Download citation
Download citation
link to html
The structures of N-fluoro­pyridinium tri­fluoro­methane­sulfon­ate, C5H5FN+·CF3O3S-, (I), and 1-fluoro-2,4,6-tri­methoxy-1,3,5-triazinium hexa­fluoro­antimonate, (C6H9FN3O3)[SbF6], (II), are presented. The N-F bond lengths in (I), a well known electrophilic fluorinating agent, and its novel analogue, (II), are 1.357 (4) and 1.354 (4) Å, respectively.

Supporting information

cif

Crystallographic Information File (CIF) https://doi.org/10.1107/S0108270103001689/gg1153sup1.cif
Contains datablocks global, I, II

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103001689/gg1153Isup2.hkl
Contains datablock I

hkl

Structure factor file (CIF format) https://doi.org/10.1107/S0108270103001689/gg1153IIsup3.hkl
Contains datablock II

CCDC references: 187547; 187548

Comment top

Prior to this study, the chloro analogue of the title triazine, (II), [(ClCN)3F]+·[AsF6] (Schleyer et al., 1993) was the only sp2 N—F+ containing molecule to be reported by X-ray diffraction. However, the investigators rejected their experimental N—F+ bond length of 1.11 Å, due to the cations being severely disordered, and proposed, instead, a value of 1.314 Å, which they obtained from quantum-chemical calculations at the HF/6–31+G* level. This computed length was confirmed subsequently (Broschag et al., 1994) and improved more recently using MP2 (1.360 Å) and B3LYP (1.349 Å) theory level calculations (Fraenk et al., 2001). These latter values show excellent agreement with the N—F+ length of 1.354 (4) Å e stablished in the current study for the title triazinyl derivative, (II) (Fig. 2 and Table 2). At 1.357 (4) Å, the analogous bond in 1-fluoropyridinium trifluoromethanesulfonate, (I) (Fig. 1 and Table 1), is identical within experimental error, and also shows good agreement with the computed values of 1.323 (RHF level), 1.370 (MP2) and 1.357 Å (B3LYP) (Fraenk et al., 2001). \sch

Comparison of the title structures, (I) and (II), with their respective neutral precursors, pyridine (Mootz & Wussow, 1981) and trimethoxytriazine (Glówka & Iwanicka, 1989), reveals changes to the ring geometry that are similar to those seen on protonation. As expected, involvement of the N-atom lone pair in a covalent bond to F+ has significantly expanded the C—N—F bond angle in both (I) and (II). As a consequence, the remaining ring angles have also changed, the magnitude of the difference diminishing on traversing the ring away from the F site in the order meta > ortho > para (Table 3).

In the case of the pyridinyl derivative, (I), a small contraction of the average ring bonds of between 0.024 and 0.010 Å can also be detected on forming the F+ adduct. In contrast, the bond-length changes in methoxy triazinyl, (II), are more complex and are strongly influenced by the OMe substituents, which are conjugated with the ring delocalization system. In the parent triazine, the OMe groups and the ring are coplanar, due to the molecule lying on a crystallographic mirror plane. Molecule (II) is also nearly planar, as shown by the MeOCN torsion angles of 1.5 (6), −1.0 (6) and 1.3 (6)°. Also, like the parent molecule, the ring C—N bonds trans to OMe are considerably longer [1.349 (6), 1.344 (5) and 1.356 (6) Å] than the cis bonds [1.291 (5), 1.327 (5) and 1.292 (5) Å]. However, the C3 h symmetry of (MeOCN)3 is lost in (II), because both OMe groups flanking the F-bonded N atom point away from the F. Consequently, both N—C bonds to the F-bonded N atom are of the longer type [1.349 (6) and 1.356 (6) Å].

The fluropyridinium and fluorotriazinium structures, (I) and (II), also differ in their crystal packing. Whereas there are no significant short interionic contacts in (I) (apart from three C—H···O contacts), in (II), each SbF6 anion is sandwiched between two [(MeOCN)3F]+ rings, and participates in several short interionic C···F contacts in the range 2.83 (1)–2.89 (1) Å. The three-point contact and central location of the [SbF6] above one ring (Fig. 2) is reminiscent of the interaction between [SbF6] and the central aromatic C6 ring in hexaazaoctadecahydrovoronene tetrakis[SbF6] acetonitrile solvate (Miller et al., 1990).

Experimental top

A sample of (I) with appropriate NMR properties was prepared by an adaptation of the one-pot procedure of Umemoto et al. (1991) via direct flow-fluorination of pyridine and LiOTf in MeCN at 238 K (Banks et al., 1996). Suitable crystals were obtained by recrystallization from dry tetrahydrofuran (m.p. 459 K; literature value: 458–460 K). Analysis, found: C 28.9, H 1.9, N 5.6%; calculated for C6H5F4NO3S: C 29.1, H 2.0, N 5.7%. In order to prepare (II) (Banks & Besheesh, 2002), a homogeneous mixture of 2,4,6-trimethoxy-1,3,5-triazine (0.50 g, 2.92 mmol), hexafluoroantimonic acid (0.69 g, 2.92 mmol) and hexafluoroisopropanol (80 ml) were placed in a Pyrex flow-fluorination reactor (Banks et al., 1996). This mixture was cooled to 268 K, stirred vigorously and treated with a 1:9 (v/v) F2/N2 blend (flow rate 130 ml min−1) until the exit gas gave a strong positive test (KI) for fluorine. The resulting colourless solution was concentrated under reduced pressure (volume reduced to about 10 ml), then mixed with dry diethyl ether (50 ml), causing a brilliant-white crystalline solid to precipitate. This solid was collected by suction filtration, washed with dry diethyl ether (30 ml) and dried in vacuo, to give a material which was identified by elemental and NMR analysis as 1-fluoro-2,4,6-trimethoxy-1,3,5-triazinium hexafluoroantimonate, (II) (1.22 g, 2.86 mmol, 98%; m.p. 484 K, decomposition). 1H NMR (CD3CN, TMS, δ, p.p.m.): 4.59 (s, 2OCH3), 4.44 (s, OCH3); 19F NMR Is this the correct F isotope? (CD3CN, TFA, δ, p.p.m.): 18.9 (br s, NF+), −20.75 to −79.95 (complex, SbF6+). Elemental analysis, calculated for C6H9F7N3O3Sb: C 17.0, H 2.1, N 9.9, Sb 28.6%; found: C 17.1, H 1.9, N 9.5, Sb 28.9%. Crystals of (I) and (II) suitable for X-ray analysis were grown by vapour diffusion of Et2O into MeCN solutions.

Refinement top

H atoms were treated as riding, with C—H distances in the range 0.93–0.97 Å. Is this added text OK?

Computing details top

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991) for (I); CAD-4 Software (Enraf-Nonius, 1994) for (II). Cell refinement: MSC/AFC Diffractometer Control Software for (I); CAD-4 Software for (II). Data reduction: TEXSAN (Molecular Structure Corporation, 1999) for (I); XCAD4 (Harms & Wocadlo 1995) for (II). For both compounds, program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

Figures top
[Figure 1] Fig. 1. A view of the structure of (I) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
[Figure 2] Fig. 2. A view of the structure of (II) with the atomic labelling scheme. Displacement ellipsoids are drawn at the 50% probability level and H atoms are shown as small spheres of arbitrary radii.
(I) N-fluoropyridinium trifluoromethanesulfonate top
Crystal data top
C5H5FN+·CF3O3SF(000) = 496
Mr = 247.17Dx = 1.742 Mg m3
Monoclinic, P21/cMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybcCell parameters from 25 reflections
a = 6.027 (2) Åθ = 8.4–16.1°
b = 12.901 (4) ŵ = 0.39 mm1
c = 12.490 (3) ÅT = 293 K
β = 103.96 (3)°Prism, colourless
V = 942.5 (5) Å30.40 × 0.25 × 0.25 mm
Z = 4
Data collection top
Rigaku AFC-6S
diffractometer
Rint = 0.034
θ/2θ scansθmax = 25.3°, θmin = 2.3°
Absorption correction: ψ scan
(North et al., 1968)
h = 70
Tmin = 0.809, Tmax = 0.905k = 015
1824 measured reflectionsl = 1414
1658 independent reflections3 standard reflections every 150 reflections
890 reflections with I > 2σ(I) intensity decay: 0.0%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.045 w = 1/[σ2(Fo2) + (0.0657P)2 + 0.31P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.149(Δ/σ)max < 0.001
S = 1.01Δρmax = 0.27 e Å3
1658 reflectionsΔρmin = 0.23 e Å3
136 parameters
Crystal data top
C5H5FN+·CF3O3SV = 942.5 (5) Å3
Mr = 247.17Z = 4
Monoclinic, P21/cMo Kα radiation
a = 6.027 (2) ŵ = 0.39 mm1
b = 12.901 (4) ÅT = 293 K
c = 12.490 (3) Å0.40 × 0.25 × 0.25 mm
β = 103.96 (3)°
Data collection top
Rigaku AFC-6S
diffractometer
890 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.034
Tmin = 0.809, Tmax = 0.9053 standard reflections every 150 reflections
1824 measured reflections intensity decay: 0.0%
1658 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0450 restraints
wR(F2) = 0.149H-atom parameters constrained
S = 1.01Δρmax = 0.27 e Å3
1658 reflectionsΔρmin = 0.23 e Å3
136 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
N10.4845 (7)0.3394 (3)0.7008 (3)0.0531 (10)
C20.6397 (8)0.3836 (3)0.6569 (4)0.0549 (12)
H20.77030.41310.70170.066*
C30.6059 (9)0.3852 (3)0.5463 (4)0.0623 (13)
H30.71240.4160.51350.075*
C40.4149 (8)0.3412 (3)0.4839 (4)0.0590 (13)
H40.38760.34180.40730.071*
C50.2599 (8)0.2952 (4)0.5349 (4)0.0668 (14)
H50.12920.26430.49180.08*
C60.2946 (8)0.2942 (3)0.6472 (4)0.0592 (13)
H60.19220.26390.68290.071*
C70.8502 (8)0.0571 (4)0.6254 (4)0.0579 (12)
O10.5760 (5)0.1016 (3)0.7512 (3)0.0710 (10)
O20.9300 (5)0.1947 (2)0.7751 (3)0.0642 (9)
O30.9265 (6)0.0160 (3)0.8310 (3)0.0749 (10)
F10.5200 (6)0.3388 (2)0.8122 (2)0.0859 (10)
F20.7626 (7)0.1246 (3)0.5487 (2)0.1118 (13)
F30.7582 (7)0.0325 (3)0.5950 (3)0.1209 (14)
F41.0669 (5)0.0510 (3)0.6206 (3)0.0970 (11)
S10.81716 (17)0.09660 (8)0.76085 (8)0.0453 (3)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
N10.068 (3)0.050 (2)0.042 (2)0.010 (2)0.0152 (19)0.0016 (16)
C20.052 (3)0.039 (3)0.071 (3)0.005 (2)0.011 (2)0.003 (2)
C30.069 (3)0.051 (3)0.072 (3)0.005 (3)0.026 (3)0.013 (2)
C40.068 (3)0.060 (3)0.048 (3)0.005 (3)0.013 (3)0.006 (2)
C50.060 (3)0.067 (3)0.061 (3)0.007 (3)0.008 (3)0.003 (3)
C60.050 (3)0.052 (3)0.081 (4)0.001 (2)0.025 (3)0.009 (3)
C70.061 (3)0.063 (3)0.052 (3)0.005 (3)0.018 (2)0.005 (2)
O10.0458 (18)0.091 (3)0.081 (2)0.0042 (18)0.0249 (16)0.0070 (19)
O20.066 (2)0.060 (2)0.066 (2)0.0070 (17)0.0138 (16)0.0056 (16)
O30.086 (2)0.075 (2)0.064 (2)0.023 (2)0.0176 (19)0.0226 (18)
F10.116 (3)0.095 (2)0.0461 (16)0.0196 (19)0.0177 (16)0.0005 (14)
F20.143 (3)0.136 (3)0.0471 (17)0.023 (3)0.0061 (19)0.0192 (19)
F30.162 (4)0.109 (3)0.110 (3)0.065 (3)0.069 (2)0.058 (2)
F40.078 (2)0.137 (3)0.091 (2)0.001 (2)0.0484 (17)0.019 (2)
S10.0419 (6)0.0506 (6)0.0436 (6)0.0048 (6)0.0110 (4)0.0030 (5)
Geometric parameters (Å, º) top
N1—F11.357 (4)C5—H50.93
N1—C21.322 (6)C6—H60.93
N1—C61.315 (6)C7—F31.299 (5)
C2—C31.347 (7)C7—F21.308 (5)
C3—C41.350 (6)C7—F41.324 (5)
C4—C51.385 (7)C7—S11.823 (5)
C5—C61.367 (7)O1—S11.430 (3)
C2—H20.93O2—S11.427 (3)
C3—H30.93O3—S11.416 (3)
C4—H40.93
F1—N1—C2118.4 (4)C4—C5—H5119.2
F1—N1—C6115.0 (4)N1—C6—H6122.7
C2—N1—C6126.7 (4)C5—C6—H6122.7
N1—C2—C3119.0 (4)F3—C7—F2108.1 (4)
C2—C3—C4118.9 (4)F3—C7—F4106.8 (4)
C3—C4—C5119.3 (4)F2—C7—F4103.6 (4)
C4—C5—C6121.6 (4)F3—C7—S1112.7 (3)
N1—C6—C5114.6 (4)F2—C7—S1112.2 (3)
N1—C2—H2120.5F4—C7—S1112.9 (3)
C3—C2—H2120.5O3—S1—O2115.9 (2)
C2—C3—H3120.5O3—S1—O1113.4 (2)
C4—C3—H3120.5O2—S1—O1114.5 (2)
C3—C4—H4120.3O3—S1—C7103.3 (2)
C5—C4—H4120.3O2—S1—C7102.0 (2)
C6—C5—H5119.2O1—S1—C7105.7 (2)
C6—N1—C2—C30.8 (7)F2—C7—S1—O3178.5 (3)
F1—N1—C2—C3179.7 (4)F4—C7—S1—O361.9 (4)
N1—C2—C3—C40.3 (6)F3—C7—S1—O2179.9 (4)
C2—C3—C4—C50.4 (7)F2—C7—S1—O257.8 (4)
C3—C4—C5—C60.7 (7)F4—C7—S1—O258.7 (4)
C2—N1—C6—C50.5 (7)F3—C7—S1—O160.2 (4)
F1—N1—C6—C5179.9 (4)F2—C7—S1—O162.1 (4)
C4—C5—C6—N10.2 (7)F4—C7—S1—O1178.7 (4)
F3—C7—S1—O359.2 (4)
(II) 1-fluoro-2,4,6-trimethoxy-1,3,5-triazinium hexafluoroantimonate top
Crystal data top
C6H9FN3O3+·F6SbF(000) = 816
Mr = 425.91Dx = 2.119 Mg m3
Monoclinic, P21/nMo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ynCell parameters from 25 reflections
a = 7.616 (2) Åθ = 8.1–11.4°
b = 11.843 (3) ŵ = 2.16 mm1
c = 14.924 (3) ÅT = 203 K
β = 97.43 (2)°Plate, colourless
V = 1334.9 (6) Å30.30 × 0.15 × 0.10 mm
Z = 4
Data collection top
Nonius MACH3
diffractometer
Rint = 0.025
θ/2θ scansθmax = 25.0°, θmin = 2.2°
Absorption correction: ψ scan
(North et al., 1968)
h = 82
Tmin = 0.686, Tmax = 0.803k = 014
3200 measured reflectionsl = 1717
2335 independent reflections3 standard reflections every 150 reflections
1799 reflections with I > 2σ(I) intensity decay: 0.0%
Refinement top
Refinement on F20 restraints
Least-squares matrix: fullH-atom parameters constrained
R[F2 > 2σ(F2)] = 0.034 w = 1/[σ2(Fo2) + (0.0253P)2 + 1.7485P]
where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.071(Δ/σ)max = 0.001
S = 1.06Δρmax = 0.98 e Å3
2335 reflectionsΔρmin = 0.66 e Å3
181 parameters
Crystal data top
C6H9FN3O3+·F6SbV = 1334.9 (6) Å3
Mr = 425.91Z = 4
Monoclinic, P21/nMo Kα radiation
a = 7.616 (2) ŵ = 2.16 mm1
b = 11.843 (3) ÅT = 203 K
c = 14.924 (3) Å0.30 × 0.15 × 0.10 mm
β = 97.43 (2)°
Data collection top
Nonius MACH3
diffractometer
1799 reflections with I > 2σ(I)
Absorption correction: ψ scan
(North et al., 1968)
Rint = 0.025
Tmin = 0.686, Tmax = 0.8033 standard reflections every 150 reflections
3200 measured reflections intensity decay: 0.0%
2335 independent reflections
Refinement top
R[F2 > 2σ(F2)] = 0.0340 restraints
wR(F2) = 0.071H-atom parameters constrained
S = 1.06Δρmax = 0.98 e Å3
2335 reflectionsΔρmin = 0.66 e Å3
181 parameters
Special details top

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) top
xyzUiso*/Ueq
F10.8022 (4)0.9017 (2)0.8508 (2)0.0599 (8)
O20.4976 (4)0.9010 (3)0.9049 (2)0.0450 (8)
O40.4855 (4)0.5225 (2)0.8978 (2)0.0402 (7)
O60.9630 (4)0.7167 (3)0.8261 (2)0.0480 (8)
N10.7242 (5)0.8021 (3)0.8660 (2)0.0378 (9)
N30.4821 (4)0.7080 (3)0.9042 (2)0.0331 (8)
N50.7321 (5)0.6090 (3)0.8615 (2)0.0339 (8)
C20.5619 (6)0.8022 (4)0.8930 (3)0.0348 (10)
C40.5718 (6)0.6144 (4)0.8873 (3)0.0320 (10)
C60.8085 (6)0.7045 (4)0.8507 (3)0.0373 (11)
C70.3225 (7)0.9038 (5)0.9356 (4)0.0629 (16)
H7A0.28670.98160.94240.094*
H7B0.32760.86530.99330.094*
H7C0.23730.86630.89150.094*
C80.5689 (7)0.4162 (4)0.8790 (4)0.0551 (13)
H8A0.49080.35420.88940.083*
H8B0.67970.40830.91860.083*
H8C0.59190.41520.81660.083*
C91.0554 (7)0.6126 (5)0.8076 (4)0.0688 (17)
H9A1.170.6310.78980.103*
H9B0.98580.57140.75930.103*
H9C1.07170.56620.86170.103*
Sb10.44835 (5)0.72009 (3)0.62049 (2)0.04520 (13)
F20.6878 (4)0.7299 (3)0.6643 (2)0.0882 (12)
F30.4654 (6)0.8395 (3)0.5428 (2)0.1121 (16)
F40.3957 (6)0.8175 (3)0.7104 (2)0.1013 (14)
F50.4298 (4)0.6005 (2)0.69873 (19)0.0567 (8)
F60.4961 (4)0.6218 (3)0.5307 (2)0.0783 (10)
F70.2083 (4)0.7050 (3)0.5775 (2)0.0724 (10)
Atomic displacement parameters (Å2) top
U11U22U33U12U13U23
F10.069 (2)0.0496 (17)0.0622 (19)0.0210 (16)0.0108 (16)0.0033 (15)
O20.054 (2)0.0340 (18)0.0455 (19)0.0052 (16)0.0016 (16)0.0056 (15)
O40.0410 (19)0.0330 (17)0.0494 (19)0.0018 (15)0.0165 (15)0.0026 (14)
O60.0303 (17)0.068 (2)0.0468 (18)0.0098 (18)0.0075 (14)0.0031 (18)
N10.037 (2)0.037 (2)0.039 (2)0.0083 (17)0.0047 (17)0.0009 (16)
N30.0305 (19)0.036 (2)0.0327 (18)0.0003 (18)0.0047 (15)0.0029 (16)
N50.028 (2)0.044 (2)0.0297 (19)0.0004 (18)0.0042 (16)0.0010 (16)
C20.036 (3)0.039 (3)0.027 (2)0.001 (2)0.0037 (19)0.0030 (18)
C40.034 (3)0.040 (2)0.0208 (19)0.000 (2)0.0008 (18)0.0001 (18)
C60.031 (3)0.053 (3)0.027 (2)0.001 (2)0.0004 (18)0.002 (2)
C70.053 (4)0.049 (3)0.086 (4)0.016 (3)0.010 (3)0.016 (3)
C80.067 (4)0.036 (3)0.067 (3)0.002 (3)0.025 (3)0.002 (3)
C90.037 (3)0.086 (4)0.087 (4)0.005 (3)0.020 (3)0.009 (3)
Sb10.0548 (2)0.0476 (2)0.02970 (16)0.00836 (19)0.00802 (13)0.00297 (16)
F20.061 (2)0.122 (3)0.073 (2)0.047 (2)0.0221 (17)0.033 (2)
F30.174 (4)0.082 (3)0.066 (2)0.044 (3)0.035 (2)0.042 (2)
F40.168 (4)0.075 (2)0.052 (2)0.032 (2)0.020 (2)0.0256 (17)
F50.0550 (18)0.0594 (18)0.0543 (17)0.0083 (15)0.0017 (14)0.0162 (14)
F60.073 (2)0.107 (3)0.0574 (19)0.006 (2)0.0167 (17)0.0204 (18)
F70.0533 (19)0.100 (3)0.0583 (19)0.0218 (18)0.0133 (15)0.0114 (18)
Geometric parameters (Å, º) top
F1—N11.353 (4)C7—H7B0.97
O2—C21.290 (5)C7—H7C0.97
O2—C71.466 (6)C8—H8A0.97
O4—C41.291 (5)C8—H8B0.97
O4—C81.454 (5)C8—H8C0.97
O6—C61.285 (5)C9—H9A0.97
O6—C91.463 (6)C9—H9B0.97
N1—C21.349 (6)C9—H9C0.97
N1—C61.356 (6)Sb1—F31.845 (3)
N3—C21.291 (5)Sb1—F61.846 (3)
N3—C41.344 (5)Sb1—F41.852 (3)
N5—C41.327 (5)Sb1—F51.853 (3)
N5—C61.292 (5)Sb1—F21.860 (3)
C7—H7A0.97Sb1—F71.866 (3)
F1—N1—C2119.2 (4)H8A—C8—H8B109.5
F1—N1—C6119.2 (4)O4—C8—H8C109.5
C2—N1—C6121.6 (4)H8A—C8—H8C109.5
C2—N3—C4115.4 (4)H8B—C8—H8C109.5
C4—N5—C6116.1 (4)O6—C9—H9A109.5
N1—C2—N3120.2 (4)O6—C9—H9B109.5
N3—C4—N5127.1 (4)H9A—C9—H9B109.5
N1—C6—N5119.6 (4)O6—C9—H9C109.5
C2—O2—C7116.1 (4)H9A—C9—H9C109.5
C4—O4—C8117.7 (4)H9B—C9—H9C109.5
C6—O6—C9116.0 (4)F3—Sb1—F689.48 (18)
O2—C2—N3124.9 (4)F3—Sb1—F490.99 (19)
O2—C2—N1114.9 (4)F6—Sb1—F4178.80 (18)
O4—C4—N5119.7 (4)F3—Sb1—F5179.63 (19)
O4—C4—N3113.2 (4)F6—Sb1—F590.76 (15)
O6—C6—N5125.4 (4)F4—Sb1—F588.77 (16)
O6—C6—N1115.0 (4)F3—Sb1—F291.59 (17)
O2—C7—H7A109.5F6—Sb1—F291.05 (17)
O2—C7—H7B109.5F4—Sb1—F290.03 (19)
H7A—C7—H7B109.5F5—Sb1—F288.69 (13)
O2—C7—H7C109.5F3—Sb1—F790.16 (17)
H7A—C7—H7C109.5F6—Sb1—F788.07 (14)
H7B—C7—H7C109.5F4—Sb1—F790.83 (17)
O4—C8—H8A109.5F5—Sb1—F789.56 (14)
O4—C8—H8B109.5F2—Sb1—F7178.03 (15)
C7—O2—C2—N31.5 (6)C6—N5—C4—N30.9 (6)
C7—O2—C2—N1179.1 (4)C2—N3—C4—O4178.8 (4)
C4—N3—C2—O2179.4 (4)C2—N3—C4—N50.8 (6)
C4—N3—C2—N10.0 (5)C9—O6—C6—N51.3 (6)
F1—N1—C2—O22.3 (5)C9—O6—C6—N1179.0 (4)
C6—N1—C2—O2180.0 (3)C4—N5—C6—O6180.0 (4)
F1—N1—C2—N3177.1 (3)C4—N5—C6—N10.3 (6)
C6—N1—C2—N30.5 (6)C2—N1—C6—O6179.4 (4)
C8—O4—C4—N51.0 (6)F1—N1—C6—O63.0 (5)
C8—O4—C4—N3178.6 (4)C2—N1—C6—N50.4 (6)
C6—N5—C4—O4178.6 (4)F1—N1—C6—N5177.3 (4)

Experimental details

(I)(II)
Crystal data
Chemical formulaC5H5FN+·CF3O3SC6H9FN3O3+·F6Sb
Mr247.17425.91
Crystal system, space groupMonoclinic, P21/cMonoclinic, P21/n
Temperature (K)293203
a, b, c (Å)6.027 (2), 12.901 (4), 12.490 (3)7.616 (2), 11.843 (3), 14.924 (3)
β (°) 103.96 (3) 97.43 (2)
V3)942.5 (5)1334.9 (6)
Z44
Radiation typeMo KαMo Kα
µ (mm1)0.392.16
Crystal size (mm)0.40 × 0.25 × 0.250.30 × 0.15 × 0.10
Data collection
DiffractometerRigaku AFC-6S
diffractometer
Nonius MACH3
diffractometer
Absorption correctionψ scan
(North et al., 1968)
ψ scan
(North et al., 1968)
Tmin, Tmax0.809, 0.9050.686, 0.803
No. of measured, independent and
observed [I > 2σ(I)] reflections
1824, 1658, 890 3200, 2335, 1799
Rint0.0340.025
(sin θ/λ)max1)0.6010.594
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.149, 1.01 0.034, 0.071, 1.06
No. of reflections16582335
No. of parameters136181
H-atom treatmentH-atom parameters constrainedH-atom parameters constrained
Δρmax, Δρmin (e Å3)0.27, 0.230.98, 0.66

Computer programs: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1991), CAD-4 Software (Enraf-Nonius, 1994), MSC/AFC Diffractometer Control Software, CAD-4 Software, TEXSAN (Molecular Structure Corporation, 1999), XCAD4 (Harms & Wocadlo 1995), SHELXS97 (Sheldrick, 1997), SHELXL97 (Sheldrick, 1997), ORTEP-3 for Windows (Farrugia, 1997), WinGX (Farrugia, 1999).

Selected geometric parameters (Å, º) for (I) top
N1—F11.357 (4)C3—C41.350 (6)
N1—C21.322 (6)C4—C51.385 (7)
N1—C61.315 (6)C5—C61.367 (7)
C2—C31.347 (7)
F1—N1—C2118.4 (4)C2—C3—C4118.9 (4)
F1—N1—C6115.0 (4)C3—C4—C5119.3 (4)
C2—N1—C6126.7 (4)C4—C5—C6121.6 (4)
N1—C2—C3119.0 (4)N1—C6—C5114.6 (4)
Selected geometric parameters (Å, º) for (II) top
F1—N11.353 (4)N1—C21.349 (6)
O2—C21.290 (5)N1—C61.356 (6)
O2—C71.466 (6)N3—C21.291 (5)
O4—C41.291 (5)N3—C41.344 (5)
O4—C81.454 (5)N5—C41.327 (5)
O6—C61.285 (5)N5—C61.292 (5)
O6—C91.463 (6)
F1—N1—C2119.2 (4)C4—N5—C6116.1 (4)
F1—N1—C6119.2 (4)N1—C2—N3120.2 (4)
C2—N1—C6121.6 (4)N3—C4—N5127.1 (4)
C2—N3—C4115.4 (4)N1—C6—N5119.6 (4)
Comparative ring angles (°) for the title salts and their unfluorinated analogues top
Aromatic ringC-N-Cmetaorthopara
C5H5Nb116.6123.7118.6118.8
[(C5H5N)F]+a126.7116.9120.2119.4
(MeOCN)3c113.7126.6113.2126.9
[(MeOCN)3F]+a121.6120.0115.8127.1
Notes: (a) this work, (b) Mootz et al. (1981), (c) Glówka et al. (1989)
 

Follow Acta Cryst. C
Sign up for e-alerts
Follow Acta Cryst. on Twitter
Follow us on facebook
Sign up for RSS feeds