Download citation
Download citation
link to html
The title compound, C18H17N3O2, crystallizes with Z' = 2 in space group P21/c, and the two independent mol­ecules are approximate, but not exact, mirror images. The molecular-electronic structure is strongly polarized, and the mol­ecules are linked by paired N-H...O hydrogen bonds [H...O = 2.00-2.23 Å, N...O = 2.798 (3)-2.992 (3) Å and N-H...O = 145-151°] into two independent C(4)C(6)[R21(6)] chains of rings, which are linked into sheets by a single aromatic [pi]-[pi]-stacking interaction.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103011132/gg1169sup1.cif
Contains datablocks global, I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103011132/gg1169Isup2.hkl
Contains datablock I

CCDC reference: 217155

Comment top

Selective mono-benzylation of heterocyclic primary amines has been achieved under non-classical conditions, consisting of treatment with a large excess of sodium benzylate at temperatures above 403 K?, by Koyama et al. (1996). Although these authors proposed a mechanism for this transformation, this proved to be inconsistent with some experimental observations, including the failure of this procedure to effect N-benzylation of aniline. These anomalies, together with the evident synthetic potential of such a selective procedure, led us to reinvestigate this reaction. We report here the structure of 2-Benzylamino-6-benzyloxypyrimidin-4(3H)-one, (I), which has been prepared from 2-amino-6-chloropyrimidin-4(3H)-one. This is the first time that this unusual benzylation procedure has been applied to a pyrimidine derivative containing a tautomerizable oxo substituent. Compounds such as (I) are valuable synthetic intermediates for the synthesis of new biologically active products. We have reported previously the structures of several fully aromatic substituted pyrimidines obtained using this benzylation procedure (Low et al., 2002; Glidewell et al., 2003).

The corresponding bond distances (Table 1) in the two independent molecules of (I) are very similar, and several of these distances provide evidence of a strongly polarized molecular–electronic structure. Thus, within each molecule, the Nn2—Cn2, Cn2—Nn3 and Nn3—Cn4 distances (n = 1 or 2) are similar to one another, and certainly do not permit the assignment implied by the classically localized structure, (I), in which Cn2—Nn3 is a double bond and both Nn2—Cn2 and Nn3—Cn4 are single bonds. Similarly the Cn4—Cn5 and Cn5—Cn6 distances both lie between the expected (Allen et al., 1987) values for single and double bonds connecting two three-coordinate C atoms (mean values 1.458 and 1.317 Å, respectively). Finally the Cn6—On6 distances are significantly longer than the mean value, 1.231 Å, found in substituted carboxamides. These observations, taken together, point to the importance of the polarized form, (Ia), as a contributor to the overall molecular–electronic structure. On the other hand, the Nn1—Cn6 bonds are significantly longer than the upper-quartile value, 1.343 Å, for such bonds in simple amides, thus effectively ruling out the alternative polarized form, (Ib).

The two independent molecules of (I) adopt conformations that are almost mirror images of one another (Fig. 1); however, detailed examination of the key torsion angles (Table 1) shows that this apparent equivalence is only approximate. In addition, the ADDSYM facility in PLATON (Spek, 2003) confirmed the absence of any additional symmetry.

The molecules of each type (Fig. 1) are linked into chains of rings by means of N—H···O hydrogen bonds, but there are no hydrogen bonds between molecules of different types. In the chain formed by the type 1 molecules, atoms N11 and N12 in the molecule at (x, y, z) both act as hydrogen-bond donors to atom O16 in the molecule at (-x, −0.5 + y, 0.5 − z), so producing a C(4) C(6)[R12(6)] chain of rings (Bernstein et al., 1995) running parallel to the [010] direction and generated by the 21 screw axis along (0, y, 1/4) (Fig. 2). An antiparallel chain of type 1 molecules is generated by the screw axis along (0, −y, 3/4). Atoms N21 and N22 in the type 2 molecule at (x, y, z) likewise act as hydrogen-bond donors to atom O26 at (1 − x, 0.5 + y, 0.5 − z), so producing a similar chain of rings generated by the screw axis along (1/2, y, 1/4) (Fig. 3), with an antiparallel chain of type 2 molecules along (1/2, −y, 3/4). The dimensions of the hydrogen bonds in the two chains (Table 2) preclude any additional symmetry. The distinction between the two molecular types is emphasized by the existence of a weak C—H···π(arene) interactions in the type 2 chain, whereas there is no interaction of this type in the type 1 chain. The fact that atoms On6 act as double acceptors of hydrogen bonds while atoms On4 do not act as acceptors at all is consistent with the contribution of the polarized form, (Ia).

The two types of chain are weakly linked into sheets by a single aromatic ππ stacking interaction. The C121–C122 and C241–C246 rings in the molecules at (x, y, z) and (−1 + x, −1 + y, z), respectively, are nearly parallel, the dihedral angle between their planes being only 1.8 (2)°. Their centroid separation is 3.812 (2) Å, and the interplanar spacing is ca 3.46 Å, corresponding to a centroid offset of ca 1.65 Å. These two molecules lie, respectively, in the chain generated by the screw axes along (0, y, 1/4) and (−0.5, y, 1/4), and propagation of the ππ interaction thus generates a (001) sheet containing the screw axes at z = 0.25. A second sheet, containing the screw axes at z = 3/4, is related to the first by inversion, but there are no direction-specific interactions between adjacent sheets.

Experimental top

2-Amino-6-chloropyrimidine-4(3H)-one (10.33 mmol) was added to a stirred solution of sodium benzylate (61.83 mmol) in toluene (50 cm3), and the resulting mixture was heated under reflux, with stirring, for 56 h. After cooling, diethyl ether (60 cm3), toluene (30 cm3) and a solution of ammonium chloride (75.5 mmol) in water (15 cm3) were successively added. The mixture was stirred for 1 h and then filtered through a silica-gel bed (silica gel 60 for flash chromatography). The silica gel was washed with toluene (3 × 40 cm3) and diethyl ether (3 × 40 cm3) and the filtrate and the mother liquors were pooled together. The solvent was evaporated under reduced pressure, yielding the desired product, (I), as a white solid (yield 70%, m.p. 432 K). NMR (CDCl3): δ(H) 4.47 (2H, s, CH2), 4.47 (s, 1H, NH), 4.84 (2H, s, CH2), 7.20 (10H, m, 2 x Ph), 11.41 (s, 1H, NH); δ(C) 44.8, 68.2, 81.3, 127.5, 127.5, 127.8, 127.9, 128.5, 128.6, 136.7, 138.0, 154.3, 166.7, 171.9. Crystals suitable for single-crystal X-ray diffraction were obtained by slow evaporation of a solution of ethyl acetate.

Refinement top

Crystals of (I) are monoclinic and the space group P21/c was uniquely assigned from the systematic absences. H atoms were treated as riding atoms, with C—H distances of 0.95 (aromatic) and 0.99 Å (CH2), and N—H distances of 0.88 Å.

Computing details top

Data collection: KappaCCD Server Software (Nonius, 1997); cell refinement: DENZO-SMN (Otwinowski & Minor, 1997); data reduction: DENZO-SMN (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Figures top
[Figure 1] Fig. 1. The two independent molecules of (I), showing the atom-labelling scheme for (a) the type 1 molecule and (b) the type 2 molecule. Displacement ellipsoids are shown at the 30% probability level.
[Figure 2] Fig. 2. Part of the crystal structure of (I), showing the formation of the type 1 chain of rings. For clarity, H atoms bonded to C atoms and the unit-cell box have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (-x, −0.5 + y, 0.5 − z), (-x, 0.5 + y, 0.5 − z) and (x, 1 + y, z), respectively.
[Figure 3] Fig. 3. Part of the crystal structure of (I), showing the formation of the type 2 chain of rings. For clarity, H atoms bonded to C atoms and the unit-cell box have been omitted. Atoms marked with an asterisk (*), a hash (#) or an ampersand (&) are at the symmetry positions (1 − x, −0.5 + y, 0.5 − z), (1 − x, 0.5 + y, 0.5 − z) and (x, 1 + y, z), respectively.
2-Benzylamino-6-benzyloxypyrimidin-4(3H)-one top
Crystal data top
C18H17N3O2F(000) = 1296
Mr = 307.35Dx = 1.366 Mg m3
Monoclinic, P21/cMelting point: 432 K
Hall symbol: -P 2ybcMo Kα radiation, λ = 0.71073 Å
a = 10.7611 (4) ÅCell parameters from 5946 reflections
b = 8.0306 (3) Åθ = 3.1–27.4°
c = 34.9826 (17) ŵ = 0.09 mm1
β = 98.5740 (15)°T = 120 K
V = 2989.3 (2) Å3Needle, colourless
Z = 80.40 × 0.25 × 0.02 mm
Data collection top
KappaCCD
diffractometer
5946 independent reflections
Radiation source: rotating anode3917 reflections with I > 2σ(I)
Graphite monochromatorRint = 0.087
ϕ scans, and ω scans with κ offsetsθmax = 27.4°, θmin = 3.1°
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
h = 1313
Tmin = 0.953, Tmax = 0.998k = 1010
21880 measured reflectionsl = 4540
Refinement top
Refinement on F2Primary atom site location: structure-invariant direct methods
Least-squares matrix: fullSecondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.062Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.146H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0429P)2 + 2.0855P]
where P = (Fo2 + 2Fc2)/3
5946 reflections(Δ/σ)max < 0.001
415 parametersΔρmax = 0.25 e Å3
0 restraintsΔρmin = 0.28 e Å3
Crystal data top
C18H17N3O2V = 2989.3 (2) Å3
Mr = 307.35Z = 8
Monoclinic, P21/cMo Kα radiation
a = 10.7611 (4) ŵ = 0.09 mm1
b = 8.0306 (3) ÅT = 120 K
c = 34.9826 (17) Å0.40 × 0.25 × 0.02 mm
β = 98.5740 (15)°
Data collection top
KappaCCD
diffractometer
5946 independent reflections
Absorption correction: multi-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
3917 reflections with I > 2σ(I)
Tmin = 0.953, Tmax = 0.998Rint = 0.087
21880 measured reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0620 restraints
wR(F2) = 0.146H-atom parameters constrained
S = 1.03Δρmax = 0.25 e Å3
5946 reflectionsΔρmin = 0.28 e Å3
415 parameters
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N110.09873 (19)0.5152 (3)0.22615 (5)0.0207 (5)
C120.1587 (2)0.4324 (3)0.20004 (6)0.0193 (5)
N120.1287 (2)0.2726 (3)0.19313 (5)0.0233 (5)
C1270.1872 (2)0.1716 (3)0.16650 (7)0.0236 (6)
C1210.1210 (2)0.1709 (3)0.12507 (7)0.0206 (6)
C1220.0191 (2)0.2726 (3)0.11221 (7)0.0244 (6)
C1230.0375 (3)0.2676 (3)0.07375 (7)0.0278 (6)
C1240.0081 (3)0.1613 (3)0.04797 (7)0.0281 (6)
C1250.1089 (3)0.0588 (3)0.06046 (7)0.0285 (6)
C1260.1645 (2)0.0635 (3)0.09875 (7)0.0244 (6)
N130.24332 (19)0.5049 (3)0.18152 (5)0.0204 (5)
C140.2704 (2)0.6646 (3)0.19089 (6)0.0197 (6)
O140.35509 (16)0.7435 (2)0.17237 (4)0.0236 (4)
C1470.4264 (2)0.6466 (3)0.14767 (6)0.0225 (6)
C1410.3726 (2)0.6581 (3)0.10535 (7)0.0209 (6)
C1420.2704 (2)0.5624 (3)0.08972 (7)0.0267 (6)
C1430.2258 (3)0.5690 (4)0.05054 (7)0.0313 (7)
C1440.2825 (3)0.6726 (4)0.02643 (7)0.0321 (7)
C1450.3837 (3)0.7692 (3)0.04177 (7)0.0303 (7)
C1460.4285 (2)0.7619 (3)0.08113 (7)0.0253 (6)
C150.2168 (2)0.7560 (3)0.21753 (6)0.0207 (6)
C160.1234 (2)0.6808 (3)0.23583 (6)0.0215 (6)
O160.06330 (16)0.7477 (2)0.26013 (5)0.0265 (4)
N210.59641 (19)0.8548 (2)0.22515 (5)0.0208 (5)
C220.6443 (2)0.9666 (3)0.20144 (6)0.0186 (5)
N220.5899 (2)1.1165 (3)0.19811 (5)0.0221 (5)
C2270.6458 (2)1.2563 (3)0.18021 (7)0.0241 (6)
C2210.6040 (2)1.2776 (3)0.13709 (7)0.0205 (5)
C2220.5048 (2)1.1884 (3)0.11676 (7)0.0247 (6)
C2230.4677 (3)1.2162 (4)0.07753 (7)0.0294 (6)
C2240.5286 (3)1.3356 (3)0.05829 (8)0.0301 (7)
C2250.6270 (3)1.4247 (3)0.07824 (8)0.0300 (7)
C2260.6645 (2)1.3963 (3)0.11735 (7)0.0265 (6)
N230.73952 (19)0.9301 (3)0.18261 (5)0.0200 (5)
C240.7882 (2)0.7765 (3)0.18905 (6)0.0189 (5)
O240.88600 (15)0.7336 (2)0.17085 (4)0.0228 (4)
C2470.9350 (2)0.8548 (3)0.14572 (6)0.0234 (6)
C2410.8752 (2)0.8353 (3)0.10419 (7)0.0214 (6)
C2420.7727 (2)0.9315 (3)0.08824 (7)0.0256 (6)
C2430.7215 (3)0.9139 (4)0.04965 (7)0.0312 (7)
C2440.7717 (3)0.7992 (4)0.02655 (7)0.0320 (7)
C2450.8732 (3)0.7028 (4)0.04209 (7)0.0315 (7)
C2460.9246 (2)0.7203 (3)0.08072 (7)0.0253 (6)
C250.7475 (2)0.6566 (3)0.21232 (6)0.0201 (5)
C260.6440 (2)0.6941 (3)0.23123 (6)0.0206 (6)
O260.59086 (16)0.5973 (2)0.25227 (5)0.0266 (4)
H110.04240.46150.23720.025*
H120.07110.22710.20520.028*
H12A0.19220.05550.17610.028*
H12B0.27430.21160.16670.028*
H1220.01220.34620.12980.029*
H1230.10760.33720.06520.033*
H1240.03000.15890.02170.034*
H1250.14010.01470.04280.034*
H1260.23350.00790.10720.029*
H14A0.42760.52840.15580.027*
H14B0.51440.68690.15130.027*
H1420.23070.49170.10600.032*
H1430.15610.50240.04010.038*
H1440.25180.67690.00050.039*
H1450.42280.84060.02550.036*
H1460.49820.82870.09160.030*
H150.24240.86740.22340.025*
H210.53340.88580.23690.025*
H220.51841.13120.20700.027*
H22A0.73831.24290.18480.029*
H22B0.62581.35990.19340.029*
H2220.46191.10790.12980.030*
H2230.40061.15350.06380.035*
H2240.50241.35570.03150.036*
H2250.66931.50580.06520.036*
H2260.73231.45850.13090.032*
H24A1.02700.84040.14760.028*
H24B0.91880.96870.15460.028*
H2420.73761.00990.10390.031*
H2430.65190.98060.03900.037*
H2440.73650.78690.00010.038*
H2450.90790.62430.02630.038*
H2460.99410.65330.09120.030*
H250.78800.55130.21560.024*
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N110.0202 (12)0.0244 (13)0.0181 (10)0.0009 (9)0.0048 (8)0.0004 (8)
C120.0198 (14)0.0228 (15)0.0147 (11)0.0025 (11)0.0005 (9)0.0003 (9)
N120.0293 (13)0.0211 (12)0.0210 (11)0.0061 (10)0.0084 (9)0.0023 (9)
C1270.0287 (16)0.0200 (14)0.0215 (13)0.0000 (12)0.0020 (11)0.0006 (10)
C1210.0206 (14)0.0214 (14)0.0201 (12)0.0035 (11)0.0045 (10)0.0004 (10)
C1220.0296 (16)0.0221 (15)0.0217 (13)0.0004 (12)0.0041 (11)0.0029 (10)
C1230.0273 (16)0.0286 (16)0.0263 (14)0.0012 (12)0.0003 (11)0.0022 (11)
C1240.0340 (17)0.0322 (17)0.0183 (13)0.0095 (13)0.0040 (11)0.0016 (11)
C1250.0309 (17)0.0295 (16)0.0263 (14)0.0044 (13)0.0081 (12)0.0084 (11)
C1260.0237 (15)0.0237 (15)0.0268 (14)0.0014 (12)0.0064 (11)0.0009 (11)
N130.0233 (12)0.0204 (12)0.0181 (10)0.0016 (9)0.0053 (9)0.0003 (8)
C140.0187 (14)0.0238 (15)0.0158 (12)0.0014 (11)0.0006 (9)0.0026 (10)
O140.0256 (10)0.0256 (11)0.0210 (9)0.0038 (8)0.0082 (7)0.0018 (7)
C1470.0175 (14)0.0289 (16)0.0218 (13)0.0014 (11)0.0050 (10)0.0009 (10)
C1410.0201 (14)0.0231 (15)0.0197 (12)0.0030 (11)0.0038 (10)0.0012 (10)
C1420.0256 (16)0.0309 (16)0.0247 (13)0.0002 (12)0.0076 (11)0.0017 (11)
C1430.0234 (16)0.0438 (19)0.0265 (14)0.0025 (13)0.0031 (11)0.0095 (12)
C1440.0301 (17)0.0455 (19)0.0207 (13)0.0081 (14)0.0034 (11)0.0012 (12)
C1450.0389 (18)0.0274 (16)0.0262 (14)0.0034 (13)0.0102 (12)0.0049 (11)
C1460.0280 (16)0.0215 (15)0.0267 (14)0.0018 (12)0.0048 (11)0.0008 (11)
C150.0241 (15)0.0193 (14)0.0186 (12)0.0006 (11)0.0023 (10)0.0010 (10)
C160.0224 (15)0.0256 (15)0.0153 (12)0.0042 (11)0.0014 (10)0.0017 (10)
O160.0281 (11)0.0317 (11)0.0208 (9)0.0043 (8)0.0073 (8)0.0037 (8)
N210.0234 (12)0.0209 (12)0.0190 (10)0.0010 (9)0.0063 (9)0.0008 (8)
C220.0220 (14)0.0193 (14)0.0141 (11)0.0016 (11)0.0016 (10)0.0001 (9)
N220.0233 (12)0.0199 (12)0.0240 (11)0.0014 (10)0.0061 (9)0.0015 (9)
C2270.0284 (16)0.0182 (15)0.0254 (13)0.0001 (12)0.0029 (11)0.0008 (10)
C2210.0220 (14)0.0168 (13)0.0233 (13)0.0041 (11)0.0056 (10)0.0007 (10)
C2220.0266 (15)0.0237 (15)0.0244 (13)0.0003 (12)0.0055 (11)0.0021 (11)
C2230.0291 (16)0.0323 (17)0.0265 (14)0.0037 (13)0.0034 (11)0.0009 (11)
C2240.0328 (17)0.0333 (17)0.0254 (14)0.0085 (13)0.0077 (12)0.0029 (12)
C2250.0309 (17)0.0294 (17)0.0326 (15)0.0036 (13)0.0138 (12)0.0081 (12)
C2260.0265 (16)0.0221 (15)0.0317 (14)0.0003 (12)0.0070 (11)0.0010 (11)
N230.0227 (12)0.0204 (12)0.0169 (10)0.0011 (9)0.0030 (8)0.0013 (8)
C240.0186 (14)0.0233 (15)0.0138 (11)0.0013 (11)0.0009 (9)0.0025 (9)
O240.0236 (10)0.0267 (10)0.0196 (9)0.0021 (8)0.0083 (7)0.0025 (7)
C2470.0216 (14)0.0285 (16)0.0210 (13)0.0060 (12)0.0065 (10)0.0035 (11)
C2410.0205 (14)0.0221 (15)0.0222 (13)0.0033 (11)0.0054 (10)0.0030 (10)
C2420.0248 (15)0.0265 (16)0.0267 (14)0.0005 (12)0.0082 (11)0.0034 (11)
C2430.0243 (16)0.0401 (18)0.0293 (15)0.0016 (13)0.0041 (12)0.0103 (12)
C2440.0334 (17)0.0419 (18)0.0200 (13)0.0110 (14)0.0021 (11)0.0038 (12)
C2450.0391 (18)0.0331 (17)0.0231 (14)0.0024 (14)0.0076 (12)0.0031 (11)
C2460.0277 (16)0.0249 (15)0.0239 (13)0.0004 (12)0.0064 (11)0.0010 (11)
C250.0247 (15)0.0175 (14)0.0176 (12)0.0007 (11)0.0018 (10)0.0001 (10)
C260.0241 (15)0.0209 (14)0.0159 (12)0.0007 (11)0.0003 (10)0.0004 (10)
O260.0303 (11)0.0251 (10)0.0260 (10)0.0022 (8)0.0094 (8)0.0074 (8)
Geometric parameters (Å, º) top
N11—C121.367 (3)N21—C221.374 (3)
C12—N131.328 (3)C22—N231.330 (3)
N13—C141.345 (3)N23—C241.346 (3)
C14—C151.379 (3)C24—C251.374 (3)
C15—C161.405 (3)C25—C261.411 (3)
C16—N111.389 (3)C26—N211.392 (3)
C12—N121.337 (3)C22—N221.336 (3)
C14—O141.352 (3)C24—O241.353 (3)
C16—O161.262 (3)C26—O261.265 (3)
N11—H110.88N21—H210.88
N12—C1271.449 (3)N22—C2271.458 (3)
N12—H120.88N22—H220.88
C127—C1211.517 (3)C227—C2211.518 (3)
C127—H12A0.99C227—H22A0.99
C127—H12B0.99C227—H22B0.99
C121—C1221.387 (3)C221—C2221.390 (3)
C121—C1261.393 (3)C221—C2261.394 (3)
C122—C1231.392 (3)C222—C2231.389 (3)
C122—H1220.95C222—H2220.95
C123—C1241.384 (4)C223—C2241.390 (4)
C123—H1230.95C223—H2230.95
C124—C1251.380 (4)C224—C2251.379 (4)
C124—H1240.95C224—H2240.95
C125—C1261.384 (3)C225—C2261.387 (3)
C125—H1250.95C225—H2250.95
C126—H1260.95C226—H2260.95
O14—C1471.463 (3)O24—C2471.462 (3)
C147—C1411.510 (3)C247—C2411.507 (3)
C147—H14A0.99C247—H24A0.99
C147—H14B0.99C247—H24B0.99
C141—C1421.386 (4)C241—C2461.393 (3)
C141—C1461.388 (3)C241—C2421.393 (4)
C142—C1431.384 (3)C242—C2431.387 (3)
C142—H1420.95C242—H2420.95
C143—C1441.389 (4)C243—C2441.388 (4)
C143—H1430.95C243—H2430.95
C144—C1451.379 (4)C244—C2451.382 (4)
C144—H1440.95C244—H2440.95
C145—C1461.391 (3)C245—C2461.389 (3)
C145—H1450.95C245—H2450.95
C146—H1460.95C246—H2460.95
C15—H150.95C25—H250.95
C12—N11—C16122.4 (2)C22—N21—C26122.4 (2)
C12—N11—H11118.8C22—N21—H21118.8
C16—N11—H11118.8C26—N21—H21118.8
N13—C12—N12119.8 (2)N23—C22—N22121.0 (2)
N13—C12—N11122.6 (2)N23—C22—N21122.7 (2)
N12—C12—N11117.5 (2)N22—C22—N21116.3 (2)
C12—N12—C127122.5 (2)C22—N22—C227121.9 (2)
C12—N12—H12118.7C22—N22—H22119.1
C127—N12—H12118.7C227—N22—H22119.1
N12—C127—C121115.4 (2)N22—C227—C221115.7 (2)
N12—C127—H12A108.4N22—C227—H22A108.4
C121—C127—H12A108.4C221—C227—H22A108.4
N12—C127—H12B108.4N22—C227—H22B108.4
C121—C127—H12B108.4C221—C227—H22B108.4
H12A—C127—H12B107.5H22A—C227—H22B107.4
C122—C121—C126118.5 (2)C222—C221—C226118.6 (2)
C122—C121—C127123.0 (2)C222—C221—C227122.8 (2)
C126—C121—C127118.5 (2)C226—C221—C227118.5 (2)
C121—C122—C123120.5 (2)C223—C222—C221120.6 (2)
C121—C122—H122119.7C223—C222—H222119.7
C123—C122—H122119.7C221—C222—H222119.7
C124—C123—C122120.0 (3)C222—C223—C224120.2 (3)
C124—C123—H123120.0C222—C223—H223119.9
C122—C123—H123120.0C224—C223—H223119.9
C125—C124—C123120.0 (2)C225—C224—C223119.7 (2)
C125—C124—H124120.0C225—C224—H224120.2
C123—C124—H124120.0C223—C224—H224120.2
C124—C125—C126119.7 (2)C224—C225—C226120.2 (2)
C124—C125—H125120.1C224—C225—H225119.9
C126—C125—H125120.1C226—C225—H225119.9
C125—C126—C121121.2 (2)C225—C226—C221120.8 (3)
C125—C126—H126119.4C225—C226—H226119.6
C121—C126—H126119.4C221—C226—H226119.6
C12—N13—C14116.0 (2)C22—N23—C24115.4 (2)
N13—C14—O14117.9 (2)N23—C24—O24117.7 (2)
N13—C14—C15125.1 (2)N23—C24—C25126.2 (2)
O14—C14—C15117.0 (2)O24—C24—C25116.0 (2)
C14—O14—C147118.97 (19)C24—O24—C247119.27 (19)
O14—C147—C141112.85 (19)O24—C247—C241111.74 (19)
O14—C147—H14A109.0O24—C247—H24A109.3
C141—C147—H14A109.0C241—C247—H24A109.3
O14—C147—H14B109.0O24—C247—H24B109.3
C141—C147—H14B109.0C241—C247—H24B109.3
H14A—C147—H14B107.8H24A—C247—H24B107.9
C142—C141—C146118.9 (2)C246—C241—C242118.7 (2)
C142—C141—C147121.3 (2)C246—C241—C247119.5 (2)
C146—C141—C147119.8 (2)C242—C241—C247121.8 (2)
C143—C142—C141120.5 (2)C243—C242—C241120.6 (2)
C143—C142—H142119.8C243—C242—H242119.7
C141—C142—H142119.8C241—C242—H242119.7
C142—C143—C144120.4 (3)C242—C243—C244120.1 (3)
C142—C143—H143119.8C242—C243—H243120.0
C144—C143—H143119.8C244—C243—H243120.0
C145—C144—C143119.6 (2)C245—C244—C243119.8 (2)
C145—C144—H144120.2C245—C244—H244120.1
C143—C144—H144120.2C243—C244—H244120.1
C144—C145—C146119.9 (2)C244—C245—C246120.2 (3)
C144—C145—H145120.0C244—C245—H245119.9
C146—C145—H145120.0C246—C245—H245119.9
C141—C146—C145120.8 (2)C245—C246—C241120.6 (3)
C141—C146—H146119.6C245—C246—H246119.7
C145—C146—H146119.6C241—C246—H246119.7
C14—C15—C16118.6 (2)C24—C25—C26118.1 (2)
C14—C15—H15120.7C24—C25—H25120.9
C16—C15—H15120.7C26—C25—H25120.9
O16—C16—N11118.2 (2)O26—C26—N21118.1 (2)
O16—C16—C15126.7 (2)O26—C26—C25126.8 (2)
N11—C16—C15115.1 (2)N21—C26—C25115.1 (2)
C16—N11—C12—N131.2 (4)C26—N21—C22—N230.1 (3)
C16—N11—C12—N12179.3 (2)C26—N21—C22—N22179.9 (2)
N13—C12—N12—C1271.4 (3)N23—C22—N22—C22712.1 (3)
N11—C12—N12—C127179.1 (2)N21—C22—N22—C227167.9 (2)
C12—N12—C127—C12190.9 (3)C22—N22—C227—C22191.5 (3)
N12—C127—C121—C1226.5 (4)N22—C227—C221—C22210.1 (3)
N12—C127—C121—C126173.5 (2)N22—C227—C221—C226172.6 (2)
C126—C121—C122—C1230.4 (4)C226—C221—C222—C2230.6 (4)
C127—C121—C122—C123179.6 (2)C227—C221—C222—C223178.0 (2)
C121—C122—C123—C1240.4 (4)C221—C222—C223—C2241.0 (4)
C122—C123—C124—C1250.7 (4)C222—C223—C224—C2250.9 (4)
C123—C124—C125—C1260.3 (4)C223—C224—C225—C2260.5 (4)
C124—C125—C126—C1210.4 (4)C224—C225—C226—C2210.2 (4)
C122—C121—C126—C1250.8 (4)C222—C221—C226—C2250.2 (4)
C127—C121—C126—C125179.2 (2)C227—C221—C226—C225177.7 (2)
N12—C12—N13—C14178.4 (2)N22—C22—N23—C24178.5 (2)
N11—C12—N13—C142.2 (3)N21—C22—N23—C241.5 (3)
C12—N13—C14—O14179.3 (2)C22—N23—C24—O24179.4 (2)
C12—N13—C14—C150.5 (3)C22—N23—C24—C251.1 (3)
N13—C14—O14—C1479.0 (3)N23—C24—O24—C2470.7 (3)
C15—C14—O14—C147172.1 (2)C25—C24—O24—C247179.7 (2)
C14—O14—C147—C14198.8 (2)C24—O24—C247—C24193.5 (2)
O14—C147—C141—C14280.6 (3)O24—C247—C241—C24685.4 (3)
O14—C147—C141—C146101.7 (3)O24—C247—C241—C24295.8 (3)
C146—C141—C142—C1430.7 (4)C246—C241—C242—C2430.5 (4)
C147—C141—C142—C143177.1 (2)C247—C241—C242—C243178.4 (2)
C141—C142—C143—C1440.4 (4)C241—C242—C243—C2440.3 (4)
C142—C143—C144—C1450.0 (4)C242—C243—C244—C2450.2 (4)
C143—C144—C145—C1460.2 (4)C243—C244—C245—C2460.2 (4)
C142—C141—C146—C1450.5 (4)C244—C245—C246—C2410.3 (4)
C147—C141—C146—C145177.3 (2)C242—C241—C246—C2450.4 (4)
C144—C145—C146—C1410.1 (4)C247—C241—C246—C245178.4 (2)
N13—C14—C15—C162.1 (4)N23—C24—C25—C260.8 (4)
O14—C14—C15—C16176.7 (2)O24—C24—C25—C26178.6 (2)
C12—N11—C16—O16179.7 (2)C22—N21—C26—O26177.2 (2)
C12—N11—C16—C151.5 (3)C22—N21—C26—C252.0 (3)
C14—C15—C16—O16178.4 (2)C24—C25—C26—O26176.8 (2)
C14—C15—C16—N113.0 (3)C24—C25—C26—N212.3 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O16i0.882.072.852 (3)148
N12—H12···O16i0.882.032.826 (3)150
N21—H21···O26ii0.882.232.992 (3)145
N22—H22···O26ii0.882.002.798 (3)151
C225—H225···Cg1iii0.953.003.858 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.

Experimental details

Crystal data
Chemical formulaC18H17N3O2
Mr307.35
Crystal system, space groupMonoclinic, P21/c
Temperature (K)120
a, b, c (Å)10.7611 (4), 8.0306 (3), 34.9826 (17)
β (°) 98.5740 (15)
V3)2989.3 (2)
Z8
Radiation typeMo Kα
µ (mm1)0.09
Crystal size (mm)0.40 × 0.25 × 0.02
Data collection
DiffractometerKappaCCD
diffractometer
Absorption correctionMulti-scan
(DENZO–SMN; Otwinowski & Minor, 1997)
Tmin, Tmax0.953, 0.998
No. of measured, independent and
observed [I > 2σ(I)] reflections
21880, 5946, 3917
Rint0.087
(sin θ/λ)max1)0.648
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.062, 0.146, 1.03
No. of reflections5946
No. of parameters415
H-atom treatmentH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.25, 0.28

Computer programs: KappaCCD Server Software (Nonius, 1997), DENZO-SMN (Otwinowski & Minor, 1997), SHELXS97 (Sheldrick, 1997), PLATON (Spek, 2003), SHELXL97 (Sheldrick, 1997) and PRPKAPPA (Ferguson, 1999).

Selected geometric parameters (Å, º) top
N11—C121.367 (3)N21—C221.374 (3)
C12—N131.328 (3)C22—N231.330 (3)
N13—C141.345 (3)N23—C241.346 (3)
C14—C151.379 (3)C24—C251.374 (3)
C15—C161.405 (3)C25—C261.411 (3)
C16—N111.389 (3)C26—N211.392 (3)
C12—N121.337 (3)C22—N221.336 (3)
C14—O141.352 (3)C24—O241.353 (3)
C16—O161.262 (3)C26—O261.265 (3)
N11—C12—N12—C127179.1 (2)N21—C22—N22—C227167.9 (2)
C12—N12—C127—C12190.9 (3)C22—N22—C227—C22191.5 (3)
N12—C127—C121—C1226.5 (4)N22—C227—C221—C22210.1 (3)
C15—C14—O14—C147172.1 (2)C25—C24—O24—C247179.7 (2)
C14—O14—C147—C14198.8 (2)C24—O24—C247—C24193.5 (2)
O14—C147—C141—C14280.6 (3)O24—C247—C241—C24295.8 (3)
Hydrogen-bond geometry (Å, º) top
D—H···AD—HH···AD···AD—H···A
N11—H11···O16i0.882.072.852 (3)148
N12—H12···O16i0.882.032.826 (3)150
N21—H21···O26ii0.882.232.992 (3)145
N22—H22···O26ii0.882.002.798 (3)151
C225—H225···Cg1iii0.953.003.858 (3)151
Symmetry codes: (i) x, y1/2, z+1/2; (ii) x+1, y+1/2, z+1/2; (iii) x, y+1, z.
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds