.21
No. of reflections3873
No. of parameters264
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.81, 0.82

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO–SMN (Otwinowski & Minor, 1997), DENZO–SMN, SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
Zn1—O12.1428 (16)C15—N151.327 (3)
Zn1—O142.0913 (15)N15—O151.279 (2)
Zn1—N152.1228 (18)C16—N161.320 (3)
Zn1—O22.1200 (15)N21—C221.361 (3)
Zn1—O242.1442 (15)C22—N231.418 (3)
Zn1—N252.1205 (19)N23—C241.358 (3)
N11—C121.362 (3)C24—C251.450 (3)
C12—N131.414 (3)C25—C261.443 (3)
N13—C141.354 (3)C26—N211.340 (3)
C14—C151.460 (3)C22—O221.229 (3)
C15—C161.449 (3)N23—C231.468 (3)
C16—N111.337 (3)C24—O241.254 (3)
C12—O121.224 (3)C25—N251.348 (3)
N13—C131.477 (3)N25—O251.264 (2)
C14—O141.248 (3)C26—N261.320 (3)
O14—Zn1—O24172.82 (5)O1—Zn1—O2176.78 (6)
N15—Zn1—N25171.51 (7)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N16—H16A···O30.882.032.906 (3)175
N16—H16B···O150.882.042.694 (3)131
N26—H26A···O3i0.882.253.063 (3)154
N26—H26B···O250.882.052.696 (3)130
N26—H26B···O2ii0.882.443.034 (3)125
O1—H1A···O22iii0.881.872.728 (2)164
O1—H1B···N21iv0.941.842.763 (2)166
O2—H2A···O12v0.891.802.670 (2)168
O2—H2B···O4vi0.911.852.754 (2)169
O3—H3A···O40.882.012.795 (3)147
O3—H3B···O1vii0.812.232.946 (2)148
O4—H4A···O24iii0.842.403.091 (2)140
O4—H4A···O15iii0.842.573.250 (2)138
O4—H4B···N110.822.102.919 (2)172
Symmetry codes: (i) x+1, y1, z; (ii) x+1, y, z; (iii) x, y+1, z; (iv) x+1, y, z+1; (v) x, y1, z; (vi) x, y+1, z; (vii) x, y+1, z+1.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds